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ABSTRACT

In load data, the missing problem always occurs in a set of data. Since it has a seasonal pattern according to days, 
most of the time, the load usage for the next day is predictable. For this reason, a new model has been developed 
based on these characteristics. Data containing missing values being divided to its seasonality pattern and for each 
subdivision, the values from mean, the mean with standard deviation and third quartile are calculated before being 
rearrange to form a new set of values that will replace the missing values. These three values will be used as 
imputations for the missing values. To examine the effects of the orientation of the missing values with the choices 
of imputation, the missing values from the data are divided into three parts: at the front, in the middle and at the 
end of the data with 5%, 15%, and 25% of missing values. The results from root mean square error and mean absolute 
error show that the proposed techniques, particularly the mean and the third quartile value, are superior to the 
other complex methods when dealing with the missing values. The mean imputation is ample when the missing values 
is presence at the front and in the middle of the data while the third quartile value is superior when the missing 
values is at the end of the data.
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ABSTRAK

Dalam data beban, masalah kehilangan data selalu berlaku dalam satu set data. Memandangkan ia mempunyai 
corak bermusim mengikut hari, kebanyakan masa, penggunaan beban untuk hari berikutnya boleh diramal. Atas 
sebab ini, satu model baru telah dibangunkan berdasarkan ciri-ciri ini. Data yang mengandungi nilai yang hilang 
yang dibahagikan kepada bentuk pola bermusimnya dan bagi setiap subdata, nilai min, min bersama hasil tambah 
sisihan piawai dan kuartil ketiga dihitung sebelum disusun semula untuk membentuk satu set nilai baru yang akan 
menggantikan nilai data yang hilang. Ketiga-tiga nilai ini akan digunakan sebagai pengimputan untuk nilai yang 
hilang. Untuk mengkaji kesan kedudukan nilai-nilai yang hilang dengan pilihan pengimputan, nilai-nilai yang hilang 
daripada data dibahagikan kepada tiga bahagian iaitu: di bahagian depan data, di tengah data dan di akhir data 
dengan 5%, 15% dan 25% nilai yang hilang. Keputusan daripada ralat min punca kuasa dan ralat min mutlak 
menunjukkan bahawa teknik yang dicadangkan, terutamanya pengimputan nilai min dan kuartil ketiga, memberikan 
hasil yang lebih bagus daripada kaedah kompleks lain ketika berurusan dengan nilai yang hilang. Pengimputan min 
adalah bagus apabila nilai-nilai yang hilang berada di hadapan dan di tengah data manakala nilai kuartil ketiga lebih 
bagus apabila nilai-nilai yang hilang berada pada bahagian akhir data.

Kata kunci: Data beban bermusim; data orientasi; kepelbagaian pengimputan; nilai yang hilang; kemusiman

introduction

As mentioned by Winkler and McCarthy (2005), 
missing data are a very important and serious problem. 
The observations with missing values are important to 
show the new outcomes and indicate the absolute fit 
of a model. Thus, improvement is needed if there is any 
(Cumming et al. 2007). Missing values may occur due 
to lack of records, item non-response, machine failure to 
record observation during an experiment, lost records, 
and other issues (Kihoro & Athiany 2013). Addressing 

the issue of missing values is crucial in the process of 
getting precise and accurate results. As mentioned by 
Penn (2007), many studies in the literature suggested 
that how researchers deal with the missing data can 
influence model estimates and standard errors. The 
results could lead to biased estimates if the missing 
data are not treated appropriately. In some instances, 
the data cannot be analyzed either at the record level 
or for the overall database. Thus, it is vital to handle 
missing values properly in all types of analysis (Winkler 
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& McCarthy 2005). Missing observations in time series 
data are very common since the data are recorded through 
time. When one or more observations are missing, it is 
essential to estimate the missing values to gain a better 
understanding of the nature of the data. As mentioned 
by Shukur and Lee (2015), imputing the missing values 
using an effective method is crucial before performing 
an analysis.

