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ABSTRACT

The underline distribution assumption used in the analysis of share market returns is crucial in risk management. An 
important aspect related to stock return modelling is to obtain accurate prediction. This paper presents an innovative 
fitting method called two stages (TS) method for modelling daily stock returns. The proposed approach by first 
establishing trend in the series, and then separately performing L-moment estimation on the generalized lambda 
distribution (GLD) parameter. The performance of the TS-GLD models had been evaluated using Monte Carlo simulation 
and Malaysian Kuala Lumpur Composite Index (KLCI) returns from year 2001 to 2015. Based on k-sample Anderson 
darling goodness of fit test, the two stages GLD model in location parameter (GLD.1) performed well in all studied 
cases. The GLD.1 model benefits risk management by providing effective distribution fitting.

Keywords: Fat-tailed distributions; generalized lambda distribution; L-moment; risk management; stock returns

ABSTRAK
Andaian taburan yang digunakan dalam analisis pulangan pasaran saham adalah penting dalam pengurusan 
risiko. Isu utama dalam memodelkan pulangan saham adalah untuk mendapatkan anggaran yang tepat. Kajian 
ini membentangkan kaedah penyuaian inovatif iaitu kaedah dua peringkat (TS) dalam memodelkan pulangan saham 
harian. Pendekatan ini dijalankan dengan cara mengenal pasti bentuk trend di dalam siri, kemudian melaksanakan 
anggaran L-momen pada parameter taburan generalisasi lambda (GLD). Prestasi model TS-GLD dinilai dengan 
menggunakan kaedah simulasi Monte Carlo dan data sebenar iaitu Indeks Komposit Kuala Lumpur Malaysia (KLCI) 
dari tahun 2001 hingga 2015. Berdasarkan ujian kebagusan k-sample Anderson darling, model dua peringkat (TS) 
GLD bagi parameter lokasi (GLD.1) menunjukkan prestasi yang lebih baik untuk semua kes yang dikaji. Model GLD.1 
bermanfaat dalam pengurusan risiko dengan memberikan penyuaian taburan yang lebih baik.

Kata kunci: L-momen; pengurusan risiko; pulangan saham; taburan berekor tebal; taburan generalisasi lambda

INTRODUCTION

Stock market volatility is generally connected with risk 
measurement in finance. Economic crisis and natural 
disaster are phenomena that can drive extreme volatility 
on stock market series (Ben Slimane et al. 2013). Analysis 
of probability distribution is one approach to comprehend 
fundamental stochastic processes in these phenomena. 
Stock return modelling aims to yield the best distribution 
estimation that can explain the behaviour of stock 
returns, because accurate calculation is essential for risk 
management in financial investments.

The study on best fitting probability distribution 
performance in stock returns has been the subject of 
much systematic investigation (Gettinby et al. 2006; 
Hasan et al. 2012; Hussain & Li 2015; Longin 1996; 
Marsani & Shabri 2019; Marsani et al. 2017; Tolikas 
2014, 2011, 2008; Tolikas & Gettinby 2009). The existing 
body of research frequently assumes that the stock return 
movement is stationary. However, this condition is 

erroneous in describing the real process due to the rising 
sign of the variability in the stochastic process of stock 
returns (Stărică & Granger 2005). Return movement 
follows non-stationary process (Marsani & Shabri 2019) 
as it possesses several common statistical characters 
such as volatility clustering (Dong & Wang 2013; Niu 
& Wang 2013a; Rizvi et al. 2014; Yu & Wang 2012), 
multifractality of volatility (Calvet & Fisher 2008; 
Fang & Wang 2012; Kantelhardt et al. 2002; Stošić et 
al. 2015; Suárez-García & Gómez-Ullate 2014), power 
law of logarithmic returns (Gabaix et al. 2003; Niu & 
Wang 2013b) and fat tails (Cont 2001; Ding et al. 1993; 
Mandelbrot 2013; Mantegna & Stanley 1995).

In stochastic processes, two underlying assumptions 
are usually used, namely stationary and non-stationary. 
The stationary process is an unconditional joint 
probability distribution of a series that does not change 
across time, which suggest that the parameters such 
as mean and variance are constant over time (Gagniuc 
2017). Since ignoring the non-stationarity of the returns 
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series could provide inaccurate and bias risk estimates, 
therefore, the development of a model should provide 
benefits for determining risk (Acharya et al. 2012). The 
present study examines the behavior of the stock market 
in Malaysia by reflecting the dynamic progress of returns 
properties over time. The characteristics of non-stationary 
statistical features model are developed based on the 
weak assumption on time-invariant probability densities 
for location and scale parameters. The new technique 
is proposed based on GLD assumption, given that this 
distribution is competent to clarify the daily stock return 
behavior (Chalabi et al. 2009, 2012; Corlu et al. 2016; 
Corrado 2001; Marsani et al. 2017). The advantage of the 
two-stage fitting method over the traditional approach 
is twofold. Firstly, this new technique has successfully 
improved the accuracy of distribution fitting on extreme 
asset returns in the context of the non-stationarity setting. 
Secondly, this method is simple and straightforward 
as the calculations between the trend estimators and 
assumed probability distribution are independent. In this 
respect, the unique values of the probability distribution 
and trend estimators could be maintained without any 
interference in the statistical properties. The rest of this 
paper is arranged as follows: Next section describes the 
methods, consisting of GLD probability density function, 
non-stationary algorithm, and simulation design. 
Subsequent section deliberates the outcome for the best 
fitting model in simulation and real data application. Last 
section concludes the study.

