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ABSTRACT

Due to the Nguyen’s attack, the Goldreich-Goldwasser-Halevi (GGH) encryption scheme, simply referred to as GGH 
cryptosystem, is considered broken. The GGH cryptosystem was initially addressed as the first practical lattice-
based cryptosystem. Once the cryptosystem is implemented in a lattice dimension of 300 and above, its inventors 
was conjectured that the cryptosystem is intractable. This conjecture was based on thorough security analyses on the 
cryptosystem against some powerful attacks. This conjecture became more concrete when all initial efforts for decrypting 
the published GGH Internet Challenges were failed. However, a novel strategy by the Nguyen’s attack for simplifying 
the underlying Closest-Vector Problem (CVP) instance that arose from the cryptosystem, had successfully decrypted 
almost all the challenges and eventually made the cryptosystem being considered broken. Therefore, the Nguyen’s 
attack is considered as a fatal attack on the GGH cryptosystem. In this paper, we proposed a countermeasure to 
combat the Nguyen’s attack. By implementing the proposed countermeasure, we proved that the simplification of the 
underlying CVP instance could be prevented. We also proved that, the upgraded GGH cryptosystem remains practical 
where the decryption could be done without error. We are optimistic that, the upgraded GGH cryptosystem could make 
a remarkable return into the mainstream discussion of the lattice-based cryptography.

Keywords: Closest vector problem; GGH cryptosystem; lattice-based cryptography; post-quantum cryptography; short-
est-vector problem

ABSTRAK

Berpunca daripada serangan Nguyen, skim penyulitan Goldreich-Goldwasser-Halevi (GGH), secara ringkasnya 
dirujuk sebagai sistem-kripto GGH, kini dipertimbangkan sebagai suatu skim yang telah rosak, iaitu tidak lagi 
selamat. Pada awalnya, sistem-kripto GGH pernah dirujuk sebagai sistem-kripto berasaskan-kekisi pertama yang 
praktikal. Apabila sistem-kripto ini dilaksanakan dalam kekisi berdimensi 300 dan ke atas, maka para pencipta 
sistem-kripto ini pernah menjangkakan bahawa ia adalah selamat. Jangkaan ini telah dibuat berdasarkan analisis 
keselamatan yang terperinci terhadap sistem-kripto tersebut menentang beberapa serangan yang hebat. Jangkaan 
tersebut telah menjadi semakin kukuh apabila kesemua usaha awal untuk menyahsulitkan beberapa Cabaran GGH yang 
dipaparkan di Internet (Cabaran Internet GGH) telah mengalami kegagalan. Namun demikian, suatu strategi baharu 
oleh serangan Nguyen dengan meringkaskan contoh Masalah Vektor-Terhampir (MVT) yang hadir secara terselindung 
disebalik sistem-kripto GGH, telah berjaya menyahsulitkan hampir kesemua Cabaran Internet GGH. Kesannya, 
sistem-kripto GGH telah dipertimbangkan sebagai suatu skim yang rosak dan tidak lagi selamat. Maka, serangan 
Nguyen sudah sewajarnya dipertimbangkan sebagai serangan pemusnah terhadap sistem-kripto GGH. Dalam kajian 
ini, kami mencadangkan suatu tindakan menyelamat bagi menentang serangan Nguyen. Melalui pelaksanaan tindakan 
menyelamat yang dicadangkan ini, kami buktikan bahawa proses meringkaskan contoh MVT disebalik sistem-kripto 
GGH kini dapat dielakkan. Kami juga buktikan bahawa sistem-kripto GGH yang telah dinaik-taraf ini masih kekal 
praktikal yang mana proses penyahsulitannya boleh dilaksanakan tanpa sebarang kesilapan. Kami optimis bahawa 
sistem-kripto GGH yang telah dinaik-taraf tahap keselamatannya ini mampu membuat penampilan semula ke medan 
perbincangan arus perdana dalam arena kriptografi berasaskan-kekisi. 

