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Wavelet Characterizations for Investigating Nonlinear Oscillators
(Pencirian Gelombang Kecil untuk Mengakaji Pengayun Tak Linear)

MOHD AFTAR ABU BAKAR, NORATIQAH MOHD ARIFF*, ANDREW V. METCALFE & DAVID A. GREEN

ABSTRACT

This study investigates the wavelet-based system identification capabilities on determining the system nonlinearity based 
on the system impulse response function. Wavelet estimates of the instantaneous envelopes and instantaneous frequency 
are used to plot the system backbone curve. This wavelet estimate is then used to estimate the values of the parameter for 
the system. Two weakly nonlinear oscillators, which are the Duffing and the Van der Pol oscillators, have been analyzed 
using this wavelet approach. A case study based on a model of an oscillating flap wave energy converter (OFWEC) 
was also discussed in this study. Based on the results, it was shown that this technique is recommended for nonlinear 
system identification provided the impulse response of the system can be captured. This technique is also suitable when 
the system’s form is unknown and for estimating the instantaneous frequency even when the impulse responses were 
polluted with noise.
Keywords: Nonlinear oscillator; system identification; wavelet; wave energy converter

ABSTRAK

Penyelidikan ini telah mengkaji kemampuan pengecaman sistem berasaskan gelombang kecil untuk menentukan 
ketaklinearan sesuatu sistem berdasarkan fungsi sambutan dedenyut sistem tersebut. Anggaran sampul seketika dan 
frekuensi seketika oleh penganggar gelombang kecil digunakan untuk memplot lengkung tulang belakang sistem tersebut. 
Penganggar gelombang kecil ini digunakan untuk menganggarkan nilai parameter bagi sistem tersebut. Dua jenis 
pengayun tak linear, iaitu pengayun Duffing dan Van der Pol, telah dianalisis menggunakan kaedah ini. Satu kajian 
kes berdasarkan model penukar tenaga ombak jenis pengayun berkibas (OFWEC) turut dibincangkan dalam kajian ini. 
Berdasarkan keputusan yang diperoleh, didapati bahawa teknik ini sesuai digunakan untuk pengecaman sistem tak 
linear apabila sambutan dedenyut sistem tersebut boleh diperoleh. Teknik ini juga sesuai digunakan apabila bentuk 
sesuatu sistem itu tidak diketahui dan juga untuk menganggarkan frekuensi serta-merta walaupun dedenyut sistem 
dicemari dengan hingar.
Kata kunci: Gelombang kecil; pengayun tak linear; pengecaman sistem; penukar tenaga ombak 

INTRODUCTION

The purpose of system identification is to determine a 
mathematical relation between the system’s observed 
behaviours or responses (outputs) and the external 
influences or forces on the system (inputs). The system 
can be described using the mathematical models since 
the dynamic behaviour of a system or process is observed 
in either the time domain or the frequency domain. 
Identification of a nonlinear system usually involves the 
estimation of instantaneous frequencies and amplitudes 
of the system. The instantaneous modal parameters, such 
as the stiffness and damping, can then be estimated using 
the estimated instantaneous frequency and amplitudes. 

In the past, Fourier transform has been the primary 
tool for analysis and identification of the linear and 
nonlinear dynamic system. However, it has some 
limitations in analyzing time-variant models and 
parameters since it is conducted in the frequency domain. 
Deep learning techniques such as the Long Short-term 
Memory (LSTM), based on the Recursive Neural Network, 
have gained some attention for system identification 
(Wang 2017; Woo et al. 2018).  

Wavelet transforms (WT) have a potential advantage 
of displaying frequency composition over time. Wavelet 
has been used for system identification especially for 
structural health monitoring (Perez-Ramirez et al. 2017; 
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Pirboudaghi et al. 2018), control systems (Moradi et al. 
2019; Swaidan & Hussin 2016) and identifying modal 
parameters (Lin & Lin 2020; Zhang et al. 2019). Since 
wavelet is localized in the time-scale domain, certain 
information can be accessed directly and immediately 
from the wavelet representation of a time series 
(Mohammed et al. 2020). This multi-scale feature of 
wavelet transforms can validate a dynamic model from a 
continuous wavelet transform of the process observations 
and model time series data (McCusker et al. 2010). 