MATERIALS AND METHODS

GENERALIZED LAMBDA DISTRIBUTION (GLD)

A significant advantage of four parameter-GLD measured 
by Karian and Dudewicz (2000) is the wide flexibility in 
assessing symmetrical and asymmetrical distribution’s 
shape, which makes it feasible to be applied in many 
univariate applications. The GLD can only be expressed 
in terms of inverse distribution function (Ramberg & 
Schmeiser 1974).

(1)

where µ  is location parameter; α is scale parameter; and 
k h represent the shape parameters. The scale parameter 
α is denoted in numerator form. The quantile for time-
independent random variable, X  is expressed as F -1(q), 
and F denotes the non-exceedance probability. GLD is 
valid if and only if

(2)

Accordingly, the GLD quantiles can be written as:

whose non-exceedance probability is 0 1q≤ ≤ . The four 
parameters of GLD using L-moments expressions have 
been described by Asquith (2007).

TWO-STAGES METHOD
The two-stage model proposed in this study is used 
to tackle the complex sampling moments in stock 
volatility. This complexity can be addressed by 
patterning the covariates location (µ) and scale (α) 
parameter proportion to the functions of time-dependent. 
After this, the two-stage model becomes a non-stationary 
model namely GLD.1, GLD.2, GLD.11, and GLD.21, co-
existing with the stationary model GLD.0 as the original 
model. All four different non-stationary models can be 
expressed as:

where t is time; and k and h are the shape parameters, 
respectively. The natural log in scale ln α(t) is operated to 
restrain a positive value in the scale parameter. The time-
dependent assumptions in location and scale parameters 
are described in the next section.

PROCEDURE FOR TWO-STAGES ANALYSIS

First, express the non-stationary sequence nsQ  as trend 
component tr(t) and a residual time-dependent ( )tε that 
diverts from the trend in the location parameter.

Second, fit the non-stationary (linear or quadratic model) 
into the trend component tr(t) by estimating the location 
parameter.

Third, estimate the de-trended residual component ( )tε  
given by

Fourth, express the transformed residual ( )tε ′  component 
from the residual component ( )tε  as
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whose non-exceedance probability is 0 1q≤ ≤ . The four 
parameters of GLD using L-moments expressions have 
been described by Asquith (2007).

TWO-STAGES METHOD
The two-stage model proposed in this study is used 
to tackle the complex sampling moments in stock 
volatility. This complexity can be addressed by 
patterning the covariates location (µ) and scale (α) 
parameter proportion to the functions of time-dependent. 
After this, the two-stage model becomes a non-stationary 
model namely GLD.1, GLD.2, GLD.11, and GLD.21, co-
existing with the stationary model GLD.0 as the original 
model. All four different non-stationary models can be 
expressed as:

where t is time; and k and h are the shape parameters, 
respectively. The natural log in scale ln α(t) is operated to 
restrain a positive value in the scale parameter. The time-
dependent assumptions in location and scale parameters 
are described in the next section.

PROCEDURE FOR TWO-STAGES ANALYSIS

First, express the non-stationary sequence nsQ  as trend 
component tr(t) and a residual time-dependent ( )tε that 
diverts from the trend in the location parameter.

Second, fit the non-stationary (linear or quadratic model) 
into the trend component tr(t) by estimating the location 
parameter.

Third, estimate the de-trended residual component ( )tε  
given by

Fourth, express the transformed residual ( )tε ′  component 
from the residual component ( )tε  as

where ε  represents the mean of the residual 
component.
Fifth, estimate the trend ( )ttr

 
component from the 

transformed residual component ( )tε ′  using a linear or 
quadratic model in the scale parameter ( )tα

          α(t) = exp (α0 + α1t + α2t
2 + K + αnt

n)                (9)

Sixth, express the stationary sequence ( )
ˆ s

tQ by eliminating 
the trend (scale α(t)) from residual component ( )tε

 
as given 

(Cunderlik & Burn 2003).

Seven, apply the stationary series ( )
ˆ s

tQ  to estimate 
parameters µ, α, k and h and get the quantile for GLD.
Last, re-trend the calculated stationary quantiles by 
reversing the step taken to obtain non-stationary fitted 
quantile.
The proposed two-stage models are described as follows. 

