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Oblique Stagnation-Point Flow Past a Shrinking Surface in a Cu-Al2O3/H2O Hybrid 
Nanofluid

(Aliran Titik Genangan Serong Nanobendalir Hibrid Cu-Al2O3/H2O terhadap Permukaan Mengecut)
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ABSTRACT

To fill the existing literature gap, the numerical solutions for the oblique stagnation-point flow of Cu-Al2O3/H2O hybrid 
nanofluid past a shrinking surface are computed and analyzed. The computation, using similarity transformation and 
bvp4c solver, results in dual solutions. Stability analysis then shows that the first solution is stable with positive smallest 
eigenvalues. Besides that, the addition of Al2O3 nanoparticles into the Cu-H2O nanofluid is found to reduce the skin friction 
coefficient by 37.753% while enhances the local Nusselt number by 4.798%. The increase in the shrinking parameter 
reduces the velocity profile but increases the temperature profile of the hybrid nanofluid. Meanwhile, the increase in the 
free parameter related to the shear flow reduces the oblique flow skin friction. 
Keywords: Dual solutions; hybrid nanofluid; oblique stagnation-point; shrinking surface; stability analysis

ABSTRAK

Bagi memenuhi jurang kepustakaan sedia ada, penyelesaian numerik bagi aliran titik genangan serong nanobendalir 
hibrid Cu-Al2O3/H2O terhadap permukaan mengecut telah dihitung dan dianalisis. Pengiraan menggunakan penjelmaan 
keserupaan dan fungsi bvp4c telah menghasilkan penyelesaian dual. Hasil analisis kestabilan menunjukkan bahawa 
penyelesaian pertama adalah stabil dengan nilai eigen terkecil positif. Secara puratanya, penambahan nanozarah 
Al2O3 ke dalam nanobendalir Cu-H2O telah mengurangkan pekali geseran kulit sebanyak 37.753% dan meningkatkan 
nombor Nusselt tempatan sebanyak 4.798%. Peningkatan parameter mengecut pula dilihat mengurangkan profil halaju 
nanobendalir hibrid tetapi menyebabkan profil suhunya meningkat. Sementara itu, peningkatan nilai parameter bebas 
berkaitan aliran sesar telah mengurangkan geseran kulit aliran serong. 
Kata kunci: Aliran titik genangan serong; analisis kestabilan; nanobendalir hibrid; penyelesaian dual; permukaan 
mengecut

INTRODUCTION

Hybrid nanofluid, an extension to nanofluid, consists of 
two or more different nanoparticles (e.g. Cu-Al2O3, TiO2-
Cu & Ag-CuO) dispersed in a conventional base fluid 
(e.g. polymer solutions, water (H2O), oil and ethylene 
glycol (EG)). The hybrid nanofluid is predicted to be more 
superior than regular heat transfer fluids and nanofluids, 
thus prompting research on the thermophysical properties, 
rheological behavior, and applications of this new 
generation of nanofluid. Generally, hybrid nanofluids 
are prepared through single-step method (i.e. suitable for 
small scale production) or two-step method (i.e. suitable 
for mass production), as described by Sidik et al. (2016). 
One of the pioneering studies on hybrid nanofluid is 

probably by Turcu et al. (2006) with Fe304 added into multi 
wall carbon nanotubes (MWCNTs). Suresh et al. (2012) 
then discussed the preparation of water-based hybrid 
Al2O3-Cu nanofluid and did experimental investigations 
on the heat transfer and friction characteristics of the 
fluid. The Nusselt number, which corresponds to the heat 
transfer performance, for the water-based hybrid nanofluid 
is found to be higher than pure water and Al2O3-H2O 
nanofluid. Also, the friction factor of the hybrid nanofluid 
is slightly higher than the nanofluid, due to the higher 
viscosity of the hybrid nanofluid. The applications of 
hybrid nanofluid include electronic cooling, domestic 
refrigerator, car radiators, and nuclear plant (Sidik et al. 
2016). The magnetic field effects on the flow of water-based 
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Al2O3-Cu hybrid nanofluid past a permeable sheet with 
stretching velocity is studied by Devi and Devi (2016). In 
this study, new thermophysical properties, which are in 
good agreement with the experimental results by Suresh 
et al. (2012), are developed to study the boundary layer 
equations for the hybrid nanofluid. From this study, it was 
concluded that the presence of the magnetic field increases 
the heat transfer rate and makes the flow consistent. Hayat 
et al. (2018) then analyzed the thermal radiation, thermal 
slip, and velocity slip effects on the rotating Ag-CuO/
water hybrid nanofluid. In recent years, Jamaludin et al. 
(2020), Kadhim et al. (2020), Khashi’ie et al. (2020), and 
Waini et al. (2020) had conducted several other studies on 
hybrid nanofluid.

The classical two-dimensional stagnation-point flow, 
first studied by Hiemenz (1911), describes the flow of 
fluid striking on a solid surface orthogonally. The solid 
surface can be stationary or moving with stretching or 
shrinking velocity. This type of flow is common in the 
cooling process of nuclear reactors and electronic devices, 
extrusion of polymer and plastic sheets, and wire drawing 
(Sadiq 2019). However, in some cases, the flow impinges 
the solid surface obliquely and produces an oblique 
stagnation-point flow. According to Wang (1985), this 
flow may occur due to the contouring of the solid surface 
or physical constraints on the nozzle. Besides that, the 
reattachment of separated viscous flow to a surface may 
also bring about an oblique stagnation-point flow (Reza & 
Gupta 2010). The oblique or non-orthogonal stagnation-
point flow is made up of the orthogonal stagnation-point 
flow (i.e. normal to the solid surface) and shear flow 
(i.e. parallel to the solid surface). The pioneering study, 
made by Stuart (1959), found that the part of the shear 
that is proportional to vorticity is larger in the external 
stream than at the wall. Later, Dorrepaal (1986) and 
Tamada (1979) revisited the problem with more detailed 
discussions on the structure of the flow field. Meanwhile, 
Wang (1985) studied the unsteady flow. In 2006, Drazin 
and Riley introduced a free parameter for the shear flow 
component. This free parameter changes the shear flow 
by altering the magnitude of the pressure gradient parallel 
to the solid surface. Then, Tooke and Blyth (2008) found 
that large adverse pressure gradient causes reverse flow 
near the solid surface. Labropulu and Li (2008) then did 
a study on the slip effects. The heat transfer in oblique 
stagnation-point flow was studied by Li et al. (2009) and 
Lok et al. (2009) over an infinite plane and a vertical 
stretching sheet, respectively. Meanwhile, Grosan et al. 
(2009) analyzed the magnetic field effects on the flow. 
The increase in the magnetic field was observed to reduce 
the displacement of the stagnation-point from the origin. 

Lok et al. (2015) then extended this study for stretching/
shrinking surface. 