There a few methods that can be used to deal 
with the missing values. For instance, there are simple 
methods, such as list-wise deletion, pairwise deletion, 
and mean or mode substitution. A deletion method 
may be considered since it does not give effects to 
the analysis. Nevertheless, deletion could result in 
data loss, which will subsequently lead to a biased 
outcome and affects the skewness of the distribution 
(Cokluk & Kayri 2011; Honaker & King 2010). Thus, 
imputation could help protect the sample size. On the 
other hand, for mean or mode substitution, the mean 
value of the remaining observed values is calculated to 
replace the missing values. This process is considered 
to be appropriate if the researcher does not have other 
information (Cokluk & Kayri 2011). It is simple and 
quick to implement. Nevertheless, the issue of mean 
substitution is that the value could be unrealistic and 
even impossible if the value imputed comes from the 
known value of that particular field (Acock 2005). 
Thus, this method is not appropriate if the missing 
value is from marketing databases and surveys. This 
does not lead the analysis to the desired outcomes 
due to the poor quality of data (Winkler & McCarthy 
2005). Furthermore, there are also other imputation 
methods, such as single imputation, hot-deck imputation, 
regression imputation, multiple imputations based on 
information of the maximum likelihood estimation, and 
the expectation-maximization (EM) algorithm (Acock 
2005). Nevertheless, time series cross-section data often 
work poorly with these types of imputation methods 
(Honaker & King 2010). In the real world, to handle the 
missing values problem, different data require different 
strategies. Thus, it is necessary to utilize these strategies 
effectively to obtain the best possible estimates.

In the past, the approach to estimate the missing 
values for linear time series has involved the use of 
curve fitting. The details of these approaches can 
be discovered in many books (Brockwell & Davis 
2013; Chatfield 2000; Gerald & Wheatley 2004; 
Hamilton 1994; Harvey 1990; Janacek & Swift 1993). 
Subsequently, the advanced models, such as Box-Jenkins 
model which incorporate space modelling and neural 
networks as applied to missing values (Damsleth 1980; 
Kihoro & Athiany 2013). The Box-Jenkins model has 
been used widely as a technique for dealing with missing 
values. The earliest study on missing values by using 
Autoregressive Integrated Moving Average (ARIMA) 
model written by Damsleth (1980). Damsleth combined 

forecast and back forecast of ARIMA model to handle the 
missing values in time series. Today, Box-Jenkins model 
is considered as a benchmark model for comparison in 
time series missing values (Ferreiro 1987; Gómez et al. 
1992; Kihoro & Athiany 2013; Ruiz & Nieto 2000).

Hybrid models have also become famous recently as 
a method of imputation for missing values. To overcome 
the missing values problem, Sorjamaa and Lendasse 
(2007) combined a nonlinear model named the Self-
Organized Maps (SOM) with the linear model Empirical 
Orthogonal Function (EOF). Furthermore, Honaker and 
King (2010) proposed multiple imputations to resolve 
the issue of missing values in time series cross-section 
data. Kihoro and Athiany (2013) rearranged their data 
according to their seasonal pattern and the missing 
values by using simple linear regression. A combination 
of Autoregressive (AR) and Artificial Neural Network 
(ANN) models have been used to impute the missing 
values by studying the pattern and stationarity of the 
wind speed data first (Shukur & Lee 2015). Zhang et 
al. (2017) combined three methods which are SOM 
clustering, the Fruit Fly Optimization Algorithm (FOA) 
and the Least Squares Support Vector Machine (LSSVM) 
to impute the missing values in their spatiotemporal data.

MATERIALS AND METHODS

Load data is considered as a time series data as it is recorded 
through time. Because it was recorded through time, load 
data has a cyclic pattern that makes a simple method such 
as mean substitution, linear interpolation and many more 
to provide a bad replacement to the missing values. It is 
relatively complicated to use an advanced model such 
as seasonal autoregressive integrated moving average 
(SARIMA) interpolation. By eliminating the cyclic pattern 
in the data, a simpler interpolation could be used as it 
converts the seasonal data to a linear data. Moreover, by 
arranging the data which include the missing value in its 
seasonal pattern, this could assist in eliminating the cyclic 
effects.

