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ABSTRACT

During the quantitative analysis of NaCl, NaOH, and β-phenylethylamine (PEA) in water samples, the highly 
overlapped spectra of NaCl, NaOH, and PEA resulted in poor concentration prediction. Meanwhile, the original spectral 
data of the natural water usually contain noise and interference spectra which will definitely affect the prediction 
accuracy. Hence, a new quantitative analysis method, which was based on ultraviolet (UV) spectroscopy coupled with 
partial least squares (PLS) and net analyte preprocessing (NAP), was developed. Firstly, the PLS regression models of 
the calibration set were constructed by using 15 single component samples, 9 binary component samples and 25 
ternary component samples. In addition, the independent test set was built up based on 34 samples to validate the 
prediction performance of the PLS regression models. The relative errors of prediction (REP) were both less than 3.1% 
for NaCl, NaOH, and PEA. And the correlation coefficients (Rpred

2) of the PLS-1 and PLS-2 models were both not less 
than 0.98 for NaCl, NaOH, and PEA. Finally, the PLS models coupled with NAP algorithm were successfully used to 
make the quantitative determination of NaCl, NaOH, and PEA added into the natural water, and the mean recovery 
rates of NaCl, NaOH, and PEA were satisfactory (95-102%). Therefore, UV spectroscopy coupled with PLS models and 
NAP algorithm can be considered as an effective method to determine the concentration of NaCl, NaOH and PEA in the 
natural water.
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 ABSTRAK

Semasa analisis kuantitatif NaCl, NaOH dan β-feniletilamina (PEA) dalam sampel air, spektrum NaCl, NaOH dan 
PEA yang sangat bertindih mengakibatkan ramalan kepekatan yang buruk. Sementara itu, data spektrum asal air 
semula jadi biasanya mengandungi spektrum hingar dan gangguan yang pasti akan mempengaruhi ketepatan rama-
lan. Oleh itu, kaedah analisis kuantitatif baru berdasarkan spektroskopi ultraungu (UV) yang berganding dengan kuasa 
dua terkecil separa (PLS) dan prapemprosesan analit net (NAP) telah dibentuk. Yang pertama, model regresi PLS dari-
pada set penentukuran dihasilkan dengan menggunakan 15 sampel komponen tunggal, 9 sampel komponen dedua dan 
25 sampel komponen terner. Tambahan pula, set ujian bersandar dibina berdasarkan 34 sampel untuk mengesahkan 
prestasi ramalan model regresi PLS. Ralat ramalan relatif (REP) adalah kurang daripada 3.1% bagi NaCl, NaOH dan 
PEA. Dan pekali korelasi (Rpred

2) kedua-dua model PLS-1 dan PLS-2 tidak kurang daripada 0.98 bagi NaCl, NaOH dan 
PEA. Akhirnya, model PLS berganding dengan algoritma NAP berjaya digunakan untuk membuat penentuan kuanti-
tatif NaCl, NaOH dan PEA yang ditambahkan ke dalam air semula jadi dan kadar pemulihan min NaCl, NaOH dan PEA 
adalah memuaskan (95-102%). Oleh itu, spektroskopi UV yang berganding dengan model PLS dan algoritma NAP 
dapat dianggap sebagai kaedah yang berkesan untuk menentukan kepekatan NaCl, NaOH dan PEA dalam air semula 
jadi.

Kata kunci: Air semula jadi; kuasa dua terkecil separa; prapemprosesan analit net; spektrum gangguan; spektroskopi 
ultraungu 

INTRODUCTION

β-phenylethylamine (PEA) is a very important chemical 
intermediate raw material, whose derivatives are widely 
used in medicine, chemical industry, emulsifier, and 

dye industry (Tyszka et al. 2019). During the synthetic 
process of PEA, NaOH is usually used as a reactant to 
synthetize PEA, and the final product usually contains 
PEA, NaCl, and NaOH (Zamora et al. 2018). The discharge 
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of the final product which contained NaCl, NaOH, and 
PEA will have a serious impact on the water quality. 
Frequent water pollution incidents have seriously affected 
the lives of residents and the development of social 
economy (Corredor-Santamaría et al. 2019). According 
to surveys by authoritative institutions in the world, 80% 
of all kinds of diseases are spread by drinking unsanitary 
water in developing countries, which causes at least 20 
million deaths in the world every year (Yan et al. 2019). 
For this reason, it has become a major responsibility of 
local governments to monitor the level of pollutants in 
industrial wastewater discharged into the environment. 