Through our reviews, the oblique stagnation-point 
flow of nanofluid had been discussed by Ghaffari et al. 
(2017), Mahmood et al. (2017), Nadeem et al. (2019), 
and Rahman et al. (2016). However, the study for this 
kind of flow on hybrid nanofluid had not been done by 
any researchers yet. We aim to fill this literature gap in the 
current study. The findings in the present study are useful 
in predicting the behavior of hybrid nanofluid in such 
flow and relevant parameters affecting the heat transfer 
performance of this fluid; this might be important for 
potential applications of hybrid nanofluid in the future.

Inspired by the previous studies, the oblique 
stagnation-point flow of hybrid nanofluid will be considered 
in the current study. The flow of Cu-Al2O3/H2O hybrid 
nanofluid over a shrinking surface will be analyzed and 
discussed. Numerical solutions to the problem will be 
computed using MATLAB’s built-in solver, bvp4c. 

PROBLEM FORMULATION

Let us consider the two-dimensional, steady, laminar 
stagnation-point flow of hybrid nanofluid, Cu-Al2O3/H2O 
impinges obliquely on a shrinking surface. The axes, 
x and y are dimensional Cartesian coordinates with the 
x-axis lined along the surface and y-axis perpendicular 
to it, as illustrated in Figure 1. The shrinking surface 
velocity is assumed to be uw (x) = cx, where c < 0. 
Meanwhile, the external flow is given as the following 
stream function, ψ (Drazin & Riley 2006; Tooke & Blyth 
2008):

(1)

with a and b ( > 0) as  the irrotational straining flow strength 
and the rotational shear flow vorticity, respectively. 
From (1),  y = -2 (a/b) x is the dividing streamline (ψ = 0) 
that intersects the surface y = 0. From the usual definition 
of stream function, ∂ ψ / ∂y = u and - ∂ ψ / ∂x = v the 
external flow velocities are given by:

(2)

The basic equations of this problem are Devi and 
Devi (2017) and Lok et al. (2015):

(3)

(4)
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(5)

(6)

with the boundary conditions:

(7)

where the horizontal and vertical velocity 
components are given by u and v, respectively, p is the 
pressure, T is the hybrid nanofluid temperature and ∇2 2 

= ∂2/∂x2 + ∂2/∂y2 is the Laplacian. Here, μhnf, khnf, and ϱhnf 
are the dynamic viscosity, thermal conductivity and 
density of the hybrid nanofluid, respectively. Meanwhile, 
(Cp)hnf is the specific heat of the hybrid nanofluid. The 
definition of these parameters is given in Devi and Devi 
(2017). 

Initially, 0.1 vol. of Al2O3 (aluminum oxide) 
nanoparticles (i.e. ϕs1 = 0.1), which is fixed throughout 
the problem hereafter, is dispersed into the base fluid, 
H2O to form Al2O3-H2O. Then, Cu (copper) is added with 
various solid volume fractions, ϕs2 to produce a hybrid 
nanofluid named Cu-Al2O3/H2O. The final form of the 
effective thermophysical properties of the base fluid 
and nanoparticles are shown in Table 1.
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TABLE 1. Thermo-physical properties 

Physical properties Water Al2O3 Cu

ϱ (kg/m3) 997.0 3970 8933

Cp (J/kgK) 4180 765 385

k (W/mK) 0.6071 40 400

Source: Devi and Devi 2017

Next, the pressure, p in equations (4) and (5) is eliminated 
to obtain:

(8)

(9)

subject to the boundary conditions:

(10)

We look for similarity solutions of (8) and (9) in the 
more general form. Based on Drazin and Riley (2006), Lok 
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𝜓𝜓 → 𝑎𝑎𝑐𝑐𝜕𝜕 + 1
2 𝑏𝑏𝜕𝜕2,    𝑇𝑇 → 𝑇𝑇∞     as      𝜕𝜕 → ∞. 
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et al. (2015), and Tooke and Blyth (2008):

(11)

with ∇2 T = Tw-T∞. Then, the following equations are 
obtained by substituting (11) into (8) and (9), and equating 
the terms with x and those without x:

(12)

(13)

(14)

It requires that f(η)~ η- α and g(η)~η- β, with α and 
β as constants, to match with the external flow (1). We 
integrate (12) and (13) with respect to η and utilize the 
conditions at η → ∞ to have:                                  

(15)

(16)

(17)                               

Now, the boundary conditions (10) become:

(18)

From these equations, " ' " represents differentiation 
with respect to the similarity variable, η and λ = c/a is 
the shrinking parameter with λ < 0. The numerical values 
of α, tabulated in Table 2, are computed by solving the 
orthogonal stagnation-point (15) along with the boundary 
conditions (18). As ϕs1 = ϕs2 = λ = 0, the value of a 
agrees with the ones obtained by Rahman et al. (2016). 
Meanwhile, the free parameter β is related to the oblique 
flow (Drazin & Riley 2006; Tooke & Blyth 2008). It 
should be mentioned that (15) and (17) reduce to (12) and 
(20) from Mahapatra and Gupta (2002) when ϕs1 = ϕs2 = 0 
and λ = 1 (stretching sheet).

The streamlines can be plotted using the following 
dimensionless stream function:

(19)

with ξ = (a/νf)
1/2 x. The stagnation point where the dividing 

streamline 𝜓𝜓
𝜈𝜈𝑓𝑓

  = 0 meets the surface is denoted by ξ0. 
However, the obtained location of ξ0 will not be exactly 
on the sheet surface (η = 0). The reason is that the 
condition  f (0) = 0 from (18) leads to a division by zero. 
The streamlines are plotted in Figures 2 and 3.

The heat flux, qw and the skin friction, τw are:

(20)

We have, in dimensionless form:

(21)

where Nux = xqw/(kf (Tw - T∞ )) is the local Nusselt number, 
Cf = τw/(ρf (ax)2)  is the skin friction coefficient and Rex = 
𝑎𝑎𝑥𝑥2
𝜈𝜈𝑓𝑓

  = ξ2 is the local Reynolds number.

𝜓𝜓 = (𝑎𝑎 𝜈𝜈𝑓𝑓)1/2 𝑥𝑥 𝑓𝑓(𝜂𝜂) +
𝑏𝑏𝜈𝜈𝑓𝑓

𝑎𝑎 ∫ 𝑔𝑔(𝑠𝑠) 𝑑𝑑𝑠𝑠,     
𝜂𝜂

0
 

𝜃𝜃(𝜂𝜂) = 𝑇𝑇 − 𝑇𝑇∞
∆𝑇𝑇 ,      𝜂𝜂 = 𝑦𝑦 ( 𝑎𝑎

𝜈𝜈𝑓𝑓
)

1/2
, 
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(1 − 𝜙𝜙𝑠𝑠1)2.5(1 − 𝜙𝜙𝑠𝑠2)2.5 [(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1

𝜚𝜚𝑠𝑠1
𝜚𝜚𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
𝜚𝜚𝑠𝑠2
𝜚𝜚𝑓𝑓

]
𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 1 

                −𝑓𝑓′2 = 0,                   
1

(1 − 𝜙𝜙𝑠𝑠1)2.5(1 − 𝜙𝜙𝑠𝑠2)2.5 [(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1
𝜚𝜚𝑠𝑠1
𝜚𝜚𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
𝜚𝜚𝑠𝑠2
𝜚𝜚𝑓𝑓

]
𝑔𝑔′′ + 𝑓𝑓𝑔𝑔′ − 𝑓𝑓′𝑔𝑔 + 𝛼𝛼 

−𝛽𝛽 = 0,                  
1

𝑃𝑃𝑃𝑃
𝑘𝑘ℎ𝑛𝑛𝑓𝑓/𝑘𝑘𝑓𝑓

[(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑠𝑠1
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑠𝑠2
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑓𝑓

]
𝜃𝜃′′ + 𝑓𝑓𝜃𝜃′ = 0.                  