The load usage used in this study is recorded from 
Pusat Bandar Johor Bahru (PBJB). The load usage in 
PBJB is recorded for a year for every hour in 2010. The 
data are divided into three sections. The missing values 
are selected from these three sections. The first section 
is where the missing values will be taken from the front 
part of the data (P1). By referring to, the data recorded 
from 1st January till 30th April is classified as P1. The 
middle section is where we choose the missing values 
from the middle part of the data (P2). In this case, the P2 
will be the part where the data is lie between 1st May and 
31st August. The last section will be the missing values 
selected from the end of the data (P3) which is from 1st 
September until 31st December. As can be seen from 
Figure 1, each section is divided by the red dotted line.
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From the plot in Figure 1, the cyclic pattern of the 
data is noticeable where it contains ‘daily cycle’ pattern. 
To understand the data further a statistical value of 
the data is generated. From Table 1, the minimum and 
maximum value in the data is 28751 kW and 73126 
kW. Since the minimum and maximum value is quite 

distant, the standard deviation,  gives quite large value 
which is 9671.63. The mean is at 59872 kW and most of 
the load values are closer to the maximum value which 
we can relate with plot in Figure 3 where most of the 
days the load is above 60000 kW.
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Figure 1. The plot on how the data are divided into three categories to observe the 
effect of the imputation

Table 1. Statistical value for load data PBJB
Minimum Maximum Mean, 

x 
Standard 

Deviation,
σ 

Median, 
x

Q1 Q3

Value 28751 73126 59872 9671.63 64683 50841.5 67093.5

^

Experts do not have any particular agreement on 
the percentage of the missing values that are suitable 
(Schlomer et al. 2010). Some suggested a 5% cut-off 
(Schafer 1999). On the other hand, some suggested 
10% as the cut-off (Bennett 2001), whereas the other 
suggested 20% as the cut-off (Peng et al. 2006). 
Nevertheless, Schlomer et al. (2010) mentioned that there 
are two considerations while determining the amount of 
‘missing values’ i.e. whether the result from the data set 
is sufficient enough to detect the effect of consequence 
and the pattern of the missing values. After considering 
two considerations mentioned by Schlomer et al. (2010), 
the percentage of missing data being considered is at 
5%, 15%, and 25%, respectively. This study considered 
a year of recorded data and thus 25% missing values 
is considered sufficient for the highest missing values. 
By selecting these percentages, it is sufficient enough 
to observe the effects of the missing values. Since the 
pattern of the missing values in this study is continuous, 

these three percentages are suitable for the amount of 
missing values.

The disaggregation process is an important step 
considered in this study. A few important methods in time 
series, such as multiple linear regression, SARIMA and 
ANN models are being widely used as its consideration 
of the seasonality contains in the data. This study also 
put the seasonality into consideration by performing a 
disaggregation process. In this case, the seasonality is 
the days. The procedure of how the missing values are 
conducted as set out listed as follow.
First step The original data are first being assumed to 
have a missing at random. The percentage of missing 
value considered in this case is 5%, 15%, and 25%. These 
percentages are selected.
Second step  Data are disaggregated or divided 
accordingly into days from Monday to Sunday. 
Considering the study has data with N observations, 
so this study has W = (W1, W2, W3, W4 ..., Wn) where W 
represents the weekly period.
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where x represents the day in the week that is selected. 
The whole idea of the rearranging could be presented in a 
picture as set out below:

	

where tX  is the real time series data while they  are the 
data after being rearranged by the day.
Third step For each missing value, the mean, mean with 
standard deviation (mean +σ) and third quartile (Q3) 
values are calculated from each daily series to substitute 
the missing point.
Fourth step After the missing points are substituted, 
the data for each day are rearranged into the original 
arrangement.
Fifth step The dataset is compared with the original 
series to observe the performance.