At present, the main detection technologies of 
PEA in water include gas chromatography (Wen et al. 
2017), mass spectrometry (Moreira et al. 2019), high 
performance liquid chromatography (HPLC) (Li et al. 
2018), thin-layer chromatography (Liu et al. 2013), 
ultra-performance  liquid  chromatography (Samkova et 
al. 2013) and some combined methods (viz. GC-MS (Yu 
et al. 2018), CE-MS/MS (Daniel et al. 2015), UPLC-TQ/
MS (Tasev et al. 2017), IC/MS (Scavnicar et al. 2018) 
and HPLC-MS (Lee et al. 2015). However, the above 
monitoring technologies of water quality existed the 
shortcomings of long period measurement, complex water 
samples pretreatment technology, a large number of 
chemical reagents requirement, and secondary pollution 
(Carre et al. 2017). Comparatively, the UV spectroscopy 
acquires the advantages of quick real-time detection, 
no chemical reagents, low cost, no secondary pollution, 
online and in-situ measurements. Based on these reasons, 
the UV spectroscopy has been widely concerned. 

However, during the concentration prediction 
of the water samples by UV spectroscopy, one of the 
challenges is that the highly overlapped spectra of 
many compounds in water samples resulted in poor 
concentration  prediction. Therefore, it is necessary to 
find a way to solve this problem. In particular, partial 
least squares (PLS) regression is a commonly used 
multivariate regression technique which can overcome 
the problem of highly overlapped spectra (Ye et al. 
2018). The advantages of the PLS regression are that it 
can handle multiple responses and detect outliers (Mai 
et al. 2017). According to the numbers of dependent 
variables (single or multiple), the PLS regression model 
is divided into two types: the PLS regression model of 
the multiple variables (PLS-2) and the PLS regression 
model of the single variable (PLS-1) (Xia 2017). In recent 
years, PLS regression has been successfully applied to 
quantitative analysis of multiple components in many 
different fields (Guo et al. 2016; Lu et al. 2015; Shao et al. 
2015; Subedi & Fox 2016; Zhou et al. 2016). Meanwhile, 
many researchers have determined the contents of metal 
ions, organic pollutants, chemical oxygen demand (COD) 
and total organic carbon (TOC) in environmental water 
samples by UV spectroscopy technology and partial least 
square method (Hassaninejad-Darzi & Torkamanzadeh 
2016; Li et al. 2020; Liu & Wang 2015; Moreno-Martin 
et al. 2018; Wang et al. 2017). 

In addition, another challenge is that the original 
spectral data contain noise and interference spectra 
which will definitely affect the prediction accuracy of 
the measured components. In particular, the numbers of 
the optimum principal component for the PLS models 
will increase to make the model too complex. In order to 
solve this problem, the net analyte preprocessing (NAP) 
method was used to preprocess the original ultraviolet 
spectrum data. Goicoechea and Olivieri firstly proposed 
the NAP agorithm in 2001. The main idea of the NAP 
algorithm is to extract the spectral signal which is 
directly related to the spectra of the analyte and remove 
the useless signal, and finally the pure signal is obtained 
(Goicoechea & Olivieri 2001). In recent years, the NAP 
algorithm has been widely used in different fields such 
as pharmaceutical, chemical products, and food industry 
(Hegazy et al. 2015; Salameh et al. 2020; Zappi et al. 
2019).

However, the application of PLS models coupled 
with NAP algorithm is seldom studied in the natural 
water. Therefore, in this paper, UV spectrophotometry 
coupled with PLS models and NAP algorithm was used 
to accurately determine the concentration of NaCl, 
NaOH, and PEA in water. Firstly, the PLS models were 
constructed by the calibration set which consisted of 
15 single component samples, 9 binary component 
samples and 25 ternary component samples. Then, the 
independent test set was set up to validate the prediction 
performance of the PLS models. Finally, the PLS models 
coupled with NAP algorithm were applied to accurately 
quantify the concentration of NaCl, NaOH, and PEA 
in the natural water. The satisfactory prediction results 
showed that the PLS models coupled with NAP algorithm 
was a promising method to determine the concentration 
of NaCl, NaOH and PEA in the natural water.

MATERIALS AND METHODS

APPARATUS AND SOFTWARE

Absorption spectra were carried out using a UV-2900 
spectrophotometer (Shanghai, China) which had a λ 
range of 190~900 nm at 1 nm intervals. UV-2900 has 
two identical quartz cuvettes with a 1.0 cm optical 
path. One of the cuvettes was filled up with air which 
was taken as a reference cuvette and the other one 
was filled up with sample solutions and was taken as a 
sample cuvette. The spectra data were obtained by the 
software UV Solution3.0. The natural water sample was 
centrifuged by TG16 high speed centrifuge (Shanghai Lu 
Xiangyi Centrifuge Instrument Co. Ltd.), and the highest 
rotational speed of TG16 can reach 16000 r/min. The PLS 
and NAP model program were written by MATLAB. 