 

1
(1 − 𝜙𝜙𝑠𝑠1)2.5(1 − 𝜙𝜙𝑠𝑠2)2.5 [(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1

𝜚𝜚𝑠𝑠1
𝜚𝜚𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
𝜚𝜚𝑠𝑠2
𝜚𝜚𝑓𝑓

]
𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 1 

                −𝑓𝑓′2 = 0,                   
1

(1 − 𝜙𝜙𝑠𝑠1)2.5(1 − 𝜙𝜙𝑠𝑠2)2.5 [(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1
𝜚𝜚𝑠𝑠1
𝜚𝜚𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
𝜚𝜚𝑠𝑠2
𝜚𝜚𝑓𝑓

]
𝑔𝑔′′ + 𝑓𝑓𝑔𝑔′ − 𝑓𝑓′𝑔𝑔 + 𝛼𝛼 

−𝛽𝛽 = 0,                  
1

𝑃𝑃𝑃𝑃
𝑘𝑘ℎ𝑛𝑛𝑓𝑓/𝑘𝑘𝑓𝑓

[(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑠𝑠1
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑠𝑠2
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑓𝑓

]
𝜃𝜃′′ + 𝑓𝑓𝜃𝜃′ = 0.                  

 

1
(1 − 𝜙𝜙𝑠𝑠1)2.5(1 − 𝜙𝜙𝑠𝑠2)2.5 [(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1

𝜚𝜚𝑠𝑠1
𝜚𝜚𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
𝜚𝜚𝑠𝑠2
𝜚𝜚𝑓𝑓

]
𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ + 1 

                −𝑓𝑓′2 = 0,                   
1

(1 − 𝜙𝜙𝑠𝑠1)2.5(1 − 𝜙𝜙𝑠𝑠2)2.5 [(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1
𝜚𝜚𝑠𝑠1
𝜚𝜚𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
𝜚𝜚𝑠𝑠2
𝜚𝜚𝑓𝑓

]
𝑔𝑔′′ + 𝑓𝑓𝑔𝑔′ − 𝑓𝑓′𝑔𝑔 + 𝛼𝛼 

−𝛽𝛽 = 0,                  
1

𝑃𝑃𝑃𝑃
𝑘𝑘ℎ𝑛𝑛𝑓𝑓/𝑘𝑘𝑓𝑓

[(1 − 𝜙𝜙𝑠𝑠2) [(1 − 𝜙𝜙𝑠𝑠1) + 𝜙𝜙𝑠𝑠1
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑠𝑠1
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑓𝑓

] + 𝜙𝜙𝑠𝑠2
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑠𝑠2
(𝜚𝜚𝐶𝐶𝑝𝑝)𝑓𝑓

]
𝜃𝜃′′ + 𝑓𝑓𝜃𝜃′ = 0.                  

 

𝜓𝜓
𝜈𝜈𝑓𝑓

= 𝜉𝜉𝜉𝜉(𝜂𝜂) + 𝑏𝑏
𝑎𝑎 ∫ 𝑔𝑔(𝑠𝑠) 𝑑𝑑𝑠𝑠,

𝜂𝜂

0
                                                      

 

𝑞𝑞𝑤𝑤 = − 𝑘𝑘ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)

𝑦𝑦=0
,         𝜏𝜏𝑤𝑤 = 𝜇𝜇ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
𝑦𝑦=0

.                                 

 

𝑅𝑅𝑅𝑅𝑥𝑥
−1/2𝑁𝑁𝜕𝜕𝑥𝑥 = − 

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
𝑘𝑘𝑛𝑛

𝜃𝜃′(0), 𝑅𝑅𝑅𝑅𝑥𝑥𝐶𝐶𝑛𝑛 =
𝜇𝜇ℎ𝑛𝑛𝑛𝑛

𝜇𝜇𝑛𝑛
[𝜉𝜉𝑓𝑓′′(0) + 𝑏𝑏

𝑎𝑎 𝑔𝑔′(0)],                

 

𝑞𝑞𝑤𝑤 = − 𝑘𝑘ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)

𝑦𝑦=0
,         𝜏𝜏𝑤𝑤 = 𝜇𝜇ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
𝑦𝑦=0

.                                 

 

𝑅𝑅𝑅𝑅𝑥𝑥
−1/2𝑁𝑁𝜕𝜕𝑥𝑥 = − 

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
𝑘𝑘𝑛𝑛

𝜃𝜃′(0), 𝑅𝑅𝑅𝑅𝑥𝑥𝐶𝐶𝑛𝑛 =
𝜇𝜇ℎ𝑛𝑛𝑛𝑛

𝜇𝜇𝑛𝑛
[𝜉𝜉𝑓𝑓′′(0) + 𝑏𝑏

𝑎𝑎 𝑔𝑔′(0)],                

 

𝑞𝑞𝑤𝑤 = − 𝑘𝑘ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)

𝑦𝑦=0
,         𝜏𝜏𝑤𝑤 = 𝜇𝜇ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
𝑦𝑦=0

.                                 

 

𝑅𝑅𝑅𝑅𝑥𝑥
−1/2𝑁𝑁𝜕𝜕𝑥𝑥 = − 

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
𝑘𝑘𝑛𝑛

𝜃𝜃′(0), 𝑅𝑅𝑅𝑅𝑥𝑥𝐶𝐶𝑛𝑛 =
𝜇𝜇ℎ𝑛𝑛𝑛𝑛

𝜇𝜇𝑛𝑛
[𝜉𝜉𝑓𝑓′′(0) + 𝑏𝑏

𝑎𝑎 𝑔𝑔′(0)],                

 

𝑞𝑞𝑤𝑤 = − 𝑘𝑘ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕)

𝑦𝑦=0
,         𝜏𝜏𝑤𝑤 = 𝜇𝜇ℎ𝑛𝑛𝑛𝑛 (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕)
𝑦𝑦=0

.                                 