Kata kunci: Kriptografi berasaskan kekisi; kriptografi pasca kuantum; masalah vektor terhampir; masalah vektor 
terpendek; sistem-kripto GGH

introduction

Since the modern era of cryptography, the security of 
cryptographic schemes relies on the hardness of hard 

mathematical problems such as the Integer Factorization 
Problem (IFP), Discrete Logarithm Problem (DLP) and 
Elliptic-Curve Discrete Logarithm Problem (ECDLP). 
Based on these problems, various cryptographic schemes 
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have been proposed. The most established schemes are 
the Rivest-Shamir-Adleman (RSA) cryptosystem (Rivest 
et al. 1978), El-Gamal cryptosystem (Elgamal 1985) 
and Elliptic-Curve cryptosystem (ECC) (Koblitz 1987). 
These cryptosystems received wide attention from 
global cryptography society either for theoretical interest 
or practical purposes. Although these cryptosystems 
are mainly used to provide confidentiality, various 
cryptographic primitives have been derived from 
these cryptosystems to achieve other security goals. 
For instance, digital signature schemes by Ismail and 
Hasan (2006) and Jaju and Chowhan (2015) are 
developed based on the RSA and El-Gamal cryptosystems, 
respectively, while key exchange method by Zazali and 
Othman (2012) is developed based on the ECC. 

Due to the Shor’s quantum algorithm (Shor 1994), 
the security of the RSA, El-Gamal and ECC would be 
breached since the underlying IFP, DLP, and ECDLP 
could be efficiently solved. Fortunately, the development 
of quantum computing technology is still under 
progress. Thus, proactive action must be taken as a 
preparation to combat the Shor’s quantum algorithm. 
Current interest in cryptography is moving towards the 
new era known as the Post-Quantum Cryptography 
where the lattice-based cryptography emerges as one of 
the most promising candidates. The security of lattice-
based cryptosystems is relying on some lattice-based 
problems such as the Shortest-Vector Problem (SVP), 
Closest-Vector Problem (CVP), Smallest-Basis Problem 
(SBP) etc. Unlike the IFP, DLP and ECDLP, these lattice 
problems are conjectured to be unaffected by any quantum 
algorithm (Micciancio & Regev 2009). There are various 
lattice-based cryptosystems have been developed such 
as the Ajtai-Dwork (AD) cryptosystem (Ajtai & Dwork 
1997), Goldreich-Goldwasser-Halevi (GGH) cryptosystem 
(Goldreich et al. 1997a), NTRU Encrypt (Hoffstein et al. 
1998), LWE cryptosystem (Regev 2005) and Ring-LWE 
cryptosystem (Lyubashevski et al. 2010). Among these 
cryptosystems, the GGH cryptosystem is the first 
scheme that was considered practical.

The security of the GGH cryptosystem is based on 
hardness of the CVP instance, defined as the GGH-CVP 
instance (Mandangan et al. 2018) together with the SBP 
instance, defined as the GGH-SBP instance (Mandangan 
et al. 2019). Although the GGH cryptosystem is 
unequipped with provable security features, the security 
of this cryptosystem has been experimentally tested by 
Goldreich et al. (1997a). Some powerful attacks have 
been launched on it such as the round-off attack, nearest-
plane attack and embedding attack. As a result, these 
attacks failed once the cryptosystem is implemented in 
a lattice dimension of 200 and above. Other than these 
experiments, the security of the GGH cryptosystem also 
has been tested by Schnorr et al. (1997) via the embedding 
attack. This attack succeeded only in the lattice dimensions 
up to 150. Since that, Goldreich et al. (1997a) was 
conjectured that the underlying GGH-CVP instance as 

practically intractable in the lattice dimensions of 300 
and beyond.

Later, Nguyen (1999) discovered a major flaw on 
the design of the GGH cryptosystem which allowing the 
simplification of the GGH-CVP instance. The simplified 
version is defined as the NguyenGGH-CVP instance 
(Mandangan et al. 2018). From that, the Nguyen’s attack 
is developed to break the GGH cryptosystem. Instead of 
solving the underlying GGH-CVP instance, the Nguyen’s 
attack is managed to solve the  NguyenGGH-CVP instance. 
In this instance, the Euclidean norm of the error vector 
has been shortened from the original norm becomes 

 where  are the parameters in the GGH 
cryptosystem.  That is why the -CVP instance 
is easier to solve compared to the GGH-CVP instance. As 
a result, the Nguyen’s attack completely decrypted the 
GGH cryptosystem in the lattice dimensions of 200 
up to 350 as published in the GGH Internet Challenges 
(Goldreich et al. 1997b). Due to the Nguyen’s attack, the 
GGH cryptosystem is considered broken. 