GLD.1 MODEL

The location parameter is modelled using the linear 
function of time ( ) 0 1t tµ µ µ= +

 
where 0µ represents the 

mean intercept at period 0t = , while 1µ  denotes the mean 
shift for every period. Sen’s non-parametrical robust 
slope estimator is employed to estimate 1µ , as described 
by Sen (1968):

where Xi and Xj represent random variables of X 
at times i and j individually, the mean 0µ  at 0t =  is 
computed as: 0 1X tµ µ= −  where both X and t  signify 
an average for random variable and period. The GLD 
moment (t) ascribed by Asquith (2007) is defined as

by substituting the location parameter ( )tµ
 
into (15), 

which is then rearranged as

Meanwhile, the location parameter 0ξ  at period t = 0  is 
expressed as

and the shift in the location parameter at period t = 1 is 
expressed as

  

(15)

GLD.2 MODEL

The GLD.2 location parameter is modelled using a 
quadratic function of time, as

while the GLD moment (t) is modelled using quadratic 
function as

Accordingly, the location parameter 0ξ  at period t = 0  is 
written as

where 1 1ξ µ= , and 2 2ξ µ= represent the shift in the 
location parameter at periods t = 1 and 2, respectively.

GLD.11 MODEL AND GLD.21 MODEL
The location parameter is estimated as linear function in 
GLD.11, and as quadratic functions in GLD.21 model, as

                                                       (linear)
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                                                       (quadratic)

An additional analysis needs to be conducted on scale 
parameter to models GLD.11 and GLD.21, where the 
log scale parameters for both GLD.11 and GLD.21 are 
estimated by using linear function, as
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The second moment (t) of the GLD by following 
(Asquith 2007) written as,

where,

By substituting (20) into (21),

Therefore, the scale parameter is given as follows,

SIMULATION LAYOUT
To accurately portray the real data comportment, 
the sampling properties of the non-stationarity had 
been investigated by applying GLD as known parent 
distribution function. According to Fournier et al. (2006) 
GLD parameters (0, 0.19, 0.14, 0.14) is appropriate 
to study a symmetric distribution which close to the 
standard Gaussian. Figure 1 illustrates the known parent 
GLD for different skewness level. The values of location 
and scale parameters applied in this study were µ = 0  
and α = 0.08 , respectively. Six different GLD shape 
parameters, namely kh1(k=0.05, h=0.23), kh2(k=0.08, 
h=0.20), kh3(k=0.11, h=0.17), kh4(k=0.17, h=0.11), 
kh5(k=0.20, h=0.08) and kh6(k=0.23, h=0.05) were 
used to represent different levels of non-stationary 
processes portrayed, using tail-fatness of the distribution. 
The combination of kh1, kh2, and kh3 was skewed to 
the left, while the combination of kh4, kh5, and kh6 was 
skewed to the right. L-moment estimation method was 
employed to estimate all the GLD parameters. In this 
study, the best fit GLD model was chosen from the model 
that could minimize the K-Sample Anderson Darling 
(k-ad) statistics (Scholz & Stephens 1987), expressed as

where in  is the sample size of ix , and '( )H x  denotes the 
empirical distribution function of the pooled sample of 
all ˆ ( )X iF x , where 0 1i k≤ ≤ − .k-ad test statistic signifies 
the difference between experimental and pooled samples 
value. The studied GLD model could properly fit the data 
as the model could minimize the k-ad test statistics. The 
performance of the k-ad test statistics was assessed using 
average k-ad value, given by,

where kAD  represents k-ad statistics and Nsim  is the 
number of generated samples. This simulation was 
repeated for 5000 simulation runs with samples sizes, n = 
100, 300 and 1000 to represent small, medium, and large 
samples.

RESULTS AND DISCUSSION

SIMULATION RESULTS

Table 1 presents the k-ad simulation results for traditional 
stationary and proposed model at different combination 
of the shape parameter (k and h) and sample size (n), 
respectively. The best fitting model should yield a value 
which minimizes k-ad statistics. Overall, the k-ad statistics 
for the stationary and non-stationary were close to each 
other. The results for different combinations of the shape 
parameters k and h of distribution tail fatness were fairly 
similar. However, even though the proportion of the tail 
fatness and sample size in the data had been increased, 
GLD.1 seemed to outperform the other models. In order 
to get a clear picture of performances comparison, the 
results as presented in Table 1 had been simplified in Table 
2. As shown in Table 2, GLD.0, GLD.2, GLD.11, GLD.21 
model produced higher values of k-ad compared to GLD.1, 
indicating that for all choices of the estimation of GLD 
shape parameters (k and h), GLD.1 model surpassed all 
the other models for best fitting performance.
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ANALYSIS OF REAL DATA SET

Consequently, the GLD studied model was applied to 
Malaysian daily KLCI stock price. The data of 14 year-
daily stock returns from 2001 until 2015 were obtained 
from Yahoo Finance and calculated using formula 

1ln( / )t t tR P P−=  where tR  is return index at t  period, tP  
is stock price index in term of t , while 1tP−  is stock price 
index at time of 1t − . Note that, daily interval sample 
in this study had been divided evenly into five periods, 
assigned for every three years starting from 2001 until 
2015 to avoid any external bias.