𝑊𝑊1 = (𝑥𝑥1,1, 𝑥𝑥1,2, … , 𝑥𝑥1,6, 𝑥𝑥1,7)
𝑊𝑊2 = (𝑥𝑥2,1, 𝑥𝑥2,2, … , 𝑥𝑥2,6, 𝑥𝑥2,7)
𝑊𝑊3 = (𝑥𝑥3,1, 𝑥𝑥3,2, … , 𝑥𝑥3,6, 𝑥𝑥3,7)
𝑊𝑊4 = (𝑥𝑥4,1, 𝑥𝑥4,2, … , 𝑥𝑥4,6, 𝑥𝑥4,7)

 ⋮
𝑊𝑊𝑛𝑛 = (𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,6,𝑥𝑥𝑛𝑛,7)

 

 

𝑋𝑋𝑡𝑡
𝑥𝑥1,1
𝑥𝑥2,1
𝑥𝑥3,1
𝑥𝑥4,1
⋮

𝑥𝑥𝑛𝑛−1,7
𝑥𝑥𝑛𝑛,7

→

𝑌𝑌1
𝑥𝑥1,1
𝑥𝑥2,1
𝑥𝑥3,1
𝑥𝑥4,1
⋮

𝑥𝑥𝑛𝑛−1,1
𝑥𝑥𝑛𝑛,1

𝑌𝑌2
𝑥𝑥1,2
𝑥𝑥2,2
𝑥𝑥3,2
𝑥𝑥4,2
⋮

𝑥𝑥𝑛𝑛−1,2
𝑥𝑥𝑛𝑛,2

⋯
⋯
⋯
⋯
⋯
⋮
⋯
⋯

𝑌𝑌6
𝑥𝑥1,6
𝑥𝑥2,6
𝑥𝑥3,6
𝑥𝑥4,6
⋮

𝑥𝑥𝑛𝑛−1,6
𝑥𝑥𝑛𝑛,6

𝑌𝑌7
𝑥𝑥1,7
𝑥𝑥2,7
𝑥𝑥3,7
𝑥𝑥4,7
⋮

𝑥𝑥𝑛𝑛−1,7
𝑥𝑥𝑛𝑛,7

 

 

This study considers three imputations. The mean 
of the data with missing value is considered as the first 
imputation. Since the seasonality of the data has been 
removed from the load data, the data become linear. 
If the data are normal, the mean substitution will be the 
most suitable imputation for the data.

Other than the mean, this study also considers mean 
+σ as one of the imputations. This imputation is considered 
and suitable when the data fluctuate extremely from one 
point to another. The data occasionally can be extreme 
due to certain events and holidays. Therefore, by adding 
the standard deviation to the estimated mean, it provides 
a greater estimation. Greater estimation is important 
since the overestimated value is better compared to 
underestimated value as the load shortage of power 
supply can cause electricity disruptions. To obtain one, 
this study only selects the positive standard deviation by 
adding absolute to the standard deviation.

Other than the two imputations, this study also 
considers the third quartile (Q3) value imputation. 
Q3 value is a limit where 75% data are containing 
below this value. As they are not affected by extreme 
observations, then Q3 can be a better measure than the 
mean. Therefore, it can also be a good imputation for a 
missing value especially if the data are slowly increased 
over the time.

Since this method involving disaggregation process 
before being imputed with three different imputation, 
the method is named as disaggregation-and-imputation 
(DI) method where DI1 use the mean imputation, DI2 use 
the mean +σ imputation and DI3 use the Q3 imputation. 
This method is conducted by using Minitab software. 
The framework of the study is explained in Figure 2.