 

𝑅𝑅𝑅𝑅𝑥𝑥
−1/2𝑁𝑁𝜕𝜕𝑥𝑥 = − 

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
𝑘𝑘𝑛𝑛

𝜃𝜃′(0), 𝑅𝑅𝑅𝑅𝑥𝑥𝐶𝐶𝑛𝑛 =
𝜇𝜇ℎ𝑛𝑛𝑛𝑛

𝜇𝜇𝑛𝑛
[𝜉𝜉𝑓𝑓′′(0) + 𝑏𝑏

𝑎𝑎 𝑔𝑔′(0)],                

 

𝑓𝑓(𝜂𝜂) = 0,    𝑓𝑓′(𝜂𝜂) = 𝜆𝜆,    𝑔𝑔(𝜂𝜂) = 0,    𝜃𝜃(𝜂𝜂) =  1   at    𝜂𝜂 = 0, 

𝑓𝑓′(𝜂𝜂) → 1,    𝑔𝑔′(𝜂𝜂) → 1,    𝜃𝜃(𝜂𝜂) → 0    as    𝜂𝜂 → ∞. 

 

TABLE 2. Numerical values of α for various values of  of ϕs1, ϕs2 and λ 

ϕs1 ϕs2 λ α

First solution Second solution

0 0 0 0.647900 -

0.1 0.005 -1.06 2.122097 9.713256

-1.04 2.061744 11.735493

-1.02 2.005328 16.236499
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STABILITY ANALYSIS OF SOLUTIONS

The stability and significance of the solutions can be 
ascertained through a stability analysis. Following the 
study by Kamal et al. (2019), Lok et al. (2018), and 
Naganthran et al. (2017), the analysis is performed by 
examining the present problem as unsteady or time-
dependent:

(22)

(23)

(24)

where t is for time. In the similarity solutions (11), τ, 
which is a dimensionless time variable, is introduced to 
form:

(25)

Substituting (25) into equations (22) to (24) results to the 
following equations:

FIGURE 2. Streamlines when λ = -1.02, α = β = 2.005328 and 𝑏𝑏
𝑎𝑎  =2

FIGURE 3. Streamlines when λ =1.02, α = β = -0.010530 and 𝑏𝑏𝑎𝑎  =2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = − 1

𝜚𝜚ℎ𝑛𝑛𝑛𝑛
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜇𝜇ℎ𝑛𝑛𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛

 ∇2𝜕𝜕,                                    

 
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = − 1

𝜚𝜚ℎ𝑛𝑛𝑛𝑛
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜇𝜇ℎ𝑛𝑛𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛

 ∇2𝑣𝑣,                                    

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
(𝜚𝜚𝜚𝜚𝑝𝑝)ℎ𝑛𝑛𝑛𝑛

 ∇2𝜕𝜕,                                                      

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = − 1

𝜚𝜚ℎ𝑛𝑛𝑛𝑛
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜇𝜇ℎ𝑛𝑛𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛

 ∇2𝜕𝜕,                                    

 
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = − 1

𝜚𝜚ℎ𝑛𝑛𝑛𝑛
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜇𝜇ℎ𝑛𝑛𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛

 ∇2𝑣𝑣,                                    

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
(𝜚𝜚𝜚𝜚𝑝𝑝)ℎ𝑛𝑛𝑛𝑛

 ∇2𝜕𝜕,                                                      

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = − 1

𝜚𝜚ℎ𝑛𝑛𝑛𝑛
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜇𝜇ℎ𝑛𝑛𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛

 ∇2𝜕𝜕,                                    

 
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝑣𝑣

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕 = − 1

𝜚𝜚ℎ𝑛𝑛𝑛𝑛
 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜇𝜇ℎ𝑛𝑛𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛

 ∇2𝑣𝑣,                                    

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕 + 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

𝑘𝑘ℎ𝑛𝑛𝑛𝑛
(𝜚𝜚𝜚𝜚𝑝𝑝)ℎ𝑛𝑛𝑛𝑛

 ∇2𝜕𝜕,                                                      

 

𝜓𝜓 = (𝑎𝑎 𝜈𝜈𝑓𝑓)1/2 𝑥𝑥 𝑓𝑓(𝜂𝜂, 𝜏𝜏) +
𝑏𝑏𝜈𝜈𝑓𝑓

𝑎𝑎 ∫ 𝑔𝑔(𝑠𝑠, 𝜏𝜏) 𝑑𝑑𝑠𝑠,     
𝜂𝜂

0
 

𝜃𝜃(𝜂𝜂, 𝜏𝜏) = 𝑇𝑇 − 𝑇𝑇∞
∆𝑇𝑇 ,      𝜂𝜂 = 𝑦𝑦 ( 𝑎𝑎

𝜈𝜈𝑓𝑓
)

1/2
,     𝜏𝜏 = 𝑎𝑎𝑎𝑎. 
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(26)

(27)

(28)

(29)

Next, the following time-dependent solutions are 
introduced to examine the stability of the solutions  f(η) 
= f0 (η), g(η) = g0 (η) and θ(η) = θ0 (η) (Weidman et al. 
2006):

(30)

with F(η,τ),G(η,τ) and H(η,τ) (i.e. smaller than f0 (η), g0 
(η)   and θ0 (η)) as the disturbances with growth or decay 
rate of  (unknown eigenvalue). The solutions in (30) are 
then substituted into (26) to (29) to form:

(31)

(32)

(33)

(34)

where the initial growth or decay of solutions (30) are 
given as  F(η) = F0 (η), G(η) = G0 (η) and H(η) = H0 (η) 
as τ = 0 . The above (31) to (34) will yield an infinite 
set of eigenvalues, ε1< ε2< ε3< ... (Awaludin et al. 2016), 
and the smallest eigenvalue, ε1 will determine the stability 
of the solutions f0(η), g0(η) and θ0(η). To obtain the 
possible range of the eigenvalues, one of the boundary 
conditions is relaxed as follows (Harris et al. 2009):

(35)

Then, equations (31) to (33) with the new boundary 
conditions (35) are solved numerically, and the smallest 
eigenvalue, ε1 is computed using the bvp4c solver. 

NUMERICAL SOLUTIONS

The boundary value problem (15) to (18) is solved using 
a finite-difference code in MATLAB called the bvp4c 
solver. This solver is a residual control based, adaptive 
mesh solver with the mesh selection and error control 
based on the residual of the continuous solution (Gökhan 
2011; Rosca et al. 2012). This solver uses the solinit    odefun   bcfun:  options  
function which contains the differential equations of 
the problem, the solinit    odefun   bcfun:  options  function which contains the 
boundary conditions of the problem, the solinit    odefun   bcfun:  options  
function that receives the initial guess, and the solinit    odefun   bcfun:  options  
function that holds the integration settings.

The following substitutions are made to rewrite 
the differential (15) to (17) as first-order differential 
equations:

(36)

(37)

(38) 

and equations (36) to (38) are coded into the solinit    odefun   bcfun:  options . 
Meanwhile, the following boundary conditions are coded 
into the solinit    odefun   bcfun:  options 

(39)

Initial guesses are then coded into the solinit    odefun   bcfun:  options  
function. Different initial guesses may end up with 
different solutions that result in several profiles 
which reach the far-field boundary conditions in (18) 
asymptotically (Dzulkifli et al. 2018). In this situation, 
it is said that multiple solutions exist in the boundary 
value problem. The first solution is decided in such a way 
that the solution is the first to reach the far-field or free 
stream conditions. 