Table 3 presents the descriptive statistics for five 
different intervals of daily KLCI stock price return. 
Daily return series recorded the lowest at -4.812% and 
the highest 5.210%. The mean average for all intervals 

was positive, except for the first period which was 
-0.00629%. The standard deviation recorded the highest 
value of 1.1094 in the third period. Skewness to measure 
distribution symmetries was negative for all periods, 
except for the first period which expressed the tail 
inclined to the left. Jarque-Bera test (JB) was performed 
to see the normality of the data dispersions. Immense JB 
value and significant p-value indicated that the data series 
for all periods did not follow a normal distribution. The 
test for stationarity KPSS showed significant p-value 
at all periods, indicating the series was non-stationary. 
Also, the existence of the trend had been inspected using 
Mann-Kendal test, which reported that all the series had 
a positive trend.

TABLE 1. Simulation results on k-ad test

n=100 n=300 n=1000
Model k-ad pval k-ad pval k-ad pval
GLD.0.kh1 0.24974 0.976 0.14335 1 0.50487 0.747

GLD.1.kh1 0.24974 0.9785 0.19604 0.9895 0.50394 0.75
GLD.2.kh1 0.25085 0.9685 0.19331 0.9925 0.13179 0.999
GLD.11.kh1 0.33301 0.92 0.2015 0.9895 0.499 0.7515

GLD.21.kh1 0.25085 0.9715 0.19374 0.9895 0.13223 0.999
GLD.0.kh2 0.1457 0.999 0.25606 0.9715 0.58405 0.661

GLD.1.kh2 0.19286 0.9935 0.26588 0.9695 0.57795 0.6705
GLD.2.kh2 0.152 0.9995 0.26247 0.9605 0.54369 0.6915

GLD.11.kh2 0.16002 0.998 0.26128 0.9625 0.58133 0.6605
GLD.21.kh2 0.14629 0.9985 0.25994 0.9675 0.54818 0.7055
GLD.0.kh3 0.16679 0.9965 0.40688 0.8605 0.69157 0.5465

GLD.1.kh3 0.086812 1 0.39061 0.856 0.69528 0.5515
GLD.2.kh3 0.092371 1 0.39907 0.8395 0.69425 0.5735

GLD.11.kh3 0.15209 0.998 0.39978 0.859 0.68019 0.5775
GLD.21.kh3 0.092371 1 0.39943 0.855 0.69772 0.5575

GLD.0.kh4 0.16464 0.997 0.22135 0.988 0.47866 0.767
GLD.1.kh4 0.16916 0.998 0.12537 0.999 0.46447 0.7845
GLD.2.kh4 0.19009 0.9945 0.22013 0.9795 0.46792 0.7835

GLD.11.kh4 0.16929 0.9965 0.12744 0.9995 0.47373 0.778
GLD.21.kh4 0.17205 0.9975 0.10406 1 0.46606 0.772

GLD.0.kh5 0.19596 0.992 0.16424 0.9965 0.49408 0.7465
GLD.1.kh5 0.20025 0.9925 0.16056 0.9985 0.50005 0.745

GLD.2.kh5 0.27406 0.964 0.15682 0.999 0.47357 0.77
GLD.11.kh5 0.20083 0.991 0.15941 0.997 0.50038 0.7465
GLD.21.kh5 0.2706 0.967 0.1575 0.9985 0.47293 0.7915

GLD.0.kh6 0.10989 1 0.22808 0.9865 0.24005 0.979
GLD.1.kh6 0.10331 1 0.17179 0.996 0.23697 0.9775

GLD.2.kh6 0.28254 0.9545 0.18102 0.998 0.17027 0.996
GLD.11.kh6 0.10331 1 0.16148 0.999 0.23739 0.976
GLD.21.kh6 0.10386 1 0.18142 0.9965 0.99826 0.3615
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TABLE 2. Average k-ad of simulation data

Model 100 300 1000

GLD.0 0.17212 0.23666 0.49888

GLD.1 0.167022 0.218375 0.496443

GLD.2 0.206985 0.23547 0.413582

GLD.11 0.186425 0.218482 0.495337

GLD.21 0.17267 0.216015 0.552563

non-stationary model that is superior then stationary model marked in bold

TABLE 3. Descriptive statistics of daily KLCI stock price return

period.1 period.2 period.3 period.4 period.5

year 2015-2013 2012-2010 2009-2007 2006-2004 2003-2001

n 794 771 778 776 619

min(%) -2.8185 -2.54474 -4.59222 -2.49268 -4.81267

average(%) -0.00629 0.036022 0.038787 0.039847 0.050836

max(%) 5.210395 2.631346 4.704941 2.19047 4.370158

std.deviation(%) 0.599784 0.575057 1.1094 0.600644 0.893152

variance(%) 0.003597 0.003307 0.012308 0.003608 0.007977

skewness 0.464491 -0.4268 -0.14628 -0.04544 -0.02312

kurtosis 9.089633 2.446088 2.128506 1.531641 3.835696

jarque.bera 2723.07 211.8389 146.6964 74.38701 371.5278

p.value 0 0 0 1.11E-16 0

KPSS 9.212016 9.216348 9.410213 9.637996 8.626569

p.value 0.01 0.01 0.01 0.01 0.01

Mann-Kendal 0.997371 0.998331 0.998434 0.998634 0.998443

p.value 0 0 0 0 0
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FIGURE 2. CDF plot using L-moment method

Figure 2 shows the CDF plot curve of each GLD 
model, which clarifies the upper and lower tail event at 

four-period returns. The CDF curves for GLD.0, GLD.1, 
GLD.2, GLD.11, and GLD.21 models overlapped, 
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indicating a very similar pattern by each of the models. 
All the GLD models seemed to adequately fit the extreme 
interval, specifically the upper and lower tail of the daily 
KLCI return. The CDF curve for GLD.2 in period three 
slightly deviated from the data. Thus, it was difficult to 
determine the best-fitted model based on the graphs.