REAGENTS AND STANDARD SOLUTIONS

NaCl, NaOH, and PEA of analytical grade were purchased 
from Shaanxi Coal and Chemical Industry Group Co. 
Ltd. Standard solutions of 1 mol/L NaCl, 1 mol/L NaOH, 
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and 0.0312 mol/L PEA were prepared separately through 
dissolving the appropriate amount of NaCl, NaOH, and 
PEA in the deionized water. The natural water sample 
was collected from Chanhe River (Qinling Mountain, 
Xi’an). In order to remove the impurities in the natural 
water, the sample was centrifuged at 5000 rpm and 
filtered with filter paper.

SAMPLE SOLUTIONS

In order to obtain the calibration set, standard solutions of 
NaCl, NaOH, and PEA were extracted into a volumetric 
flask and diluted with deionized water, respectively. And 
then 49 samples which consisted of 15 single component 
samples, 9 binary component samples and 25 ternary 
component samples were prepared. In order to verify 
the obtained PLS calibration model, an independent test 
set including 34 samples which consisted of one to three 

components was prepared using the standard solutions. 
Finally, in order to test the predictive performance of 
the optimized PLS models in the natural water samples, 
24 mixed samples which contained 9 single-component 
samples, 6 binary mixtures and 9 ternary mixtures were 
added into the natural samples.

SPECTRAL DATA ANALYSIS WITH PLS AND NAP 
ALGORITHM

As can be seen from Figure 1, the spectra of NaCl, 
NaOH, and PEA overlapped with each other extensively. 
If univariate analysis was adopted, it will inevitably 
result in relatively poor analysis results. Therefore, in 
order to overcome such seriously spectral overlapping, 
multivariate calibration methods like PLS must be 
employed.
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FIGURE 1. Absorption spectra of 2.04×10-3 mol/L NaCl (black line), 
8.61×10-4 mol/L NaOH (red line) and 5.15×10-5 mol/L PEA (blue line) 

The basic principle of the PLS algorithm has been 
presented by Mai et al. (2017). In order to evaluate the 
predictive abilities of the PLS model, the relative error of 
the calibration set (REC), the root mean squared error of 
cross-validation (RMSECV), the correlation coefficients 
( 2

cR ), the relative error of the prediction (REP), the 
root mean squared error of prediction (RMSEP) and the 
correlation coefficient ( 2

predR ) are calculated according 
to the description of Xia (2017).    

NAP is based on Goicoechea’s net analyte signal 
theory and is mainly used to remove interference spectra 

in the natural water (Goicoechea & Olivieri 2001). The 
basic idea of the NAP algorithm is to extract the net 
analyte signal in the original spectral matrix by spatial 
orthogonal method. The specific principle of NAP 
algorithm is as follows:

During the process of pretreating the natural 
water samples, X (n×m) is the original spectral matrix 
of the natural water samples, and Y (n×p) is the actual 
concentration matrix of components in the natural water. 
X (n×m) can be expressed by the following formula:

      
                      X = XSC + X-SC                               (1)
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where XSC is the spectral matrix which consists of the 
absorbance spectra of NaCl, NaOH, and PEA in the 
natural water, and X-SC is the interference spectral matrix 
in the natural water.

In order to get X-SC, the orthogonal projection 
transform from X to Y is set up. Therefore. X-SC can be 
calculated by the following formula:

                                                                                      (2)

The matrix FNAP which is orthogonal to X-SC is 
constructed, then both sides of equation (1) is multiplied 
by the matrix FNAP. Therefore, (1) can be simplified to the 
following equation:

                                                                              (3)

where T
NAP UUIF −= ,I is a unit matrix, and U (J×A) is 

composed of the eigenvectors of the squared matrix (X-

  XYYYYIX T
pnpn

T
pnpnSC 



 
1

NAPSCNAP FXXF  3

)(* T
NAPSC UUIXXFX  4

SC)T X-SC . A is the optimal number of the NAP factor which 
is determined by the interference spectral matrix X-SC.

Finally, the net analyte spectra matrix X*
SC is 

obtained which is pretreated by A factors. Therefore, the 
net analyte spectra matrix X*

SC can be calculated by the 
following equation:

                                                                        
                                                                            (4)                    

RESULTS AND DISCUSSION

PLS CALIBRATION MODELS FOR 
CONCENTRATION PREDICTION

In order to construct the PLS calibration models, as 
described, the construction of the calibration model was 
used 49 samples which consisted of 15 single component 
samples, 9 binary component samples and 25 ternary 
component samples. And different concentrations of the 
calibration model were listed in Table 1.