Several studies have used wavelet for system 
identification to analyse ship roll and heave-roll coupling 
(Yu et al. 2006). Pernot and Lamarque (2001) have used 
wavelet to compute parametrically excited dynamic 
systems’ transient responses. Meanwhile, Gouttebroze 
and Lardies (2001) used the wavelet identification 
technique to identify structural systems’ characteristics 
by analyzing the amplitude and phase of a wavelet 
transform for vibration data. Bakar et al. (2012) have 
shown that wavelet can estimate the transfer function 
for linear systems with noisy signals. Other wavelets 
applications include solving differential equations, 
turbulence analysis, image processing, and signal 
processing (Hardle et al. 1998).

The usual wavelet approach to identify and estimate 
a nonlinear oscillator’s parameters is by estimating 
the wavelet ridge and the wavelet backbone from the 
impulse response (IRF) (Londoño et al. 2015; Spina et 
al. 1996; Staszewski 1998). The wavelet backbone is a 
plot of instantaneous frequency against the amplitude. 
The wavelet backbone is just a straight line for a 
single degree of freedom linear oscillator since the 
instantaneous frequency does not vary with amplitude. 
The main limitation of this approach is it may not 
be feasible to obtain the impulse response outside of 
laboratory conditions. Therefore, a segment averaging 
technique, known as the random decrement technique 
(RDT), has been proposed to obtain an estimate of an 
impulse response from a record of the response to 
arbitrary forcing (Kijewski & Kareem 2003; Ruzzene 
et al. 1997). However, the segment averaging technique 
is only suitable for a linear system, since a nonlinear 
system’s response is chaotic. 

This paper aims to investigate how wavelet 
characterization can be applied to estimate the parameters 
of nonlinear oscillators. This study shows that wavelet 
ridge methods can be used to identify particular types 
of nonlinearity. Three types of nonlinear oscillators 
systems were analyzed, which are the Duffing, the Van 
der Pol, and a system that allows for both inertial forces 

and drag forces on cylinders subject to wave forces. We 
refer to the last-mentioned system as a Morison system 
because it is typically modelled with Morison’s equation 
(Bakar et al. 2014; Folley et al. 2007; Whittaker & 
Folley 2012). Comparison between this wavelet-based 
system identification technique with the Hilbert’s based 
technique for cases with and without noise was also 
presented in this study. 

This paper is arranged in the following order. In the 
next section, we give the general theory on the wavelet 
identification technique for nonlinear oscillators. The 
third section discusses the application on two weakly 
nonlinear oscillators. The case study is then discussed 
and ended with conclusions and discussions.

NONLINEAR SYSTEM IDENTIFICATION BY WAVELET 
RIDGE WAVELET TRANSFORM

The continuous wavelet transform (CWT) of a signal x(t)
at time b and scale a can be defined as
	

	 (1)

 where 
	

  	 (2)

is the wavelet function. Here, ( ),xT a b  are known as the 
wavelet coefficients, which provide information about 
the signal, x(t), at scale a and around time b. A 
wavelet function must satisfy the conditions:
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Wavelet transforms preserves the energy of the 
process and it can be shown that
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and ( )ωΨ  is the Fourier transform of ( )ψ ⋅ , provided 
0 Cψ< < ∞ (wavelet admissible condition). The inverse 
CWT is defined as
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Here we use the Morlet wavelet which is defined as
		

(7)

where σ  and ω  are parameters that control the size of 
the wavelet envelope and oscillations, respectively. The 
Morlet wavelet is a modulated Gaussian function and its 
integral is approximately zero for 0 5σω > . The Fourier 
transform of the Morlet wavelet is 
		

(8)

which provides good localization in the frequency 
domain (Carmona et al. 1997; Staszewski 1998).  

In the CWT, the coefficients have the dimension of 
seconds. However, the frequency corresponding to scale 
a  is given by the relationship
		

(9)

where fa  is the frequency related to scale a; 0
2cf
ω
π=  is 

the wavelet central frequency; a is the scale; and ∆  is the 
signal sampling interval (Staszewski 1998).