Since that, there are few attempts for improving the 
GGH cryptosystem can be found in literature. Nguyen 
(1999) himself proposed a remedy to his own attack by 
replacing the error vector of the GGH cryptosystem with 

or . However, he rejected 
this idea since the Euclidean norm e  would be shorter 
than and this makes the GGH cryptosystem insecure 
again. Later, Yoshino and Kunihiro (2012) proposed a 
variant of GGH known as the GGH-YK cryptosystem. In 
this variant, the error vector is replaced with a larger error 
vector and at the same time several new parameters have 
been introduced. In order to generate these parameters, 
few conditions need to be fulfilled. Later, Barros and 
Schechter (2014) found that the parameterization of the 
GGH-YK cryptosystem is unrealistic. As an improvement, 
they proposed another variant known as the GGH-YK-M 
cryptosystem. After all, these variants made major 
modification on the GGH cryptosystem. The security of 
these variants also does no longer relying on the GGH-
CVP instance. 

In this paper, we upgraded the security of the GGH 
cryptosystem to combat the Nguyen’s attack. Similar as the 
suggested remedy by Nguyen (1999), we replaced the error 
vector with a new set. Then, we proposed a new strategy 
to maintain the Euclidean norm e nσ= . Compared to 
other GGH variants, we maintained the original design of 
the GGH cryptosystem. We just simply repaired the flaw 
which was exploited by the Nguyen’s attack. Our intention 
is to maintain the security reliance of the upgraded GGH 
cryptosystem on the GGH-CVP instance, so that all its 
security features prior the Nguyen’s attack could be 
retained. By implementing the proposed countermeasure, 
we proved that the upgraded GGH Cryptosystem is 
unaffected by the Nguyen’s attack and at the same time its 
decryption could be done effectively without error. 
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This paper is organized in the following flow. 
In the next section, we provide some mathematical 
background related to vectors, matrices and lattices. In 
the third section, we provide light introduction to the GGH 
cryptosystem and then followed by the mathematical 
design of the Nguyen’s attack. In the fourth section, we 
present the proposed countermeasure together with some 
significant proofs related to our contribution. Finally, we 
conclude this paper in the final section.

MATHEMATICAL BACKGROUND

Throughout this paper, all vectors are denoted as column 

vectors. For instance, let . Then   is a 

column vector with entries  for all . Any 
vector  can be converted into an integer vector 

by using the following function:

Definition 1 (Pol 2011) For , let with entries 
   for all . The rounding function on the 

vector  is defined as , such that 
  for all .

The length of a vector is referred to as norm. Generally, 
an -norm is defined as follows:

Definition 2 (Serre 2010) For ,  let    
where V is a vector space. For all where , 
the -norm of the vector is defined as follows

                                

On the other hand, the distance between two vectors 
and can be measured as follows:

Definition 3 (Serre 2010) For , let . For 
all and where , the Euclidean 
distance between the vectors  and can be computed 
as follows,

                                          

For simplicity, we denote the Euclidean norm of any 
vector as and the Euclidean distance of the 
vectors as 

Matrices are denoted by using capital letters. 
For instance, let . Then  is an 
-matrix with elements  for all  and j = 1, 

..., n. The matrix B and its entries can be represented as 

For any square integer matrix, 

the inverse of this matrix is not necessarily an integer 
matrix as well. However, there is an integer square matrix 
with special property where the inverse of this matrix is 
guaranteed to be an integer matrix as well. This kind of 
matrix is called a unimodular matrix.

Definition 4 (Galbraith 2012). For , let . If 
, then U is a unimodular matrix.

The lattice  is defined as follows:

Definition 5 (Galbraith 2012) For   with m > n, 
let be a set of linearly independent vectors 

. The lattice that is spanned by the 
basis V, denoted as , is the set of all integer linear 
combinations of the vectors . It is denoted as 
follows,

The set V that spans the lattice  is called the basis for 
the lattice  and the vectors are referred to 
as the basis vectors. The number of these basis vectors 
is called the dimension of the lattice , denoted as dim 

, and the number of entries in each basis vector is 
called the rank of the lattice , denoted as rank . If 
dim  = rank , then the lattice is called a full-rank 
lattice. From here, we only consider full-rank lattices in 
our further discussion. 