The validation of the method used in this study 
is completed by comparing the obtained results with 
other published results, as shown in Table 3. The results 

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

 𝜕𝜕
3𝑓𝑓

𝜕𝜕𝜂𝜂3 + 𝑓𝑓 𝜕𝜕2𝑓𝑓
𝜕𝜕𝜂𝜂2 − (𝜕𝜕𝑓𝑓

𝜕𝜕𝜂𝜂)
2

− 𝜕𝜕2𝑓𝑓
𝜕𝜕𝜂𝜂𝜕𝜕𝜕𝜕 + 1 = 0,                                       

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

 𝜕𝜕
2𝑔𝑔

𝜕𝜕𝜂𝜂2 − 𝑔𝑔 𝜕𝜕𝑓𝑓
𝜕𝜕𝜂𝜂 + 𝑓𝑓 𝜕𝜕𝑔𝑔

𝜕𝜕𝜂𝜂 − 𝜕𝜕𝑔𝑔
𝜕𝜕𝜕𝜕 + 𝛼𝛼 − 𝛽𝛽 = 0,                                       

1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚𝐶𝐶𝑝𝑝)𝑛𝑛

𝜕𝜕2𝜃𝜃
𝜕𝜕𝜂𝜂2 + 𝑓𝑓 𝜕𝜕𝜃𝜃

𝜕𝜕𝜂𝜂 − 𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕 = 0,                                       

𝑓𝑓(0, 𝜕𝜕) = 0,   𝜕𝜕
𝜕𝜕𝜂𝜂 𝑓𝑓(0, 𝜕𝜕) =  𝜆𝜆,   𝑔𝑔(0, 𝜕𝜕) = 0,   𝜃𝜃(0, 𝜕𝜕) = 1 

𝜕𝜕
𝜕𝜕𝜂𝜂 𝑓𝑓(𝜂𝜂, 𝜕𝜕) → 1,   𝜕𝜕

𝜕𝜕𝜂𝜂 𝑔𝑔(𝜂𝜂, 𝜕𝜕) → 1,   𝜃𝜃(𝜂𝜂, 𝜕𝜕) → 0   as   𝜂𝜂 → ∞. 

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

 𝜕𝜕
3𝑓𝑓

𝜕𝜕𝜂𝜂3 + 𝑓𝑓 𝜕𝜕2𝑓𝑓
𝜕𝜕𝜂𝜂2 − (𝜕𝜕𝑓𝑓

𝜕𝜕𝜂𝜂)
2

− 𝜕𝜕2𝑓𝑓
𝜕𝜕𝜂𝜂𝜕𝜕𝜕𝜕 + 1 = 0,                                       

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

 𝜕𝜕
2𝑔𝑔

𝜕𝜕𝜂𝜂2 − 𝑔𝑔 𝜕𝜕𝑓𝑓
𝜕𝜕𝜂𝜂 + 𝑓𝑓 𝜕𝜕𝑔𝑔

𝜕𝜕𝜂𝜂 − 𝜕𝜕𝑔𝑔
𝜕𝜕𝜕𝜕 + 𝛼𝛼 − 𝛽𝛽 = 0,                                       

1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚𝐶𝐶𝑝𝑝)𝑛𝑛

𝜕𝜕2𝜃𝜃
𝜕𝜕𝜂𝜂2 + 𝑓𝑓 𝜕𝜕𝜃𝜃

𝜕𝜕𝜂𝜂 − 𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕 = 0,                                       

𝑓𝑓(0, 𝜕𝜕) = 0,   𝜕𝜕
𝜕𝜕𝜂𝜂 𝑓𝑓(0, 𝜕𝜕) =  𝜆𝜆,   𝑔𝑔(0, 𝜕𝜕) = 0,   𝜃𝜃(0, 𝜕𝜕) = 1 

𝜕𝜕
𝜕𝜕𝜂𝜂 𝑓𝑓(𝜂𝜂, 𝜕𝜕) → 1,   𝜕𝜕

𝜕𝜕𝜂𝜂 𝑔𝑔(𝜂𝜂, 𝜕𝜕) → 1,   𝜃𝜃(𝜂𝜂, 𝜕𝜕) → 0   as   𝜂𝜂 → ∞. 

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

 𝜕𝜕
3𝑓𝑓

𝜕𝜕𝜂𝜂3 + 𝑓𝑓 𝜕𝜕2𝑓𝑓
𝜕𝜕𝜂𝜂2 − (𝜕𝜕𝑓𝑓

𝜕𝜕𝜂𝜂)
2

− 𝜕𝜕2𝑓𝑓
𝜕𝜕𝜂𝜂𝜕𝜕𝜕𝜕 + 1 = 0,                                       

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

 𝜕𝜕
2𝑔𝑔

𝜕𝜕𝜂𝜂2 − 𝑔𝑔 𝜕𝜕𝑓𝑓
𝜕𝜕𝜂𝜂 + 𝑓𝑓 𝜕𝜕𝑔𝑔

𝜕𝜕𝜂𝜂 − 𝜕𝜕𝑔𝑔
𝜕𝜕𝜕𝜕 + 𝛼𝛼 − 𝛽𝛽 = 0,                                       

1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚𝐶𝐶𝑝𝑝)𝑛𝑛

𝜕𝜕2𝜃𝜃
𝜕𝜕𝜂𝜂2 + 𝑓𝑓 𝜕𝜕𝜃𝜃

𝜕𝜕𝜂𝜂 − 𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕 = 0,                                       

𝑓𝑓(0, 𝜕𝜕) = 0,   𝜕𝜕
𝜕𝜕𝜂𝜂 𝑓𝑓(0, 𝜕𝜕) =  𝜆𝜆,   𝑔𝑔(0, 𝜕𝜕) = 0,   𝜃𝜃(0, 𝜕𝜕) = 1 

𝜕𝜕
𝜕𝜕𝜂𝜂 𝑓𝑓(𝜂𝜂, 𝜕𝜕) → 1,   𝜕𝜕

𝜕𝜕𝜂𝜂 𝑔𝑔(𝜂𝜂, 𝜕𝜕) → 1,   𝜃𝜃(𝜂𝜂, 𝜕𝜕) → 0   as   𝜂𝜂 → ∞. 