TABLE 1. Concentrations (mol/L) for the calibration samples in the calibration set

Sample no, NaCl NaOH PEA Sample no, NaCl NaOH PEA

Ternary mixtures Binary mixtures

1 7.64×10-6 3.76×10-5 6.12×10-7 26 － 3.76×10-5 6.03×10-6

2 7.64×10-6 1.53×10-4 6.03×10-6 27 － 1.53×10-4 1.21×10-5

3 7.64×10-6 5.91×10-4 1.21×10-5 28 － 5.91×10-4 2.24×10-5

4 7.64×10-6 8.46×10-4 2.24×10-5 29 － 8.46×10-4 5.19×10-5

5 7.64×10-6 1.25×10-3 5.19×10-5 30 7.64×10-6 1.25×10-3 －

6 7.26×10-5 3.76×10-5 6.03×10-6 31 1.75×10-4 5.91×10-4 －

7 7.26×10-5 1.53×10-4 1.21×10-5 32 1.78×10-3 3.76×10-5 －

8 7.26×10-5 5.91×10-4 2.24×10-5 33 7.26×10-5 － 6.12×10-7

9 7.26×10-5 8.46×10-4 5.19×10-5 34 7.82×10-4 － 1.21×10-5

10 7.26×10-5 1.25×10-3 6.12×10-7 Single component solutions

11 1.75×10-4 3.76×10-5 1.21×10-5 35 7.64×10-6 － －

12 1.75×10-4 1.53×10-4 2.24×10-5 36 7.26×10-5 － －

13 1.75×10-4 5.91×10-4 5.19×10-5 37 1.75×10-4 － －

14 1.75×10-4 8.46×10-4 6.12×10-7 38 7.82×10-4 － －

15 1.75×10-4 1.25×10-3 6.03×10-6 39 1.78×10-3 － －

16 7.82×10-4 3.76×10-5 2.24×10-5 40 － 3.76×10-5 －

17 7.82×10-4 1.53×10-4 5.19×10-5 41 － 1.53×10-4 －

18 7.82×10-4 5.91×10-4 6.12×10-7 42 － 5.91×10-4 －

19 7.82×10-4 8.46×10-4 6.03×10-6 43 － 8.46×10-4 －

20 7.82×10-4 1.25×10-3 1.21×10-5 44 － 1.25×10-3 －

21 1.78×10-3 3.76×10-5 5.19×10-5 45 － － 6.12×10-7

22 1.78×10-3 1.53×10-4 6.12×10-7 46 － － 6.03×10-6

23 1.78×10-3 5.91×10-4 6.03×10-6 47 － － 1.21×10-5

24 1.78×10-3 8.46×10-4 1.21×10-5 48 － － 2.24×10-5

25 1.78×10-3 1.25×10-3 2.24×10-5 49 － － 5.19×10-5

NAPSCNAP FXXF  3

)(* T
NAPSC UUIXXFX  4
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The numbers of the optimum principal component 
used in the PLS-1 and PLS-2 models were obtained by 
the method of cross validation, and the results were 
shown in Figure 2(a) and 2(b). As observed by Figure 
2(a) and 2(b), the numbers of the optimum principal 
component of the PLS-1 and PLS-2 models for NaOH 
and PEA were both 8. The number of the optimum 
principal component of the PLS-1 model for NaCl was 
8 and the PLS-2 model was 9. The detailed results of the 
PLS-1 and PLS-2 calibration models were listed in Table 
2 which included the number of the optimum principal 
component, RMSECV, REC, and 2

cR . According to the 
results listed in Table 2, satisfactory results had been 
obtained for NaCl, NaOH, and PEA in the PLS-1 and 

PLS-2 models which proved the effectiveness of the PLS 
calibration models.

In addition, the residual values of the calibration 
model were obtained by the formula: iprediacti yy ,, −=δ , 
where yact,i represents the actual measured value and ypred,i 
represents the predicted value by the PLS models in the 
ith sample. 

Figure 3 was obtained by plotting the residual 
values vs. the concentration of NaCl, NaOH, and PEA 
by the PLS-1 and PLS-2 models. As observed by Figure 
3, the residual values obtained from the PLS-1 and 
PLS-2 models were both distributed around the X-axis, 
indicating that the residual errors were uniformly 
distributed around the zero error. 
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FIGURE 2. (a) Plot of RMSECV value vs. the number of factors in 
PLS-2 regression. (b) Plot of RMSECV value vs. the number of fac-

tors in PLS-1 regression
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PLS-1 PLS-2

Factors REC (%) RMSECV Rc
2 Factors REC (%) RMSECV Rc

2

NaCl 8 2.63 4.42×10-5 0.9926 9 2.26 3.96×10-5 0.9907

NaOH 8 1.53 3.75×10-5 0.9886 8 1.38 3.43×10-5 0.9903

PEA 8 2.74 1.60×10-6 0.9902 8 2.92 1.04×10-6 0.9893

VALIDATION OF THE PLS MODELS BY THE INDEPENDENT 
TEST SET

Although the PLS calibration models had achieved 
good results in the concentration prediction of the 
calibration set, the prediction of the independent test 
set should be performed in order to further validate 
the performance of the PLS calibration models. Therefore, 
34 samples of the independent test set were constructed 
to validate the PLS-1 and PLS-2 models. The actual 
measured value and the predicted value of NaCl, NaOH, 