Consider a full-rank lattice  that is spanned 
by the basis where  . The basis 
can be represented as a square matrix . Since 
the set  is linearly independent, the matrix 
is non-singular with . Now, the lattice 
can be represented in the following simpler form, 

. Other than the basis , the lattice also 
can be spanned by other bases.

Lemma 1 (Galbraith 2012) For , let be 
non-singular matrices. The matrices  and generate 
the same lattice , denoted as , if 
and only if these matrices are related by a unimodular 
matrix  such that 

The orthogonality of lattice basis can be measured by 
using dual orthogonality-defect as follows,

(1)

(2)
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Definition 6 (Goldreich et al. 1997a) For , let 
and be a basis for the lattice 

. The dual orthogonality-defect of the basis  is

                                                  

where   is the Euclidean norm of the -th row vector 
in  

The Shortest-Vector Problem (SVP) and the Closest-
Vector Problem (CVP) are defined as the following:

Definition 7 (Hoffstein et al. 2008) Given the basis B  
for a lattice , the Shortest-Vector Problem (SVP) 
is to find a shortest non-zero vector  with minimum 
Euclidean norm .

Definition 8 (Hoffstein et al. 2008) Given the basis B for 
a lattice and a target vector , the Closest-
Vector Problem (CVP) is to find a vector   that 
minimizes the Euclidean distance .

GGH CRYPTOSYSTEM
To describe the GGH cryptosystem, consider a 
communication scenario where Bob wants to send a 
secret message to Alice, and they decide to use the GGH 
cryptosystem. As the recipient, Alice initiates her key 
generation process by choosing a security parameter 

which denotes the dimension of the lattice . 
Then, Alice generates her private key as a non-singular 
matrix that consists of reasonably short and 
orthogonal basis vectors as its columns. 
The orthogonality of the generated G will be measured 
before it can be accepted as the private key. If the value 
of the dual orthogonality-defect of the generated G 
is close to 1, then the basis G is accepted as a private 
key. Otherwise, a new G is generated until the desired 
orthogonality feature is attained. This is important to 
ensure that the private basis is a good basis with reasonably 
short and orthogonal basis vectors. From the accepted 
private basis G , the value of threshold parameter 
is determined. The threshold parameter is required to 
fulfill the following condition to avoid decryption error:

Theorem 1 (Goldreich et al. 1997a) Let G be the private 
basis, denotes the maximum -norm of the rows 
of . As long as the threshold parameter satisfies 

, there is no decryption error can occur.

Moreover, the public basis  is also 
determined from the private basis G . The basis is 
another basis that spans the same lattice as spanned 
by the basis G , i.e. . According 

to Lemma 1, these bases are mathematically related as 
 where is a unimodular matrix. Thus, 

the public basis  is derived from the private basis G 
as . Unlike the private basis G , the basis can 
only be accepted as a public basis if the value of its dual 
orthogonality defect is far from 1 to ensure that the public 
basis is a bad basis with long and highly non-orthogonal 
basis vectors. The generation of the public basis 
completes the Alice’s key generation process. Thus, the 
public basis together with the threshold parameter 
are transmitted to Bob while the private basis G and the 
unimodular matrix U are kept privately.

Upon receiving the public basis and the threshold 
parameters  from Alice, Bob proceeds with the 
following steps prior to the encryption process. Firstly, 
a small vector is generated by randomly selecting 
all its entries from the small set . Although the 
value of the  is considered as public information, the 
arrangement of the entries  for all  is totally 
determined by Bob. Even Alice does not know the exact 
arrangement of the entries and in the vector e . 
The small vector e is referred to as an error vector. Next, 
the secret message is encoded into the plaintext vector 

. Then, the encryption is done as the following,

                                                                    

where    is a ciphertext vector. Since is a basis 
for the lattice and is an integer vector, then 

. The ciphertext  is transmitted from Bob 
to Alice.

Upon receiving the ciphertext from Bob, Alice 
initiates the decryption process by executing the Babai’s 
round-off method using her private basis G . Firstly, the 
ciphertext is represented as where is an 
unknown vector. The vector is computed as 
By using the rounding function as defined in Definition 
1, each entry is rounded for all to 
form an integer vector . Finally, the decryption is 
performed as follows,                                                      

Effective decryption yields where the vector 
contains the encoded secret message from Bob. This 
indicates that the decryption process succeeds without 
error.