Table 4 presents the k-ad goodness of fit test for 
each of the model. The k-ad goodness of fit test for 

all five periods gave an acceptable fit (p - value > 
5%), indicating the empirical and the fitted data were 
homogenous. In general, it can be observed that the 
GLD.1 operated better than the other models, as GLD.1 
provided the finest fitting at all periods, with evidence of 
the low k-ad values. The average value for overall cases 
period confirmed that non-stationary model GLD.1 is 
an excellent model to explain the behavior of daily return.

TABLE 4. k-ad test for five different daily KLCI return period

period.1 period.2 period.3 period.4 period.5
Average

model
k-ad pval k-ad pval k-ad pval k-ad pval k-ad pval

k-ad

GLD.0 0.4599 0.7876 0.4384 0.8096 0.2471 0.9725 0.3339 0.9110 0.3007 0.9383 0.3560

GLD.1 0.4442 0.8037 0.4293 0.8189 0.2383 0.9769 0.3170 0.9253 0.2939 0.9434 0.3445

GLD.2 0.5159 0.7302 0.3548 0.8922 1.6690 0.1406 0.3485 0.8980 0.2875 0.9480 0.6352

GLD.11 0.4669 0.7804 0.4379 0.8102 0.2392 0.9764 0.3214 0.9217 0.2935 0.9437 0.3517

GLD.21 0.5154 0.7306 0.3545 0.8923 0.2533 0.9691 0.3485 0.8979 0.2873 0.9480 0.3519

non-stationary model that is superior then stationary model marked in bold

ANALYSIS OF TAIL DISTRIBUTION
Next, Value at risk (VaR) analysis was conducted to 
determine the best GLD model that could explain the 
stock return behavior at the tail distribution. VaR can 
be a useful instrument to inquire about potential losses 
of information in term of probability, as investors are 
often concerned with the downside risk (Ab Razak & 
Ismail 2019). In this section, we consider analysis at the 
tail distribution on GLD.0, GLD.1, GLD.2, GLD.11, and 
GLD.21 to investigate which of the model give excellent 
estimation at the tail.

Table 5 shows the probability of getting a daily 
KLCI stock return within the intervals and the coefficient 
of 2R  for every GLD model. The studied intervals were 
[mu - (i+1)sd, mu - (i)sd]  signify lower and upper tails, 
respectively, where mu represents the mean, and sd 
denotes the standard deviation calculated from the daily 
return. In this study, the actual probability returns (obs) 
had been compared with the fitted probability return for 
each model. The best GLD model was determined based 

on the ability of the GLD model in capturing risk at 
specified interval and the values of coefficient of R2. The  
R2 can be explained as 2

1: 1:ˆ( , )n ncor x x  where 1:nx  and 1:ˆ nx  are the actual and fitted (n th) sample returns. The model 
was adequate in explaining the entire daily return when 

2R was close to one.
Table 5 shows that the models performed well in 

capturing risk at all intervals, as the fitted and actual 
probability return displayed almost similar results. 
However, GLD.1 was better in performance compared 
to traditional GLD.0 model when the probability of the 
estimated price returns was nearer to the actual data. For 
example, in period 1, the probability of the actual data at 
interval Inr.3 (mu - 3sd, mu - 2sd)  was 0.0252%, almost 
the same with GLD.1, which was 0.0202%. Also, GLD.1 
give better prediction at interval Inr.5 and Inr.6 for 
each studied period by effectively capturing the extreme 
returns. The R-squared value supports this claim as the 
R-squared for GLD.1 model was higher compared to 
GLD.0 models.
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TABLE 5. Lower and upper tail analysis for each of the GLD model and the coefficient of R2 

Lower tail Upper tail

period  model Inr.1 Inr.2 Inr.3 Inr.4 Inr.5 Inr.6 Inr.7 Inr.8 Inr.9 Inr.10 R-sq.