TABLE 3. Determination of NaCl, NaOH and PEA (mol/L) in the independent test set

Concentration (mol/L) PLS-1 prediction PLS-2 prediction

NaCl NaOH PEA NaCl NaOH PEA NaCl NaOH PEA

Ternary mixtures

7.13×10-5 3.81×10-5 6×10-7 7.09×10-5 4.08×10-5 7.61×10-7 7.20×10-5 4.01×10-5 6.20×10-7

7.13×10-5 5.82×10-4 1.13×10-5 7.11×10-5 5.79×10-4 1.14×10-5 7.22×10-5 5.76×10-4 1.12×10-5

FIGURE 3. Residual errors of the PLS-1 and PLS-2 models vs. con-
centration plots for the three components of the calibration model 

samples

and PEA by the PLS models were listed in Table 3. It can 
be seen from the Table 3 that the actual measured value 
was very close to the predicted value obtained by the 
PLS-1 and PLS-2 models. 

Similarly, as observed by Figure 4, the residual 
values obtained from the independent test set were also 
distributed around the X-axis, proving the validity of 
the PLS-1 and PLS-2 models which were constructed. 
Therefore, it is feasible to simultaneously determine the 
concentration of pollutants in water by the PLS models. 

TABLE 2. Statistical parameters of NaCl, NaOH and PEA in the calibration set
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7.13×10-5 8.61×10-4 3.21×10-5 7.10×10-5 8.55×10-4 3.20×10-5 7.19×10-5 8.51×10-4 3.17×10-5

7.13×10-5 1.13×10-3 5.15×10-5 7.09×10-5 1.12×10-3 5.12×10-5 7.18×10-5 1.12×10-3 5.08×10-5

5.24×10-4 3.81×10-5 1.13×10-5 5.20×10-4 3.92×10-5 1.15×10-5 5.19×10-4 3.95×10-5 1.11×10-5

5.24×10-4 5.82×10-4 3.21×10-5 5.22×10-4 5.81×10-4 3.22×10-5 5.22×10-4 5.78×10-4 3.19×10-5

5.24×10-4 8.61×10-4 5.15×10-5 5.21×10-4 8.57×10-4 5.19×10-5 5.21×10-4 8.53×10-4 5.12×10-5

5.24×10-4 1.13×10-3 6×10-7 5.26×10-4 1.09×10-3 7.86×10-7 5.23×10-4 1.14×10-3 6.22×10-7

9.85×10-4 3.81×10-5 3.21×10-5 9.78×10-4 3.74×10-5 3.19×10-5 9.74×10-4 3.89×10-5 3.19×10-5

9.85×10-4 5.82×10-4 5.15×10-5 9.80×10-4 5.83×10-4 5.21×10-5 9.80×10-4 5.79×10-4 5.14×10-5

9.85×10-4 8.61×10-4 6×10-7 9.82×10-4 8.58×10-4 6.72×10-7 9.78×10-4 8.55×10-4 6.15×10-7

9.85×10-4 1.13×10-3 1.13×10-5 9.81×10-4 1.17×10-3 1.12×10-5 9.81×10-4 1.15×10-3 1.14×10-5

1.67×10-3 3.81×10-5 5.15×10-5 1.66×10-3 3.89×10-5 5.09×10-5 1.65×10-3 3.92×10-5 5.18×10-5

1.67×10-3 5.82×10-4 6×10-7 1.69×10-3 5.80×10-4 6.58×10-7 1.63×10-3 5.81×10-4 6.13×10-7

1.67×10-3 8.61×10-4 1.13×10-5 1.72×10-3 8.63×10-4 1.12×10-5 1.69×10-3 8.57×10-4 1.13×10-5

1.67×10-3 1.13×10-3 3.21×10-5 1.62×10-3 1.15×10-3 3.21×10-5 1.71×10-3 1.10×10-3 3.22×10-5

Binary mixtures

7.13×10-5 - 6×10-7 7.10×10-5 3.08×10-6 6.53×10-7 7.17×10-5 2.54×10-6 6.24×10-7

5.24×10-4 - 1.13×10-5 5.21×10-4 3.06×10-6 1.10×10-5 5.22×10-4 2.52×10-6 1.10×10-5

9.85×10-4 3.81×10-5 - 9.83×10-4 3.86×10-5 2.67×10-7 9.82×10-4 3.84×10-5 2.85×10-8