Lemma 2 (Goldreich et al. 1997a) Let be a private 
basis, be a public basis, be an error vector and 
be a unimodular matrix such that . Decryption of 
the GGH Cryptosystem succeeds if  

The security of the GGH cryptosystem relies on the 
presumed hardness of the GGH-CVP instance which can 
be explicitly defined as the following:

(3)

(4)

[ ]' nm U x= ∈
 

� (5)
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Definition 9 (Mandangan et al. 2018) Let 
where denotes a lattice dimension and denotes 
a threshold parameter respectively, be a 
basis for a full-rank lattice , and be a 
ciphertext vector such that where and 

is an error vector. Given and , the 
GGH-CVP instance is a problem to find the lattice vector 

that is located closest to the ciphertext vector such 
that Euclidean distance is minimum.

Since and the lattice vector is located closest 
to the ciphertext vector then the Euclidean norm 

is minimum. As stated by Nguyen (1999), 
the norm is . With this norm, the 
underlying GGH-CVP instance has been experimentally 
tested, analyzed and conjectured to be intractable in 
(Goldreich et al. 1997a). Therefore, we consider as 
the benchmark norm in the GGH-CVP instance.

THE NGUYEN’S ATTACK

The Nguyen’s attack is consisting a sequence of four 
stages namely the elimination, simplification, reduction 
and solution stages. The elimination stage aims to 
obtain partial information from the secret vector 
by eliminating the error vector from the encryption 
equation 4. Since the threshold parameter is a public 
information, the Nguyen’s attack generates an integer 
vector . Thus, the following equations hold,

                                                            

Since and , then . 

Thus, By equation , as 

well. This implies that, the following congruence holds

                                                                  

Observe that, the error vector has been eliminated 
from the encryption equation. The only unknown value 
in the congruence (7)   is the plaintext vector . 
Thus, the Nguyen’s attack solves the congruence (7)  for 
the unknown vector by computing,

                                                      

where is the desired 
partial information by the Nguyen’s attack. Since the 
elimination stage is completed, the attack can proceed 
to the most crucial stage, which is the simplification 
of the underlying GGH-CVP instance. In this stage, the 

vector is inserted into the encryption equation 
(4) as follows

                                                        

Since , then there exists such 
that

                                                    

The insertion of the equation (10) into equation (9) yields

                                                          

For simplicity, denote which is a 
known vector, which is an unknown lattice 
vector and which is an unknown vector. Since 

, then

                                    

Obviously, the vector is smaller than the error vector 
. The equation  can be rewritten as . From 

this equation, a new GGH-CVP instance can be defined 
as follows:

Definition 10 (Mandangan et al. 2018) For , let 
be a basis for a full-rank lattice   , 

be a target vector and be an error 

vector such that where . Given B and 
P, the NguyenGGH-CVP instance is a problem to find the 
lattice vector that is located closest to the target vector 
P such that Euclidean distance is minimum.

As stated by Nguyen (1999), the Euclidean norm 
. It is much shorter than the benchmark 

norm . Consequently, the -CVP instance 
becomes easier to be solved compared to the original 
GGH-CVP instance. The remaining stages of the 
Nguyen’s attack are the reduction and solution stages. 
In the reduction stage, an embedding technique is used 
to reduce the -CVP instance into an SVP 
instance. Finally, the derived SVP instance is solved in 
the solution stage by using high quality lattice reduction 
algorithms.  

COUNTERMEASURE AGAINST THE NGUYEN’S ATTACK

To strengthen the security of the GGH Cryptosystem, 
the flaw that is exploited by the Nguyen’s attack must be 
repaired. For that purpose, we proposed a countermeasure 
to prevent the elimination stage of the Nguyen’s attack 
by making the congruence does not 
hold anymore. The proposed countermeasure is given in 
the following lemma:

(6)

(7)

(8)

(9)

(10)

(11)

(12)
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Lemma 3 For where , let 
be a public basis, be a plaintext vector, 

be a cipher text vector, be an 
error vector and be an integer vector 
such that . If all entries of 
the vector are selected randomly from the set 

, then ≢ .