INSTANTANEOUS MODAL PARAMETERS

The impulse response of an oscillating system, y (t) , can 
be converted to its analytic signal form by applying the 
Hilbert transform (Feldman 1994). The instantaneous 
modal parameters, the instantaneous envelope, and 
instantaneous phase, can be extracted from the analytic 
signal. For a linear system, the instantaneous natural 
frequency and instantaneous damping coefficient, 
which determine the phase, are constant over time. 
However, if the system has nonlinear stiffness, the 
natural frequency will vary over time since it depends on 
the amplitude of vibrations. Using the backbone curve, 
which is the plot of the signal instantaneous envelope 
on the instantaneous frequency, the nonlinearity can 
be identified. Nonlinearity in the damping can also be 
identified from the instantaneous envelope.
	 Assume a general autonomous SDOF weakly 
nonlinear oscillator
	

(10)

where ( )D y  and ( )S y  are the dissipative and restoring 
force function, respectively. The instantaneous envelope, 

( )A t , and instantaneous frequency, ( )tω , can be 
approximated using the Krylov and Bogoliubov method 
(Nayfeh 2008). Different types of nonlinear oscillator 
have unique forms for their modal parameters (Feldman 
1994).  

WAVELET RIDGE

Carmona et al. (1997) introduced a technique to detect 
ridges in the modulus of the CWT. A wavelet ridge is the 
localization of the signal in the time-frequency domain, 
which is vital in nonlinearity detection and useful in 
analyzing noisy signals (Carmona et al. 1998, 1997). 
Staszewski (1997) estimated the damping ratio of the 
impulse response for linear multi-degree of freedom 
systems by using the wavelet ridges and skeletons and 
applied this technique to the identification of nonlinear 
MDOF systems (Staszewski 2000, 1998). Meanwhile, 
Londoño et al. (2015) proposed an alternative technique 
to identify a nonlinear system’s backbone curves from 
an impulse response.

The wavelet ridge at time t  can be obtained by 
identifying the global maxima of the CWT modulus. If 
there is more than one ridge, the local maxima of the CWT 
modulus can be used. However, it will be problematic 
to identify the local maxima representing the actual 
wavelet ridge if there is noise in the signal and if the 
frequency of each of the ridges is close to one another. 

For a signal with relatively low noise, the 
differentiation technique such as Newton’s method can 
be used to identify the wavelet ridge. However, this 
approach will not be suitable for the case of significant 
noise or when the identified ridge is not a smooth 
function.

The original signal (in the time domain) can be 
reconstructed based on the wavelet skeleton (Carmona 
et al. 1998). However, information on the CWT on the 
ridge was required, which is computationally expensive, 
especially if there are many ridges. However, it is still 
more efficient compared to reconstructing the original 
signal by using all the original wavelet coefficients.
   

SYSTEM IDENTIFICATION TECHNIQUE BASED ON 
WAVELET RIDGE

Let the impulse response of the oscillating system, y(t), 
be written as
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From the impulse response, the wavelet ridges can 
be identified from its CWT. The oscillating system’s 
instantaneous envelope and the instantaneous frequency 
can then be computed from the wavelet skeleton and 
wavelet ridge, respectively. The CWT of the impulse 
response can be computed using numerical integration 
with the ‘Rwave’ (Carmona 2018) package in R.

Following Londoño et al. (2015), the system’s 
damping can be estimated from the slope of the semi-
logarithmic plot of the instantaneous envelope against 
time. The plot of the instantaneous frequency against 
the instantaneous envelope will produce the system 
backbone curve. The system’s nonlinearity can then 
be identified and categorized using the estimated 
backbone curve and the estimated damping ratios 
(Londoño et al. 2015; Staszewski 1998). Given that we 
know the type of system, we can use these instantaneous 
characteristics to estimate the system parameters (refer 
to Table 1 in Spina et al. (1996)).

APPLICATION OF THE WAVELET TECHNIQUE

We perform the wavelet method to identify the Duffing 
and Van der Pol oscillators’ parameters from the impulse 
response. We demonstrate that this method can also be 
used with a wave tank input (Bakar et al. 2012) provided 
the input and the output signals are measured. Although 
the wavelet method requires an impulse response, it may 
be possible to estimate this from a system response to 
an arbitrary input by the random decrement technique 
(RDT) (Kijewski & Kareem 2003; Ruzzene et al. 1997).

The RDT averages the responses of the system 
following a trigger event, such as the displacement 
being within a small distance of some specified value. 