𝑓𝑓(𝜂𝜂, 𝜏𝜏) = 𝑓𝑓0(𝜂𝜂) + 𝑒𝑒−𝜀𝜀𝜀𝜀𝐹𝐹(𝜂𝜂, 𝜏𝜏),         

                                          𝑔𝑔(𝜂𝜂, 𝜏𝜏) = 𝑔𝑔0(𝜂𝜂) + 𝑒𝑒−𝜀𝜀𝜀𝜀𝐺𝐺(𝜂𝜂, 𝜏𝜏),                                                             

𝜃𝜃(𝜂𝜂, 𝜏𝜏) = 𝜃𝜃0(𝜂𝜂) + 𝑒𝑒−𝜀𝜀𝜀𝜀𝐻𝐻(𝜂𝜂, 𝜏𝜏),       

 

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

𝐹𝐹0
′′′ + 𝑓𝑓0𝐹𝐹0

′′ + 𝐹𝐹0𝑓𝑓0
′′ − 2𝑓𝑓0

′𝐹𝐹0
′ + 𝜀𝜀𝐹𝐹0

′ = 0,                                  (31) 

𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

𝐺𝐺0
′′ − 𝑔𝑔0𝐹𝐹0

′ − 𝐺𝐺0𝑓𝑓0
′ + 𝑓𝑓0𝐺𝐺0

′ + 𝐹𝐹0𝑔𝑔0
′ + 𝜀𝜀𝐺𝐺0 = 0,                                 (32) 

1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚𝐶𝐶𝑝𝑝)𝑛𝑛

𝐻𝐻0
′′ + 𝑓𝑓0𝐻𝐻0

′ + 𝐹𝐹0𝜃𝜃0
′ + 𝜀𝜀𝐻𝐻0 = 0,                                 (33) 

𝐹𝐹0(0) = 0,   𝐹𝐹0
′(0) = 0,   𝐺𝐺0(0) = 0,   𝐻𝐻0(0) = 0, 

𝐹𝐹0
′(𝜂𝜂) → 0,      𝐺𝐺0

′ (𝜂𝜂) → 0,   𝐻𝐻0(𝜂𝜂) → 0   as   𝜂𝜂 → ∞,    
 

𝐹𝐹0(0) = 0,   𝐹𝐹0
′(0) = 0,   𝐹𝐹0

′′(0) = 1,    𝐺𝐺0(0) = 0,   𝐻𝐻0 = 0,     
𝐺𝐺0

′ (𝜂𝜂) → 0,   𝐻𝐻0(𝜂𝜂) → 0   as   𝜂𝜂 → ∞.                                      
 

 

𝑓𝑓 = 𝑦𝑦(1),  𝑓𝑓′ = 𝑦𝑦(1)′ = 𝑦𝑦(2), 𝑓𝑓′′ = 𝑦𝑦(2)′ = 𝑦𝑦(3), 𝑓𝑓′′′ = 𝑦𝑦(3)′ = [−𝑦𝑦(1)𝑦𝑦(3)−1+(𝑦𝑦(2))2]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,  

𝑔𝑔 = 𝑦𝑦(4), 𝑔𝑔′ = 𝑦𝑦(4)′ = 𝑦𝑦(5), 𝑔𝑔′′ = 𝑦𝑦(5)′ = [−𝑦𝑦(1)𝑦𝑦(5)+𝑦𝑦(2)𝑦𝑦(4)−𝛼𝛼+𝛽𝛽]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,       

𝜃𝜃 = 𝑦𝑦(6), 𝜃𝜃′ = 𝑦𝑦(6)′ = 𝑦𝑦(7), 𝜃𝜃′′ = 𝑦𝑦(7)′ = [−𝑦𝑦(1)𝑦𝑦(7)]

  [ 1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚 𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚 𝐶𝐶𝑝𝑝)𝑛𝑛

]
,   

 

 

𝑓𝑓 = 𝑦𝑦(1),  𝑓𝑓′ = 𝑦𝑦(1)′ = 𝑦𝑦(2), 𝑓𝑓′′ = 𝑦𝑦(2)′ = 𝑦𝑦(3), 𝑓𝑓′′′ = 𝑦𝑦(3)′ = [−𝑦𝑦(1)𝑦𝑦(3)−1+(𝑦𝑦(2))2]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,  

𝑔𝑔 = 𝑦𝑦(4), 𝑔𝑔′ = 𝑦𝑦(4)′ = 𝑦𝑦(5), 𝑔𝑔′′ = 𝑦𝑦(5)′ = [−𝑦𝑦(1)𝑦𝑦(5)+𝑦𝑦(2)𝑦𝑦(4)−𝛼𝛼+𝛽𝛽]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,       

𝜃𝜃 = 𝑦𝑦(6), 𝜃𝜃′ = 𝑦𝑦(6)′ = 𝑦𝑦(7), 𝜃𝜃′′ = 𝑦𝑦(7)′ = [−𝑦𝑦(1)𝑦𝑦(7)]

  [ 1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚 𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚 𝐶𝐶𝑝𝑝)𝑛𝑛

]
,   

 

 

𝑓𝑓 = 𝑦𝑦(1),  𝑓𝑓′ = 𝑦𝑦(1)′ = 𝑦𝑦(2), 𝑓𝑓′′ = 𝑦𝑦(2)′ = 𝑦𝑦(3), 𝑓𝑓′′′ = 𝑦𝑦(3)′ = [−𝑦𝑦(1)𝑦𝑦(3)−1+(𝑦𝑦(2))2]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,  

𝑔𝑔 = 𝑦𝑦(4), 𝑔𝑔′ = 𝑦𝑦(4)′ = 𝑦𝑦(5), 𝑔𝑔′′ = 𝑦𝑦(5)′ = [−𝑦𝑦(1)𝑦𝑦(5)+𝑦𝑦(2)𝑦𝑦(4)−𝛼𝛼+𝛽𝛽]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,       

𝜃𝜃 = 𝑦𝑦(6), 𝜃𝜃′ = 𝑦𝑦(6)′ = 𝑦𝑦(7), 𝜃𝜃′′ = 𝑦𝑦(7)′ = [−𝑦𝑦(1)𝑦𝑦(7)]

  [ 1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚 𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚 𝐶𝐶𝑝𝑝)𝑛𝑛

]
,   

 

 

𝑓𝑓 = 𝑦𝑦(1),  𝑓𝑓′ = 𝑦𝑦(1)′ = 𝑦𝑦(2), 𝑓𝑓′′ = 𝑦𝑦(2)′ = 𝑦𝑦(3), 𝑓𝑓′′′ = 𝑦𝑦(3)′ = [−𝑦𝑦(1)𝑦𝑦(3)−1+(𝑦𝑦(2))2]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,  

𝑔𝑔 = 𝑦𝑦(4), 𝑔𝑔′ = 𝑦𝑦(4)′ = 𝑦𝑦(5), 𝑔𝑔′′ = 𝑦𝑦(5)′ = [−𝑦𝑦(1)𝑦𝑦(5)+𝑦𝑦(2)𝑦𝑦(4)−𝛼𝛼+𝛽𝛽]

[
𝜇𝜇ℎ𝑛𝑛𝑛𝑛/𝜇𝜇𝑛𝑛
𝜚𝜚ℎ𝑛𝑛𝑛𝑛/𝜚𝜚𝑛𝑛

]
,       

𝜃𝜃 = 𝑦𝑦(6), 𝜃𝜃′ = 𝑦𝑦(6)′ = 𝑦𝑦(7), 𝜃𝜃′′ = 𝑦𝑦(7)′ = [−𝑦𝑦(1)𝑦𝑦(7)]

  [ 1
𝑃𝑃𝑃𝑃

𝑘𝑘ℎ𝑛𝑛𝑛𝑛/𝑘𝑘𝑛𝑛
(𝜚𝜚 𝐶𝐶𝑝𝑝)ℎ𝑛𝑛𝑛𝑛/(𝜚𝜚 𝐶𝐶𝑝𝑝)𝑛𝑛

]
,   

 

𝑦𝑦𝑦𝑦(1) = 0,    𝑦𝑦𝑦𝑦(2) = 𝜆𝜆,    𝑦𝑦𝑦𝑦(4) = 0,    𝑦𝑦𝑦𝑦(6) =  1, 

𝑦𝑦𝑦𝑦(2) → 1,    𝑦𝑦𝑦𝑦(5) → 1,    𝑦𝑦𝑦𝑦(6) → 0    as    𝜂𝜂 → ∞. 
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are found to be in good agreement; thus, verifying the 
method used. Also, the accuracy of the numerical results 
is confirmed when the profiles approach the far-field 
boundary conditions in (18) asymptotically. 