1 obs 0.0025 0.0076 0.0252 0.0806 0.1322 0.1184 0.0982 0.0202 0.0038 0.0000

GLD.0 0.0025 0.0063 0.0189 0.0856 0.1310 0.1398 0.0869 0.0189 0.0050 0.0025 0.9912

GLD.1 0.0025 0.0063 0.0202 0.0844 0.1322 0.1360 0.0869 0.0189 0.0050 0.0025 0.9919

GLD.2 0.0025 0.0063 0.0189 0.0793 0.1322 0.1360 0.0932 0.0202 0.0050 0.0013 0.9909

GLD.11 0.0025 0.0063 0.0189 0.0856 0.1310 0.1411 0.0869 0.0189 0.0050 0.0025 0.9908

GLD.21 0.0025 0.0063 0.0189 0.0793 0.1322 0.1360 0.0932 0.0202 0.0050 0.0013 0.9909

2 obs 0.0026 0.0052 0.0311 0.0843 0.1154 0.1466 0.1077 0.0169 0.0039 0.0000

GLD.0 0.0026 0.0078 0.0220 0.0895 0.1245 0.1582 0.0960 0.0169 0.0039 0.0013 0.9909

GLD.1 0.0026 0.0078 0.0220 0.0895 0.1245 0.1530 0.0960 0.0169 0.0039 0.0013 0.9918

GLD.2 0.0026 0.0065 0.0220 0.0856 0.1258 0.1530 0.1012 0.0182 0.0026 0.0013 0.9900

GLD.11 0.0026 0.0078 0.0220 0.0895 0.1245 0.1582 0.0960 0.0169 0.0039 0.0013 0.9909

GLD.21 0.0026 0.0065 0.0220 0.0856 0.1258 0.1530 0.1012 0.0182 0.0026 0.0013 0.9900

3 obs 0.0000 0.0116 0.0167 0.0964 0.1298 0.1465 0.0925 0.0257 0.0026 0.0013

GLD.0 0.0013 0.0051 0.0219 0.0951 0.1375 0.1440 0.0964 0.0193 0.0051 0.0026 0.9940

GLD.1 0.0013 0.0051 0.0219 0.0951 0.1375 0.1440 0.0964 0.0193 0.0051 0.0026 0.9946

GLD.2 0.0000 0.0000 0.0411 0.0990 0.0925 0.0964 0.1144 0.0347 0.0000 0.0000 0.9694

GLD.11 0.0013 0.0051 0.0219 0.0951 0.1375 0.1440 0.0964 0.0193 0.0051 0.0026 0.9945

GLD.21 0.0013 0.0051 0.0219 0.0964 0.1362 0.1440 0.0964 0.0193 0.0051 0.0026 0.9945

4 obs 0.0000 0.0077 0.0219 0.1044 0.1456 0.1353 0.1057 0.0206 0.0077 0.0000

GLD.0 0.0013 0.0052 0.0206 0.1044 0.1456 0.1418 0.1031 0.0219 0.0052 0.0013 0.9956

GLD.1 0.0013 0.0052 0.0219 0.1031 0.1443 0.1405 0.1018 0.0232 0.0052 0.0013 0.9966

GLD.2 0.0013 0.0064 0.0206 0.0979 0.1469 0.1366 0.1082 0.0232 0.0039 0.0013 0.9969

GLD.11 0.0013 0.0052 0.0219 0.1031 0.1443 0.1405 0.1018 0.0232 0.0052 0.0013 0.9963

GLD.21 0.0013 0.0064 0.0206 0.0979 0.1469 0.1366 0.1082 0.0232 0.0039 0.0013 0.9969
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CONCLUSION
A non-stationary method of GLD models is proposed in 
this paper to interpret the appearances of significantly 
changing financial markets. This method transforms 
a non-stationary time series into stationary series by 
decomposing the trends in both mean and standard 
deviation of the original series. Manipulating the 
advantage of GLD, a new method is added into GLD to 
improve estimation accuracy by considering the non-
stationarity in data series. The developed methods 
had been successfully implemented by carrying out 
simulation and real data analysis. The performance 
of this method had been investigated through Monte 
Carlo simulation. The simulation study was conducted 
on GLD1, GLD2, GLD11, and GLD21 models using six 
different shape parameters to portray different levels of 
extreme values. Malaysia daily KLCI returns had been 
used to represent the actual figures.

The findings of this paper are highlighted as 
follows: In the case of the non-stationarity in the data 
series, KPSS and Mann-Kendal tests had confirmed the 
existence of trends and non-stationarity in all periods 
from year 2001 to 2015. In the case of simulation data 
set, the performance of developed non-stationary GLD.1 
model was superior than the stationary GLD.0, GLD.2, 
GLD.11 and GLD.21 models. GLD.1 produced lower k-ad 
on average. For the application of real data sets, the CDF 
curve had been used as a graphical tool to clarify the 
upper and lower tails risk event. Data analysis of tail 
distribution has explained the benefits of our proposed 
model in terms of tail behavior. The performance of 
the VaR using lower and upper tail interval analyses 
for each of the GLD model computed in this study is 
reasonably close to each other. Generally, the proposed 

model performance GLD.1 has been found better 
compared to the traditional model at the beginning part 
of lower and upper extreme distribution period precisely 
(mu-sd, mu-0.5*sd) and (mu+0.5*sd, mu+sd) interval, 
as the modeling technique emphasizes the center part 
of the distribution. Also, the R2 of GLD.1 model was the 
highest in all cases, indicating that GLD.1 was the best in 
estimating the entire sample for all studied periods.