It is necessary to consider whether the initial velocity 
is positive or negative by noting whether the next 
displacement is greater than or less than the specified 
value. The RDT is theoretically justified for linear 
systems but is at best an approximation for a nonlinear 
system precisely because the systems are nonlinear. In 
the Duffing and Van der Pol oscillators cases, the RDT did 
not converge, presumably because the forced response is 
chaotic (Strogatz 2000).

DUFFING OSCILLATOR

The Duffing system has been selected as an example 
of a system with nonlinear stiffness. The SDOF Duffing 
system can be modelled as
		

(12)

where ty  is the response (output); tx  is the force (input); 
m is the inertial mass; c is the damping coefficient; 
k  is the stiffness coefficient and 3k  is the nonlinear 
feedback cubic stiffness coefficient. For this example, we 
have selected 1m = , 0.005c = , 1k =  and 3 100k = . By 
discretizing the continuous-time model using the central 
differences (Bakar et al. 2013), the impulse response of 
this Duffing system can be approximated by
		

(13)

Then, the impulse response was simulated using the 
Runge-Kutta 4th order method such as plotted in Figure 1.
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FIGURE 1.  Time series of the impulse response (IRF) for the Duffing system



	 	 3409

It can be seen from Figure 2, that the CWT of the 
impulse response can capture the change of the impulse 
response’s frequency over time while the spectral 
analysis only averages the frequencies. The estimated 
instantaneous frequency from the wavelet ridge is 
plotted in Figure 3(a) together with that estimated with 

the Hilbert transform and the theoretical instantaneous 
frequency. Both the wavelet and Hilbert estimation of 
the instantaneous envelope for this Duffing system fits 
the impulse response’s peak, such as shown in Figure 
3(b). Moreover, the reconstructed impulse response from 
the wavelet skeleton is similar to the original impulse 
response (Figure 4).

FIGURE 3.  Wavelet estimation for the Duffing system with an impulse input

FIGURE 2.  Spectral analysis and CWT of the impulse response (IRF) for the Duffing system



3410	

We use the slope of the tangent of the semi-
logarithmic plot of instantaneous envelope against time 
in Figure 5 to estimate the damping coefficient of this 
Duffing system. The estimate of the damping coefficient 
is ˆ 0.0046c = , while the theoretical value from the model 
is 0.005. We estimated both k  and 3k  from the estimated 

instantaneous frequency and envelopes of the impulse 
response by fitting them to the approximated instantaneous 
frequency function from Table 1 in Spina et al. (1996). The 
estimated ratio, 3k k  is 89.056, while the ratio from 
the model, is equal to 100.

FIGURE 4.  Theoretical (full line) and estimated (dashed line) the 
impulse response (IRF) for the Duffing system at 100 to 150 second

FIGURE 5. The semi-logarithmic plot of the instantaneous envelopes against time 
for the Duffing system

FIGURE 6. Theoretical and estimated backbone curves for the Duffing system
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It can be seen that for the system with nonlinear 
stiffness, the plot of wavelet estimated backbone 
in Figure 6 is not a straight line. This is similar to the 
theoretical backbone and the estimated backbone using 
the Hilbert transform. This shows that the frequency 
depends on the response amplitude.

VAN DER POL OSCILLATOR

The Van der Pol system has been selected as an example 
of a system with nonlinear damping. The SDOF Van der 
Pol model can be written as

(14)
		
where ty  is the response (output); tx  is the force 
(input); and µ  is the nonlinear damping coefficient. For 
this example, we have selected 0.05µ = . Similar to the 
previous oscillator, the impulse response of this Van der 
Pol system (Figure 7 & 8) has been simulated by using the 
Runge-Kutta method. 
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FIGURE 7.  The impulse response (IRF) time series for the Van der Pol system

FIGURE 8.  Spectral analysis and CWT of the impulse response (IRF) for the Van der Pol system

The wavelet estimated instantaneous frequency in 
Figure 9(a) shows that this Van der Pol system’s frequency 
does not change over time. The wavelet estimated 
instantaneous envelope does capture the peak of the 
impulse response (Figure 9(b)) and the reconstructed 
impulse response, based on the wavelet skeleton, does 
fit the original impulse response (Figure 10).