1.67×10-3 5.82×10-4 - 1.69×10-3 5.79×10-4 2.72×10-7 1.68×10-3 5.83×10-4 2.84×10-8

- 8.61×10-4 3.21×10-5 2.06×10-7 8.62×10-4 3.24×10-5 1.59×10-6 8.59×10-4 3.18×10-5

- 1.13×10-3 5.15×10-5 1.96×10-7 1.14×10-3 5.12×10-5 1.60×10-6 1.15×10-3 5.19×10-5

Single-component solutions

7.13×10-5 - - 7.12×10-5 3.05×10-6 2.67×10-7 7.12×10-5 2.53×10-6 2.83×10-8

5.24×10-4 - - 5.22×10-4 3.06×10-6 2.68×10-7 5.24×10-4 2.55×10-6 2.85×10-8

9.85×10-4 - - 9.84×10-4 3.08×10-6 2.64×10-7 9.83×10-4 2.54×10-6 2.86×10-8

1.67×10-3 - - 1.66×10-3 3.09×10-6 2.70×10-7 1.66×10-3 2.51×10-6 2.84×10-8

- 3.81×10-5 - 2.03×10-7 3.83×10-5 2.71×10-7 1.59×10-6 3.82×10-5 2.82×10-8

- 5.82×10-4 - 2.05×10-7 5.80×10-4 2.69×10-7 1.55×10-6 5.82×10-4 2.87×10-8

- 8.61×10-4 - 2.08×10-7 8.60×10-4 2.65×10-7 1.56×10-6 8.60×10-4 2.85×10-8

- 1.13×10-3 - 2.06×10-7 1.12×10-3 2.66×10-7 1.59×10-6 1.15×10-3 2.83×10-8

- - 6×10-7 2.01×10-7 3.08×10-6 6.41×10-7 1.58×10-6 2.49×10-6 6.14×10-7

- - 1.13×10-5 1.97×10-7 3.10×10-6 1.12×10-5 1.61×10-6 2.56×10-6 1.15×10-5

- - 3.21×10-5 1.96×10-7 3.12×10-6 3.23×10-5 1.59×10-6 2.55×10-6 3.20×10-5

- - 5.15×10-5 2.06×10-7 3.06×10-6 5.14×10-5 1.62×10-6 2.54×10-6 5.17×10-5
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The parameters of the PLS-1 and PLS-2 models 
for the independent test set were listed in Table 4 
which included the RMSEP, REP, 2

predR  and the mean 
recovery. As can be seen from the Table 4, the RMSEP 
values of NaCl, NaOH, and PEA for the PLS-1 and PLS-
2 models were lower than 4.10×10-5, 3.60×10-5, and 
1.50×10-6, respectively. The Rpred

2 values of NaCl, NaOH, 
and PEA for the PLS-1 and PLS-2 models were higher 

than 0.99, 0.98, and 0.99, respectively. Moreover, the 
mean recovery rates of NaCl, NaOH, and PEA for the 
PLS-1 and PLS-2 models were all close to 100%. From 
the above results, it can be seen that the constructed PLS-
1 and PLS-2 models also have a good performance in 
the concentration prediction of the independent test set 
samples.  

FIGURE 4. Residual errors of the PLS-1 and PLS-2 models vs. 
concentration plots for the three components of the independent test 

samples

TABLE 4. Parameters of NaCl, NaOH and PEA in the independent test set by PLS-1 and PLS-2 models

NaCl NaOH PEA

Parameters PLS-1 PLS-2 PLS-1 PLS-2 PLS-1 PLS-2

RMSEP 3.85×10-5 4.03×10-5 3.28×10-5 3.58×10-5 1.16×10-6 1.47×10-6

REP(%) 3.07 2.84 1.71 1.36 2.43 2.61

Rpred
2 0.9924 0.9936 0.9884 0.9879 0.9947 0.9938

Mean recovery (%) 100.54 103.92 102.18 100.46 100.40 101.01

Mean recovery (%) =100×

m
C

Cm

i acti

predi∑
=1 ,

,
 , where m is the number of samples in the independent test set, and Ci, act 

and Ci, pred are the actual and predicted concentration of a component in the ith sample, respectively
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APPLICATION OF THE PLS MODEL AND NAP ALGORITHM 
IN THE NATURAL WATER

As described previously, 24 mixed samples which 
contained 9 single-component samples, 6 binary 
mixtures and 9 ternary mixtures were added into the 
natural water samples. Table 5 shows that the actual 
measured value and the predicted value which were 
pretreated by the NAP algorithm. As can be seen from 
the Table 5, the predicted concentration values of NaCl, 

NaOH, and PEA were very close to the actual values. 
The mean recovery rates of NaCl, NaOH, and PEA were 
100.57%, 97.24%, and 96.35% in the NAP/PLS-1 model, 
and 101.32%, 95.73%, and 97.69% in the NAP/PLS-2 
model, respectively. From the above results, it can be 
seen that the constructed NAP/PLS models had a good 
performance in the concentration prediction of the 
natural water samples.
 