 

 

Load with missing 
values

Mean imputation

Spline

Linear

SARIMA

Disaggregate and 
imputation (DI)

mean (DI1)

mean +𝜎𝜎 (DI2)

3rd quartile (DI3)

FIGURE 2. Framework on imputation methods used in this study
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After data is being disaggregate according to 
days, the mean, mean+σ and Q3 values are calculated 
respectively for the 5% missing values, 15% missing 
values and 25% missing values. Other than that, these 
values are also calculated for each orientation P1, P2, and 
P3. After we obtained these values for each of the day, 

these values will be repositioned into its original sequence 
to form a set of data that will substitute the missing 
values. Herewith is the values of the mean, mean+σ and 
Q3 for selected percentage of missing values according 
to its position.

Table 2. Imputation value for 5%, 15%, and 25% missing values when missing values is at P1

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

5%

mean 65009 64843 65506 65651 63704 50069 44398

mean+σ 71543 70650 70258 69870 70448 55059 48106

Q3 68311 67840 67790 68094 67208 54175 46936

15%

mean 65681 65279 65461 63738 50554 44654 44654

mean+σ 70455 70270 70436 70802 55306 47708 47708

Q3 68623 68128 67797 67339 54233 46941 46941

25%

mean 65339 65054 65155 65318 64049 50518 44455

mean+σ 70304 70357 70405 69937 71003 55541 47617

Q3 68699 68073 70405 68164 67454 54644 46926

Table 3. Imputation value for 5%, 15%, and 25% missing values when missing values is at P2

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

5%

mean 64734 64709 65417 65439 64001 49996 44251

mean+σ 71275 70532 70153 69663 70340 55016 47897

Q3 68084 67524 67790 67887 67108 54189 46596

15%

mean 64419 64477 65102 65206 63835 50201 44324

mean+σ 71237 70571 70037 69587 70465 55288 47754

Q3 67793 67462 67630 67789 67073 54240 46427
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25%

mean 50824 44899 65358 65012 65100 65047 63748

mean+σ 55387 47243 70155 70239 70357 69661 70755

Q3 54776 46748 68282 67762 67790 67749 67175

Table 4. Imputation value for 5%, 15%, and 25% missing values when missing values is at P3

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

5%

mean 64734 64612 65408 65429 63613 49837 44509

mean+σ 68363 70364 70194 69583 70345 54668 48138

Q3 67930 67524 67797 67887 67208 53058 46936

15%

mean 65199 64898 65667 65657 63432 50383 44629

mean+σ 71861 70806 70508 69902 70526 55066 48307

Q3 68194 67721 67864 68129 67216 53908 47011

25%

mean 65116 64838 66281 65764 63800 50497 44737

mean+σ 72161 71087 70597 69800 70580 55440 48531

Q3 68282 68073 67976 68059 67175 54247 47032

As can be seen from Table 2 to 4, we could see for 
each percentage of missing values and orientation, the 
value of mean will be the smallest value followed by the 
value of Q3 and the largest value will be the mean +σ 
value. This is expected from the plot in Figure 2 where 
the minimum and maximum values gap show how these 
values will be arranged to substitute the missing value, we 
give an example of how to impute the missing values for 
5% missing data that missing at P2 by using this method. 
By selecting the mean +σ as the imputation from Table 

3, the new set of the missing values imputation will be 
as below, depending on the day the missing value starts 
and ends:
..., 64734, 64709, 65506, 65651, 63704, 50069, 44398, 
64734, 64709, 65506, ...

RESULTS AND DISCUSSION

Tables 5 and 6 are the error measurement outcomes 
of the findings. Root Mean Square Error (RMSE) and 
Mean Absolute Error (MAE) are selected as the error 
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measurements to observe the goodness-of-fit for these 
missing values study as it is the most widely used and 
theoretical relevance in statistical modelling (Hyndman 
& Koehler 2006). Apart from that, the RMSE is also 
more sensitive than other measures occasionally whilst 
the MAE is slightly smaller than RMSE and it is an 
easier statistic to understand compared to RMSE. It was 
also recommended by Willmott and Matsuura (Willmott 
& Matsuura 2005) that MAE is an explicit measure of 
average error magnitude.