Meanwhile, the following substitutions are made 
to rewrite (31) to (33) and boundary conditions (35) as 
a system of first-order differential equations for stability 
analysis:

𝐹𝐹0 = 𝑦𝑦(1),                𝐺𝐺0
′ = 𝑦𝑦(5),  

𝐹𝐹0
′ = 𝑦𝑦(2),                𝐻𝐻0 = 𝑦𝑦(6),   

𝐹𝐹0
′′ = 𝑦𝑦(3),               𝐻𝐻0

′ = 𝑦𝑦(7),           
𝐺𝐺0 = 𝑦𝑦(4),  
 

𝑓𝑓0 = 𝑠𝑠(1),           𝑔𝑔0
′ = 𝑠𝑠(5),  

𝑓𝑓0
′ = 𝑠𝑠(2),           𝜃𝜃0 = 𝑠𝑠(6),  

𝑓𝑓0
′′ = 𝑠𝑠(3),          𝜃𝜃0

′ = 𝑠𝑠(7).  
𝑔𝑔0 = 𝑠𝑠(4),  
 

 
TABLE 3. Comparison of f''(0) and g'(0) values when ϕs1 = ϕs2= 0, λ = 0 and  α = β 

Present study Rahman et al. (2016) Li et al. (2009)

f''(0) g'(0) f''(0) g'(0) f''(0) g'(0)

1.232588 0.607950 1.23258764 0.60794998 1.23259 0.60777

RESULTS AND DISCUSSION

The results are displayed in the form of tables and 
graphs. The effects of various parameters, such as 
the nanoparticle volume fraction of Al2O3, ϕs1, the 
nanoparticle volume fraction of Cu, ϕs1 and the shrinking 
parameter, λ, on the flow and thermal fields of the fluid 
are analyzed and discussed.

The identification of a stable solution is made 
through a stability analysis. Waini et al. (2019) has carried 
out this analysis to the dual solutions obtained in the flow 
of aqueous Al2O3-Cu hybrid nanofluid. It was discovered 
that the upper branch solution (i.e. the first solution) is 
stable, while the lower branch solution (i.e. the second 
solution) is unstable. Still, to ascertain the stability of 
solutions obtained in the present problem, the stability 
analysis is performed, and the results are tabulated in Table 
4. From the table, the values of ε1 are positive for the first 
solution but negative for the second solution. Khashi’ie 
et al. (2019) stated that the negative values of ε1 indicate 
an unstable flow caused by the presence of disturbance, 
whereas the positive values of ε1 imply a stable flow. 
Hence, it is affirmed that the first solution is stable, while 
the second solution is unstable in the present problem. 
The first solution is more significant to this problem and 
realizable in practice. Nonetheless, the second solution, 
which is one of the solutions for the boundary problem, 
is still mathematically meaningful. Therefore, the second 
solution will be shown but not discussed throughout this 
section.

The plots of  RexCf and Rex
-1/2Nux and  for Cu-Al2O3/

H2O hybrid nanofluid are presented in Figure 4. Based 
on these figures, a single solution is obtained at a critical 
point, λc. The solution does not exist when λ < λc and 
dual solutions are found when λc < λ < -1. The increase 
in ϕs2 reduces the skin friction coefficient of the hybrid 
nanofluid for the first solution, while the opposite behavior 
is observed for the second solution. Meanwhile, the 
value of Rex

-1/2Nux for the first solution is enhanced by 
the increase in ϕs2, as shown in Figure 4(b). The thermal 
conductivity of the hybrid nanofluid is raised by the 
increase in the nanoparticle volume fraction of Cu (Devi 
& Devi 2017). However, the local Nusselt number for the 
second solution is seen to be not affected by the changes 
in ϕs2.

The physical quantities of interest (i.e., RexCf 
and Rex

-1/2Nux) for Cu-Al2O3/H2O hybrid nanofluid and 
Cu-H2O nanofluid are tabulated in Table 5. Based on 
the table, the values of RexCf are positive that indicates 
the hybrid nanofluid exerted a drag force on the sheet. 
Meanwhile, the positive values of Rex

-1/2Nux imply the 
transfer of heat from the hot sheet to the hybrid nanofluid. 
It is noticed that the increase in the magnitude of the 
shrinking parameter reduces the values of RexCf and 
Rex

-1/2Nux. Also, the skin friction coefficient of the hybrid 
nanofluid is less than the nanofluid, but the local Nusselt 
number is higher than the nanofluid. On average, the 
addition of Al2O3 nanoparticles into the Cu-H2O nanofluid 
reduces the skin friction coefficient by 37.753%, while the 
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local Nusselt number is enhanced by 4.798%. Therefore, 
the rate of heat transfer in hybrid nanofluid is higher than 
in the nanofluid.

Then, the variation of orthogonal flow skin friction, 
f''(0), temperature gradient, θ'(0) and oblique flow skin 
friction, g'(0) with various values of the shrinking 
parameter are presented in Tables 6 and 7, respectively. 
From Tables 6 and 7, the values of f''(0) and g'(0) for the 
first solution decrease when the magnitude of λ increases. 
However, the opposite trend is observed for the second 
solution of  f''(0), while the second solution of g'(0)  
remains constant as |λ| increases. Meanwhile, the first 
solution of θ'(0) increases with |λ|.  As the free parameter, 
β can change the shear flow, the effects of this parameter 
on g'(0) are analyzed. The values of g'(0)  for both solutions 
are found to be the highest when β < α. Hence, increasing 
the value of the free parameter decreases the oblique 
flow skin friction.

The effects of the shrinking parameter on the 
dimensionless velocities of the hybrid nanofluid are 
illustrated in Figure 5(a) and 5(b). In these figures, the 
increase in |λ| causes the orthogonal velocity, f'(η) and 
the oblique velocity, g'(η) profiles of the first solution to 
decrease, in contrast to the second solution. According 
to Rahman et al. (2016), the shrinking of a sheet will build 
pressure downstream, which dampens the driving force 
of the fluid. Consequently, reduces the velocity profiles 
and velocity gradients, as shown by the first solution in 
Figure 5(a) and 5(b), and also in Tables 6 and 7.