Concentration (mol/L) NAP/PLS-1 prediction NAP/PLS-2 prediction

NaCl NaOH PEA NaCl NaOH PEA NaCl NaOH PEA

Ternary mixtures

1.45×10-3 3.47×10-5 7.48×10-7 1.44×10-3 3.74×10-5 8.51×10-7 1.43×10-3 3.67×10-5 7.66×10-7

1.45×10-3 4.26×10-4 5.36×10-6 1.46×10-3 4.24×10-4 5.57×10-6 1.42×10-3 4.22×10-4 5.32×10-6

1.45×10-3 1.15×10-3 3.83×10-5 1.43×10-3 1.14×10-3 3.82×10-5 1.44×10-3 1.14×10-3 3.78×10-5

7.28×10-4 4.26×10-4 5.36×10-6 7.22×10-4 4.22×10-4 5.48×10-6 7.20×10-4 4.23×10-4 5.34×10-6

7.28×10-4 3.47×10-5 7.48×10-7 7.25×10-4 3.69×10-5 8.46×10-7 7.22×10-4 3.58×10-5 7.59×10-7

7.28×10-4 1.15×10-3 3.83×10-5 7.24×10-4 1.13×10-3 3.80×10-5 7.25×10-4 1.13×10-3 3.81×10-5

7.36×10-6 4.26×10-4 5.36×10-6 7.50×10-6 4.20×10-4 5.42×10-6 8.16×10-6 4.28×10-4 5.39×10-6

7.36×10-6 1.15×10-3 3.83×10-5 7.47×10-6 1.16×10-3 3.79×10-5 7.94×10-6 1.17×10-3 3.79×10-5

7.36×10-6 3.47×10-5 7.48×10-7 7.44×10-6 3.76×10-5 8.43×10-7 7.88×10-6 3.53×10-5 7.54×10-7

Binary mixtures

1.45×10-3 - 7.48×10-7 1.47×10-3 3.08×10-6 7.92×10-7 1.44×10-3 2.54×10-6 7.56×10-7

7.28×10-4 3.47×10-5 - 7.25×10-4 3.54×10-5 2.67×10-7 7.22×10-4 3.51×10-5 2.85×10-8

7.36×10-6 4.26×10-4 - 7.40×10-6 4.22×10-4 2.71×10-7 7.75×10-6 4.28×10-4 2.82×10-8

- 1.15×10-3 5.36×10-6 2.06×10-7 1.13×10-3 5.40×10-6 1.59×10-6 1.12×10-3 5.38×10-6

- 4.26×10-4 3.83×10-5 2.10×10-7 4.23×10-4 3.80×10-5 1.62×10-6 4.29×10-4 3.80×10-5

7.28×10-4 - 5.36×10-6 7.23×10-4 3.06×10-6 5.39×10-6 7.24×10-4 2.57×10-6 5.40×10-6

Single-component solutions

1.45×10-3 - - 1.46×10-3 3.08×10-6 2.67×10-7 1.44×10-3 2.54×10-6 2.85×10-8

7.28×10-4 - - 7.26×10-4 3.06×10-6 2.69×10-7 7.24×10-4 2.56×10-6 2.87×10-8

7.36×10-6 - - 7.39×10-6 3.05×10-6 2.66×10-7 7.62×10-6 2.57×10-6 2.82×10-8

- 3.47×10-5 - 2.06×10-7 3.50×10-5 2.65×10-7 1.59×10-6 3.50×10-5 2.83×10-8

- 4.26×10-4 - 2.07×10-7 4.25×10-4 2.67×10-7 1.61×10-6 4.27×10-4 2.87×10-8

- 1.15×10-3 - 2.05×10-7 1.16×10-3 2.70×10-7 1.58×10-6 1.13×10-3 2.85×10-8

- - 7.48×10-7 2.08×10-7 3.10×10-6 7.60×10-7 1.57×10-6 2.52×10-6 7.51×10-7

- - 5.36×10-6 2.02×10-7 3.08×10-6 5.34×10-6 1.59×10-6 2.54×10-6 5.37×10-6

- - 3.83×10-5 2.06×10-7 3.09×10-6 3.81×10-5 1.58×10-6 2.51×10-6 3.81×10-5

TABLE 5. Concentration prediction of NaCl, NaOH and PEA (mol/L) in the natural water
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Figures 5 and 6 show the RMSEP values vs. the 
numbers of the PLS-2 and PLS-1 factors with different 
NAP factors. As can be seen from Figures 5 and 6, the 
numbers of the optimum principal component for the 
PLS models decreased gradually with the increase of 
NAP factors. And the numbers of the optimum principal 
component for the PLS models decreased one when 
the NAP factor increased one before the minimum 
value of RMSEP was obtained. During this process, 
the total numbers of the NAP factors and the optimum 
principal component factors for the PLS models 