Beside their assists in showing the robustness of 
the models, these tests could show the significant of the 
findings if the outcome support each other result. To 
observe the performance of the model approach, four 
models widely used in handling missing values of time 
series are compared. These include the linear model, cubic 
spline model, mean imputation and SARIMA forward and 
back propagation model.

RMSE Linear Spline Mean SARIMA DI1 DI2 DI3

5%

P1 2584 2580 3051 2187 354 1526 967

P2 2837 2896 1586 2104 1109 1461 1159

P3 3675 3769 2249 2219 885 903 674

15%

P1 1748 1748 1003 1516 938 1311 1133

P2 1508 1564 1574 1317 546 752 574

P3 1856 1904 1534 1243 781 875 753

25%

P1 1165 1185 1597 1072 597 850 734

P2 1287 1301 1381 1118 626 839 726

P3 1042 1091 1281 979 598 579 518

MAE Linear Spline Mean SARIMA DI1 DI2 DI3

5%

P1 32802 38694 32802 45765 5312 14502 22883

P2 53897 55026 39985 22024 21070 27761 39985

P3 66149 67850 39940 40473 15935 16250 12124

Table 5. RMSE for selected models for 5%, 15%, and 25% missing values

Table 6. MAE for selected models for 5%, 15%, and 25% missing values
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15%

P1 89130 89131 77329 66843 47818 57799 51162

P2 82955 86043 72444 538406 30043 41378 31554

P3 102076 104713 84364 68344 42964 48118 41440

25%

P1 102535 104251 140513 94357 52499 74772 64609

P2 118362 119726 127073 102834 57595 66799 77214

P3 89044 99266 116609 84833 54455 52678 47123

From Tables 5 and 6, we could see that the results 
of RMSE and MAE are match. When RMSE gives the 
smallest value at DI1, MAE also shows a smallest value at 
DI1 and vice versa. And because RMSE gives the value 
after being square root, the error values from RMSE are 
smaller compare to MAE.

The DI1 provides a good substitution for missing 
values located at P1 and P2 whilst the DI3 gives a good 
imputation for missing values located at P3. This is 
acceptable for all percentages of missing values if refer 
to the placement of the missing values. Since the missing 
values in P1 and P2 are at the beginning and in the 
middle of the data, mean imputation is best to substitute 
the misses. The data do not increase rapidly through 
the time thus by taking the mean of the remaining data, 
it will provide rational values which are closer to the 
missing values.

Referring to the result in Tables 5 and 6, DI3 
provides a good estimation when the missing values 
occur at the end of the data for all percentages of missing 
value. This is adequate with the pattern of the data where 
it has shown an increasing trend along the time which 
can be referred in Figure 1. A larger estimation from mean 
value will be appropriate for the misses at P3. And from 
Table 2 until Table 4, Q3 has a value which is higher 
than mean, therefore, Q3 will be appropriate to substitute 
the missing values in P3.

Other than that, the Q3 is more suitable to impute 
the missing value compare to mean+σ because if we refer 
to Table 2 until Table 4, mean+σ has larger difference 
with mean compare to Q3 and since the increment in the 
data trending is very little, Q3 is more appropriate for 
imputation compare to mean+σ.

Based on the results from the percentage of misses 
at 5%, 15%, and 25% for P1, the difference between 
the errors with other methods is rather large. Therefore, 
this study moved the misses to the middle of the data 
and observed that the difference of error between the 
methods, especially the proposed methods becomes 

smaller and closer to other methods. This is true as the 
missing values percentage become larger, the error will 
become larger too because the data used to impute the 
missing values will be smaller.

From the results in Tables 5 and 6, linear, spline, 
mean imputation, and SARIMA provide larger values 
of RMSE and MAE than the proposed technique. The 
reason for that is because methods such as linear and 
cubic spline interpolation are imputed from equations of 
certain models which assume that the data follow a certain 
pattern. Nevertheless, this only provides good imputation 
if the data follow the pattern. As for mean imputation, if 
the data fluctuate around the mean, the mean imputation 
provides reasonable imputation to the missing values.