In general, on the basis of these results, it can be 
concluded that the proposed method by GLD1 model is 
the most accurate in explaining daily stock return in 
the environment of non-stationary. A simulation exercise 
has added further strength in this study. These findings 
provide new knowledge in the literature by improving 
the accuracy of the stock market projection as the 
ability of such risk measures is vital for investment and 
financial risk protection.

ACKNOWLEDGEMENTS

The authors would like to thank Universiti Sains 
Malaysia and the Ministry of Higher Education, Malaysia 
for the scholarship awarded.

REFERENCES
Ab Razak, R. & Ismail, N. 2019. Dependence modeling and 

portfolio risk estimation using GARCH-Copula approach. 
Sains Malaysiana 48(7): 1547-1555.

Acharya, V., Engle, R. & Richardson, M. 2012. Capital shortfall: 
A new approach to ranking and regulating systemic risks. 
American Economic Review 102(3): 59-64.

Asquith, W.H. 2007. L-moments and TL-moments of the 
generalized lambda distribution. Computational Statistics 
& Data Analysis 51(9): 4484-4496.

5 obs 0.0032 0.0048 0.0113 0.1002 0.1502 0.1260 0.1034 0.0210 0.0048 0.0016

GLD.0 0.0016 0.0048 0.0178 0.0953 0.1486 0.1309 0.0905 0.0210 0.0065 0.0016 0.9921

GLD.1 0.0016 0.0048 0.0178 0.0953 0.1502 0.1276 0.0905 0.0210 0.0065 0.0016 0.9925

GLD.2 0.0016 0.0048 0.0178 0.0953 0.1486 0.1292 0.0921 0.0210 0.0065 0.0016 0.9926

GLD.11 0.0016 0.0048 0.0178 0.0953 0.1486 0.1309 0.0905 0.0210 0.0065 0.0016 0.9925

GLD.21 0.0016 0.0048 0.0178 0.0953 0.1486 0.1292 0.0921 0.0210 0.0065 0.0016 0.9926

note: Inr. denote as interval which Inr.1 = (mu-5sd, mu-4sd), Inr.2 = (mu-4sd, mu-3sd), Inr.3 = (mu-3sd, mu-2sd), Inr.4 = (mu-2sd, mu-sd), Inr.5 = (mu-sd, mu-0.5sd), Inr.6 
= (mu+0.5sd, mu+sd), Inr.7 = (mu+sd, mu+2sd), Inr.8 = (mu+2sd, mu+3sd), Inr.9 = (mu+3sd, mu+4sd) and Inr.10 = (mu+4sd, mu+5sd). Non-stationary models that is 

superior then stationary model marked in bold according to R2  for entire period.



  1163

Ben Slimane, F., Mehanaoui, M. & Kazi, I. 2013. How does the 
financial crisis affect volatility behavior and transmission 
among European stock markets? International Journal of 
Financial Studies 1(3): 81-101.

Calvet, L.E. & Fisher, A. 2008. Multifractal Volatility: Theory, 
Forecasting, And Pricing. Massachusetts: Academic Press.

Chalabi, Y., Diethelm, W. & Scott, D.J. 2012. Flexible 
distribution modeling with the generalized lambda 
distribution flexible distribution modeling with the 
generalized lambda distribution. Munich Personal RePEc 
Archive https://mpra.ub.uni-muenchen.de/43333/.

Chalabi, Y., Scott, D.J. & Würtz, D. 2009. The generalized lambda 
distribution as an alternative to model financial returns. 
Eidgenössische Technische Hochschule and University of 
Auckland, Zurich and Auckland. pp. 1-28.

Cont, R. 2001. Empirical properties of asset returns: Stylized 
facts and statistical issues. Quantitative Finance 1(2): 223-
236

Corlu, C.G., Meterelliyoz, M. & Tiniç, M. 2016. Empirical 
distributions of daily equity index returns: A comparison. 
Expert Systems with Applications 54: 170-192.

Corrado, C.J. 2001. Option pricing based on the generalized 
lambda distribution. Journal of Futures Markets 21(3): 
213-236. 

Cunderlik, J.M. & Burn, D.H. 2003. Non-stationary pooled 
flood frequency analysis. Journal of Hydrology 276(1-4): 
210-223.

Ding, Z., Granger, C.W.J. & Engle, R.F. 1993. A long memory 
property of stock market returns and a new model. 
Journal of Empirical Finance 1(1): 83-106.

Dong, Y. & Wang, J. 2013. Fluctuation behavior of financial 
return interval series model for percolation on Sierpinski 
carpet lattice. Fractals 21(03n04): 1350023.

Fang, W. & Wang, J. 2012. Statistical properties and 
multifractal behaviors of market returns by Ising dynamic 
systems. International Journal of Modern Physics C 
23(03): 1250023.

Fournier, B., Rupin, N., Bigerelle, M., Najjar, D. & Iost, A. 
2006. Application of the generalized lambda distributions 
in a statistical process control methodology. Journal of 
Process Control 16(10): 1087-1098.

Gabaix, X., Gopikrishnan, P., Plerou, V. & Stanley, H. E. 2003. 
A theory of power-law distributions in financial market 
fluctuations. Nature 423(6937): 267.