FIGURE 5. Concentration prediction of NaCl, NaOH and PEA 
(mol/L) in the natural water

0 1 2 3 4 5 6 7 8 9 10 11 12 13
5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

2.5x10-5

3.0x10-5

 

 

R
M

SE
P

No. of PLS-2 factors for NaCl

 0 NAP factor
 1 NAP factor
 2 NAP factors
 3 NAP factors
 4 NAP factors
 5 NAP factors
 6 NAP factors
 7 NAP factors

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

2.5x10-5

3.0x10-5

3.5x10-5

4.0x10-5
 

 

R
M

SE
P

No. of PLS-2 factors for NaOH

 0 NAP factor
 1 NAP factor
 2 NAP factors
 3 NAP factors
 4 NAP factors
 5 NAP factors
 6 NAP factors
 7 NAP factors

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5.0x10-6

1.0x10-5

1.5x10-5

2.0x10-5

2.5x10-5

3.0x10-5

3.5x10-5

4.0x10-5

 

 

R
M

SE
P

No. of PLS-2 factors for PEA

 0 NAP factor
 1 NAP factor
 2 NAP factors
 3 NAP factors
 4 NAP factors
 5 NAP factors
 6 NAP factors
 7 NAP factors

remained unchanged. This indicated that some principal 
component factors of the model had been converted into 
NAP factors after the original spectra were pretreated 
by the NAP algorithm. The NAP algorithm can remove 
interference spectra in the original spectra to the greatest 
extent by means of spatial orthogonality. In this way, 
the spectra which were pretreated by NAP algorithm 
only contained the spectra of NaCl, NaOH, and PEA. 
Therefore, the NAP method did not affect the precision 
of the PLS models, but it greatly reduced the complexity 
of the PLS models. 
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The parameters of the PLS-1 and PLS-2 models 
which were pretreated by NAP algorithm for the natural 
water were listed in Table 6. As can be seen from the Table 
6, the Rcal

2 and RMSEP values of the PLS models almost 

had no change compared with the PLS models which 
were pretreated by the NAP algorithm. However, the 
factors of the PLS models were greatly reduced after the 
original spectra were pretreated by the NAP algorithm.

FIGURE 6. Diagram of RMSEP vs. the numbers of PLS-1 factor com-
bined with NAP algorithm
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TABLE 6. Parameters of the natural water spectra before and after being pretreated by NAP

Preprocessing method Component
PLS-1 PLS-2

factors Rcal
2 RMSEP factors Rcal

2 RMSEP

Without preprocessing 

NaCl 8 0.9902 3.67×10-5 9 0.9884 3.71×10-5

NaOH 8 0.9873 6.85×10-5 8 0.9842 6.91×10-5

PEA 8 0.9879 6.72×10-6 8 0.9821 6.65×10-6

NAP

NaCl 2 0.9891 3.73×10-5 3 0.9879 3.78×10-5

NaOH 2 0.9884 6.88×10-5 2 0.9865 6.95×10-5

PEA 2 0.9784 6.74×10-6 2 0.9837 6.67×10-6

CONCLUSION

In this study, UV spectrophotometry coupled with 
PLS models was successfully used to simultaneously 
determine the concentration of NaCl, NaOH, and PEA in 
the calibration set. Then the independent test set was set 
up to validate the effectiveness of the PLS regression 
models. The results indicated that PLS models had a 
good accuracy of concentration  prediction while the 
spectra of NaCl, NaOH, and PEA overlapped with each 
other highly. The good agreement between the predicted 
value and the actual value indicated the validity of the 
PLS models for simultaneous determination of NaCl, 
NaOH, and PEA in pure samples. In order to reduce the 
influence of noise and impurities in the natural water, 
UV spectrophotometry coupled with PLS models and 
NAP algorithm was used to predict the concentration 
of 24 mixed samples which contained NaCl, NaOH, 
and PEA in the natural water. The results showed that 
the predictive effect of the natural water with the PLS 
models and NAP algorithm was also very satisfactory 
(with the mean recovery rates of NaCl, NaOH and PEA 
between 95-102%). It can be concluded that the NAP 
method did not affect the precision of the PLS models, 
but it greatly reduced the complexity of the PLS models. 
Therefore, UV spectrophotometry coupled with PLS 
models and NAP algorithm can be used as a quick, low 
cost and dependable analysis method to simultaneously 
determine the concentration of pollutants in the natural 
water. 
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