For the SARIMA model, the process consists of 
identifying the order, parameter estimation and model 
checking. The process is lengthy, time-consuming and 
becomes more complex, as it occasionally involves 
forecasting and back forecasting particularly when the 
missing values are at the middle of the data. For this 
reason, imputation by SARIMA is less preferable than 
other methods. Furthermore, from the RMSE and MAE 
value in Tables 5 and 6, this method is occasionally 
inferior compared to mean imputation, a much simpler 
method.

CONCLUSION

Missing values are a common issue in the actual 
database. Thus, a number of common techniques 
have been developed to deal with missing values. 
Most importantly, one must choose the appropriate 
method so that it is able to impute the missing values 
and the estimates are the closest to the actual one. The 
appropriate method may primarily depend on the type 
of data. Time series data often contain a certain pattern 
which is predictable. Imputing time series data can 
be relatively challenging due to the seasonality of the 
time series data. This study used load data to test the 
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imputation technique to deal with missing values in a 
seasonal time series data.

The first step is by eliminated the seasonal period 
by rearranging the data into days. By removing the 
seasonality, the complexity of the data could be reduced 
and a simpler technique could be applied. Three 
imputations are selected for this purpose which is the 
mean, mean+σ and Q3 value. Each of these imputations 
is selected for its own benefit to encounter the missing 
values. These imputations have different value but close 
to each other. From mean, mean+σ to Q3 values, we can 
see how these values increased and gives the result of 
why DI1 and DI3 are suitable for specific orientation.

The orientation of the missing values in the data 
is also important when considering the imputation of 
the missing values. If the data shows a trend, then its 
imputation should also consider the trend factor. As can 
be concluded from this study, DI1 which used mean 
imputation provides the best estimation of the missing 
values if the missing values are at the beginning or in 
the middle of the data. However, DI3 which used the Q3 
is proper for a missing value at the end of the data. This 
shows that the location of the missing values should be 
taken into consideration before imputing the missing 
values.

In conclusion, it is important for one to understand 
their data before applying a method. Although 
this method has longer steps, but it gives a lot of 
improvement in substituting the missing data with the 
imputations. By understand the data, the complexity of 
the data such as the seasonality and trend effects could 
be distinguished and a simpler method could be used to 
overcome the problem of missing values. On the other 
hand, the orientation of where the missing value lies in 
is also important. By recognising the placement of the 
missing values could help one to choose an appropriate 
method and could improve the imputations better. 

ACKNOWLEDGEMENTS
This work was supported by the Universiti Teknologi 
Malaysia under Grant Q.J130000.2654.17J90.

REFERENCES
Acock, A.C. 2005. Working with missing values. Journal of 

Marriage and Family 67(4): 1012-1028. 
Bennett, D.A. 2001. How can I deal with missing data in my 

study? Australian and New Zealand Journal of Public 
Health 25(5): 464-469. 

Brockwell, P.J. & Davis, R.A. 2013. Time Series: Theory and 
Methods. New York: Springer Science & Business Media.

Chatfield, C. 2000. Time-Series Forecasting. Boca Raton: 
Chapman & Hall/CRC.

Cokluk, O. & Kayri, M. 2011. The effects of methods of 
imputation for missing values on the validity and reliability 
of scales. Educational Sciences: Theory and Practice 11(1): 
303-309. 

Cumming, G., Fidler, F. & Vaux, D.L. 2007. Error bars in 
experimental biology. The Journal of Cell Biology 177(1): 
7-11. 

Damsleth, E. 1980. Interpolating missing values in a time 
series. Scandinavian Journal of Statistics 7(1): 33-39. 

Ferreiro, O. 1987. Methodologies for the estimation of 
missing observations in time series. Statistics & Probability 
Letters 5(1): 65-69. 