Gagniuc, P.A. 2017. Markov Chains: From Theory to 
Implementation and Experimentation. John Wiley & Sons.

Gettinby, G.D., Sinclair, C.D., Power, D.M. & Brown, R.A. 
2006. An analysis of the distribution of extremes in indices 
of share returns in the US, UK and Japan from 1963 to 
2000. International Journal of Finance and Economics 
11(2): 97-113. 

Hasan, H., Radi, N.F.A. & Kassim, S. 2012. Modeling of 
extreme temperature using Generalized Extreme Value 
(GEV) distribution: A case study of Penang. Proceedings 
of the World Congress on Engineering 2012 89: 82-89. 

Hussain, S.I. & Li, S. 2015. Modeling the distribution of 
extreme returns in the Chinese stock market. Journal of 
International Financial Markets, Institutions and Money 
34: 263-276. 

Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, 
S., Bunde, A. & Stanley, H.E. 2002. Multifractal detrended 

fluctuation analysis of nonstationary time series. Physica 
A: Statistical Mechanics and its Applications 316(1-4): 
87-114.

Karian, Z.A. & Dudewicz, E.J. 2000. Fitting Statistical 
Distributions: The Generalized Lambda Distribution and 
Generalized Bootstrap Methods. London: Chapman and 
Hall/CRC.

Longin, F.M.F.M. 1996. The asymptotic distribution of extreme 
stock market returns. Journal of Business 69(3): 383-408. 

Mandelbrot, B.B. 2013. Fractals and Scaling in Finance: 
Discontinuity, Concentration, Risk. Selecta Volume E. 
Springer Science & Business Media.

Mantegna, R.N. & Stanley, H.E. 1995. Scaling behaviour in the 
dynamics of an economic index. Nature 376(6535): 46-49.

Marsani, M.F. & Shabri, A. 2019. Random walk behaviour of 
Malaysia share return in different economic circumstance 
formula. MATEMATIKA: Malaysian Journal of Industrial 
and Applied Mathematics DOI: https://doi.org/10.11113/
matematika.v35.n3.1105

Marsani, M.F., Shabri, A. & Jan, N.A.M. 2017. Examine 
generalized lambda distribution fitting performance: 
An application to extreme share return in Malaysia. 
Malaysian Journal of Fundamental and Applied Sciences 
13(3): 230-237.

Niu, H. & Wang, J. 2013a. Volatility clustering and long 
memory of financial time series and financial price model. 
Digital Signal Processing 23(2): 489-498.

Niu, H. & Wang, J. 2013b. Power-law scaling behavior 
analysis of financial time series model by voter interacting 
dynamic system. Journal of Applied Statistics 40(10): 2188-
2203.

Ramberg, J.S. & Schmeiser, B.W. 1974. An approximate 
method for generating asymmetric random variables. 
Communications of the ACM 17(2): 78-82. 

Rizvi, S.A.R., Dewandaru, G., Bacha, O.I. & Masih, M. 2014. 
An analysis of stock market efficiency: Developed vs 
Islamic stock markets using MF-DFA. Physica A: Statistical 
Mechanics and its Applications 407: 86-99.

Scholz, F.W. & Stephens, M.A. 1987. K-sample Anderson–
Darling tests. Journal of the American Statistical 
Association. doi:10.1080/01621459.1987.10478517.

Sen, P.K. 1968. Estimates of the regression coefficient 
based on Kendall’s tau. Journal of the American Statistical 
Association 63(324): 1379-1389.

Stošić, D., Stošić, D., Stošić, T. & Stanley, H.E. 2015. 
Multifractal properties of price change and volume change 
of stock market indices. Physica A: Statistical Mechanics 
and its Applications 428: 46-51.

Suárez-García, P. & Gómez-Ullate, D. 2014. Multifractality and 
long memory of a financial index. Physica A: Statistical 
Mechanics and its Applications 394: 226-234.

Tolikas, K. 2014. Unexpected tails in risk measurement: Some 
international evidence. Journal of Banking and Finance 
40(1): 476-493. 

Tolikas, K. 2011. The rare event risk in African emerging 
stock markets. Managerial Finance 37(3): 275-294. 

Tolikas, K. 2008. Value-at-risk and extreme value distributions 
for financial returns. Journal of Risk 10(3): 31-77. 

Tolikas, K. & Gettinby, G.D. 2009. Modelling the distribution 
of the extreme share returns in Singapore. Journal of 
Empirical Finance 16(2): 254-263. 



1164 

Yu, Y. & Wang, J. 2012. Lattice-oriented percolation system 
applied to volatility behavior of stock market. Journal of 
Applied Statistics 39(4): 785-797.

Muhammad Fadhil Marsani* & Ani Shabri
Department of Mathematics
Universiti Teknologi Malaysia 
81310, Johor Darul Takzim 
Malaysia

Muhammad Fadhil Marsani*
School of Mathematical Sciences 
Universiti Sains Malaysia
11800 Minden, Pulau Pinang
Malaysia 

*Corresponding author; email: fadhilmarsani@gmail.com

Received: 24 June 2019
Accepted: 24 January 2020