Proof

Assume that all entries of are selected randomly from 
the set where first four 
entries of as   
and last entry as Thus,

since and . Given that . 
Thus, the following equation holds,

Since , then as well. This implies 
that ≢ .

Now, we demonstrate the effect of the proposed 
countermeasure in the following example:

Example 1 Consider two different sets 
and . Let  
Then and . Suppose that 

where for 
all where i = 1, ..., 10. Thus,

which leads to the formation of the congruence 
by the Nguyen’s attack. Now, 

suppose that where 
for all  i = 1, ..., 10. Thus,

This implies that, ≢ . 

In the following lemma, we proposed a strategy to 
maintain the Euclidean norm as well as the 
Euclidean distance as . 

Lemma 4  Suppose that where 
and Let be a public 

basis, be a plaintext vector with encoded secret 
message, be a ciphertext vector and 
be an error vector which is related as . If all 
the entries of the error vector are selected randomly 
from the set based on the 
following distributions for all ,

then 
Proof
Since for all and , 
then the entries with equal value can be accumulated 
together as follows,

 

Since , therefore

.
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We combine the results of the Lemma 3 and Lemma 4 in 
the following theorem:

Theorem 2 Consider the setup for the GGH cryptosystem 
as described in Lemma 4. By implementing this setup, 
the GGH cryptosystem does not affected by the Nguyen’s 
attack anymore.

Proof

In Lemma 3, we proved that ≢  once 
the entries of the error vector are randomly selected 
from the proposed set 
instead of the original set . That means, 
≢  could not be solved for the plaintext vector 

to obtain the partial information such that 
. Without the vector , the Nguyen’s 

attack could not proceed to its simplification stage. 
Therefore, the GGH-CVP instance remains in its original 
form. In the GGH-CVP instance, the Euclidean norm  

 since . With norm 
, the GGH cryptosystem has been experimentally 

tested, analyzed and conjectured by Goldreich et al. 
(1997a) as intractable in the lattice dimensions of 300 
and beyond. As proved in Lemma 4, the Euclidean 
norm is maintained as once the 
entries of the error vector are randomly chosen 
from the set and distributed based on the proposed 
distributions. Therefore, the GGH cryptosystem is 
considered surviving against the Nguyen’s attack.

In the following theorem, we prove that the decryption 
of the upgraded GGH cryptosystem works effectively 
without error. 

Theorem 3 Consider the setup for the GGH cryptosystem 
as described in Lemma 4. Then, let be the 
private basis and denotes the maximum -norm 

of the rows in such that Then, the 

decryption of the GGH cryptosystem can be done without 
an error.

Proof

As stated in Lemma 2, decryption error in the GGH 
cryptosystem can be avoided when For 

simplicity, denote To obtain it is 

required that for all Since is 

a private basis, then is a non-singular square matrix. 
There exists an inverse matrix such that 
where is an identity matrix. Represent the 
elements of the matrix as 

                                           .

Thus, . In vectors and matrix form, we have

For and , suppose that the -th row of 
the has the maximum -norm. Consider the -th 
entry of the vector as follows,

Suppose that the first four entries of the error vector 
are chosen as and 

. Then, 

where . Since is the maximum -norm of the 
rows in and , then

Hence,

Since and , therefore

Decryption of the GGH cryptosystem is done as follows, 

                        , since 

                                             , since 

                        , since                            and  

For all , we showed that  where 

and This implies that Therefore, 
which indicates that no decryption 

error occurs. 

DISCUSSION AND CONCLUSION

We proposed a countermeasure to upgrade the security 
of the GGH cryptosystem against the fatal attack 
on it, which is the Nguyen’s attack. The proposed 
countermeasure is applicable for any value of threshold 
parameter 2    

 

and not only limited to the standard 
choice of Without major alteration on the original 
design of the GGH cryptosystem, the security reliance 
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of the cryptosystem on the original GGH-CVP instance 
is maintained. However, thorough security analyses on 
upgraded GGH cryptosystem is demanded to build more 
confidence on it. Current technology and sophisticated 
attacks including the lattice reduction algorithms must be 
taken into consideration. With its efficiency, practicality 
and upgraded security features, we are optimistic that the 
GGH cryptosystem could be one of the most competitive 
lattice-based cryptosystems. 
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