Gerald, C.F. & Wheatley, P.O. 2004. Applied Numerical Analysis 
with MAPLE. Boston: Addison-Wesley.

Gómez, V., Maravall, A. & Peña, D. 1992. Computing missing 
values in time series. Computational Statistics 1: 283-296. 

Hamilton, J.D. 1994. Time Series Analysis. Volume 2. New 
Jersey: Princeton University Press.

Harvey, A.C. 1990. Forecasting, Structural Time Series Models 
and The Kalman Filter. Cambridge: Cambridge University 
Press.

Honaker, J. & King, G. 2010. What to do about missing 
values in time‐series cross‐section data. American Journal 
of Political Science 54(2): 561-581. 

Hyndman, R.J. & Koehler, A.B. 2006. Another look at measures 
of forecast accuracy. International Journal of Forecasting 
22(4): 679-688. 

Janacek, G.J. & Swift, L. 1993. Time Series: Forecasting, 
Simulation, Applications. New York: Ellis Horwood.

Kihoro, J. & Athiany, K. 2013. Imputation of incomplete non-
stationary seasonal time series data. Mathematical Theory 
and Modeling 3(12): 142-154. 

Peng, C.Y.J., Harwell, M., Liou, S.M. & Ehman, L.H. 2006. 
Advances in missing data methods and implications for 
educational research. In Real Data Analysis, edited by 
Sawilowsky, S.S. North Carolina: IAP. pp. 31-78. 

Penn, D.A. 2007. Estimating missing values from the general 
social survey: An application of multiple imputation. Social 
Science Quarterly 88(2): 573-584.  

Ruiz, E. & Nieto, F.H. 2000. A note on linear combination of 
predictors. Statistics & Probability Letters 47(4): 351-356. 

Schafer, J.L. 1999. Multiple imputation: A primer. Statistical 
Methods in Medical Research 8(1): 3-15. 

Schlomer, G.L., Bauman, S. & Card, N.A. 2010. Best practices 
for missing data management in counseling psychology. 
Journal of Counseling Psychology 57(1): 1-10. 

Shukur, O.B. & Lee, M.H. 2015. Imputation of missing values 
in daily wind speed data using hybrid AR-ANN method. 
Modern Applied Science 9(11): 1-11. 

Sorjamaa, A. & Lendasse, A. 2007. Time series prediction as 
a problem of missing values: Application to ESTSP2007 
and NN3 competition benchmarks. Paper presented at the, 
International Joint Conference on Neural Networks 2007 
(IJCNN 2007).

Willmott, C.J. & Matsuura, K. 2005. Advantages of the mean 
absolute error (MAE) over the root mean square error 
(RMSE) in assessing average model performance. Climate 
Research 30(1): 79-82. 

Winkler, A. & McCarthy, P. 2005. Maximising the value of 
missing data. Journal of Targeting, Measurement and 
Analysis for Marketing 13(2): 168-178.

Zhang, Z., Yang, X., Li, H., Li, W., Yan, H. & Shi, F. 2017. 
Application of a novel hybrid method for spatiotemporal 
data imputation: A case study of the Minqin County 
groundwater level. Journal of Hydrology 553: 384-397. 



1174	

Nur Arina Bazilah Kamisan* & Muhammad Hisyam Lee
Mathematics Department 
Faculty of Science
Universiti Teknologi Malaysia 
81310 UTM Skudai, Johor Darul Takzim
Malaysia

Abdul Ghapor Hussin
Faculty of Science and Defence Technology 
Universiti Pertahanan Nasional Malaysia
50300 Kuala Lumpur, Federal Territory
Malaysia

Yong Zulina Zubairi
Pusat Asasi Sains Universiti Malaya 
Universiti Malaya
50300 Kuala Lumpur, Federal Territory
Malaysia

*Corresponding author; email: nurarinabazilah@utm.my

Received: 12 August 2019
Accepted: 24 January 2020


	_GoBack
	_Ref12525844
	_Ref12265655
	_Ref12353460
	_Ref12265664