Next, the effect of λ on the hybrid nanofluid 
temperature is illustrated in Figure 5(c). From this figure, 
the increment in the shrinking parameter value raises the 
temperature profile of Cu-Al2O3/H2O hybrid nanofluid 
for the first solution, while the opposite occurred for the 
second solution. The same observation is recorded by 
Rahman et al. (2016) for nanofluid flow past a shrinking 
sheet. The positive value of the local Nusselt number 
when λ < 0, shown in Table 5, indicates that heat is 
transferred from the hot shrinking sheet to the hybrid 
nanofluid. The temperature of the hybrid nanofluid is the 

highest in the region near the sheet (η = 0). As the value of 
η increases, the hybrid nanofluid temperature decreases 
until it reaches the free stream condition, as obtained in 
Figure 5(c). 

The water-based hybrid Cu-Al2O3 nanofluid is 
compared with the Cu-H2O nanofluid in terms of velocity 
and temperature. The orthogonal velocity and oblique 
velocity profiles are shown in Figure 6(a) and 6(b). The 
figure shows that the velocity profiles of the water-based 
hybrid Cu-Al2O3 nanofluid and Cu-H2O nanofluid 
increase with the increasing value of ϕs2. Meanwhile, the 
nanofluid is seen to has a smaller boundary layer thickness 
when compared with the hybrid nanofluid. The velocity 
gradients (i.e. f''(0) and g'(0)) of the nanofluid are higher 
than the hybrid nanofluid. Therefore, Cu-H2O nanofluid 
has greater skin friction than the water-based hybrid 
Cu-Al2O3 nanofluid, as obtained in Table 5. Due to the 
increasing awareness of energy conservation, fluids with 
low skin friction are preferable in industrial processes. 
Therefore, the water-based hybrid Cu-Al2O3 nanofluid is 
more efficient than the Cu-H2O nanofluid for industrial 
purposes.

Next, the temperature profiles of water-based hybrid 
Cu-Al2O3 nanofluid and Cu-H2O nanofluid are presented 
in Figure 6(c). When λ < 0, the temperature profiles for 
both solutions diminish as the value of ϕs2 increases. At 
some distance away from the surface (i.e., η > 0), the hybrid 
nanofluid has a larger thermal boundary layer thickness 
than the nanofluid. Thus, the temperature gradient, θ'(0) 
of the water-based hybrid Cu-Al2O3 nanofluid is smaller 
than the temperature gradient of Cu-H2O nanofluid. 

However, the value of Rex
-1/2Nux  𝑅𝑅𝑅𝑅𝑥𝑥

−1/2𝑁𝑁𝑁𝑁𝑥𝑥 (= − 
𝑘𝑘ℎ𝑛𝑛𝑛𝑛

𝑘𝑘𝑛𝑛
𝜃𝜃′(0)) 

calculated in Table 5 shows that the heat flux of the 
hybrid nanofluid is higher than the nanofluid. This result 
is obtained due to the higher thermal conductivity of the 
water-based hybrid Cu-Al2O3 nanofluid, compared to the 
Cu-H2O nanofluid (Devi & Devi 2017). Therefore, the 
water-based hybrid Cu-Al2O3 nanofluid has better heat 
transfer performance than the Cu-H2O nanofluid.

TABLE 4. Smallest eigenvalue, when ε1 when ϕs1= 0.1, ϕs2 = 0.005, Pr = 6.135 and α = β

λ ε1

First solution Second solution
-1.22 0.432876 -0.398561

-1.23 0.339787 -0.318486

-1.24 0.212052 -0.203639

-1.246 0.062157 -0.061418

-1.2465 0.022977 -0.022875
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TABLE 5. Values of RexCf and Rex
-1/2Nux when ϕs2 = 0.005, Pr = 6.135 and α = β

λ ϕs1 RexCf Rex
-1/2Nux

First solution Second solution First solution Second solution

-1.02 0.1 1.261823 0.001507 0.095546 -0.000000
-1.04 1.227343 0.005971 0.078968 -0.000000

-1.06 1.190686 0.013390 0.063839 -0.000000

-1.02 0.0 1.650129 0.001974 0.040106 0.000000

-1.04 1.605100 0.007819 0.031023 0.000000

-1.06 1.557224 0.017533 0.023284 -0.000000

 

 
a) 𝑅𝑅𝑅𝑅𝑥𝑥𝐶𝐶𝑓𝑓 

 

 
b) 𝑅𝑅𝑅𝑅𝑥𝑥−1/2𝑁𝑁𝑁𝑁𝑥𝑥 

 
 

FIGURE 4. Plots of RexCf and Rex
-1/2Nux for various values of  λ and ϕs2 

TABLE 6. Values of f''(0) and θ'(0) when ϕs1= 0.1, ϕs2 = 0.005, Pr = 6.135 and α = β 

λ f''(0) θ'(0)
First solution Second solution First solution Second solution

-1.02 1.314753 0.001986 -0.071474 -0.000000

-1.04 1.289007 0.007868 -0.059073 -0.000000

-1.06 1.260724 0.017644 -0.047756 -0.000000
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a) 𝑓𝑓′(𝜂𝜂) 

 

 
b) 𝑔𝑔′(𝜂𝜂) 

 
c)   𝜃𝜃(𝜂𝜂) 

 

TABLE 7. Values of  g'(0) when ϕs1 = 0.1, ϕs2= 0.005, α = 0.647900 and Pr = 6.135 

λ β
g'(0)

First solution Second solution

-1.02

-1 2.392979 34.678952

0.174013 0.000000

1 -0.300105 -7.409710

-1.04

-1 2.398357 18.039309

0.164168 -0.000000

1 -0.313202 -3.854385

-1.06

-1 2.405391 12.439380

0.154157 0.000000

1 -0.326856 -2.657871
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FIGURE 5. Profile plots of dimensionless velocities and temperature for 
various values of λ

 
a) 𝑓𝑓′(𝜂𝜂) 

 

 
b) 𝑔𝑔′(𝜂𝜂) 

 
c)   𝜃𝜃(𝜂𝜂) 

 

 
a) 𝑓𝑓′(𝜂𝜂) 

 

 
b) 𝑔𝑔′(𝜂𝜂) 

 

 
c)   𝜃𝜃(𝜂𝜂) 
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CONCLUSION

The oblique stagnation-point flow of Cu-Al2O3/H2O 
hybrid nanofluid over a shrinking surface is studied. The 
numerical computations result in dual solutions, and the 
stable solution is decided through a stability analysis. The 
first solution is found to be stable and thus realizable in 
real applications, for example, in transpiration cooling. The 
velocity profiles of Cu-Al2O3/H2O hybrid nanofluid 
decrease while the temperature profile increases when 
the shrinking parameter increases. Compared to Cu-
H2O nanofluid, the Cu-Al2O3/H2O hybrid nanofluid 
shows improvements in hydrodynamic and heat transfer 
properties, where the skin friction reduces, and the heat 
flux increases.
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