For this Van der Pol system, the damping varies over 
time. The damping is geometrically equivalent to the 

slope of the tangent of the curve in the semi-logarithmic 
plot of the instantaneous envelope against time as in 
Figure 11, and it can be seen to increase to a threshold 
value over time. Based on the Van der Pol system’s 
wavelet estimated backbone curve (Figure 12), we can 
say that the response amplitude does not depend on the 
frequency.

We use the Nelder-Mead method (Olsson & Nelson 
1975) to find the estimated value of the nonlinear damping 



3412	

coefficient, µ , from the impulse response’s estimated 
envelopes. The estimated value, µ̂ , is found to be 0.0499, 

FIGURE 9.  Wavelet estimation for the Van der Pol system with an impulse input

FIGURE 10.  Theoretical (full line) and estimated (dashed line) the impulse 
response (IRF) for the Van der Pol system from 100 to 150 second

which is close to 0.05, the theoretical value from the Van 
der Pol model.
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CASE STUDY

In this case study, we apply this technique to identify 
an oscillating flap wave energy converter (OFWEC) 
dynamic system. An OFWEC, such as shown in Figure 
13, is an SDOF dynamic system, but with a surge mode of 
vibration in response to the wave surge force. According 
to Folley et al. (2007), assuming the motion of the flap is 
sinusoidal, the nonlinear dynamic system for an OFWEC 
can be modelled as
		

(15)

where Ft  is the wave surge force at time t ; tθ is the 
angular rotation of the body at time t; I is the body 

FIGURE 11.  The semi-logarithmic plot of the instantaneous envelopes 
against times for the Van der Pol system

FIGURE 12.  Theoretical and estimated backbone curves for the Van der Pol system

moment of inertia; Ia is the added moment of inertia; pk  
is the pitch stiffness of the body; Λ  is the power take-
off damping coefficient; rB  is the radiation damping 
coefficient and vB  is the viscous damping coefficient. 
Equation 15 is equivalent to the second-order differential 
equation of a linear mass-spring system with an 
additional nonlinear term for the torque induced by 
vortex-shedding, which is usually approximated by 
the instantaneous velocity squared. This instantaneous 
velocity squared is known as the drag term from the 
Morison equation (Morison et al. 1950), resulting in 
the model being considered a nonlinear model. This 
nonlinear damping causes the response’s amplitude to 
be slightly reduced (Bakar et al. 2014).
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For this study, we assume that the design of the 
flap is a cylinder with a two-meter diameter hinged 

to the seabed, such as shown in Figure 14. Assume that 
the value of the parameters in (15) are 1am I I= + = , 

0.01rc B= Λ + = , 2pk k= =  and 0.1vB = .

FIGURE 13.  Oyster, oscillating flap WEC (Whittaker & Folley 2012)

FIGURE 14.  Simple cylinder oscillating flap WEC

The system’s impulse response such as in Figure 
15 is simulated by using the fourth-order Runge Kutta 
method, with the initial displacement of 0.1. The impulse 

response is simulated for 500 seconds, with the sampling 
interval of 0.1 second. First, we transformed the impulse 
response using the CWT (Figure 16).

FIGURE 15.  Time series of the impulse response (IRF) function for the 
OFWEC system with an impulse input
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The estimated instantaneous frequency from the 
wavelet ridge for the OFWEC system in Figure 17(a) is 
constant over time. The estimated instantaneous envelope 
for this system also fits the impulse response’s peak (Figure 

17(b)). From the wavelet skeleton, we reconstruct the 
impulse response and based on Figure 18, where it is shown 
that the estimation fits the theoretical impulse response of 
the OFWEC.

FIGURE 16.  CWT of the impulse response (IRF) for the OFWEC 
system with an impulse input

FIGURE 17.  Wavelet estimation for the OFWEC system with an impulse input

FIGURE 18.  Theoretical impulse response (full line) and estimated 
impulse response (dashed line) for the OFWEC system with an impulse 

input from 100 to 150 seconds
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From Figure 19, we can see that the damping of 
the OFWEC system depends on time. This is because the 
semi-logarithmic plot of the instantaneous envelope is 
not quite linear. Hence, the estimate for damping at time 

t  can only be found by calculating the tangent slope of the 
semi-logarithmic plot at time t. Based on the estimated 
backbone curve of this OFWEC system in Figure 20, 
we can say that, for the OFWEC system, the response 
amplitude does not depend on the frequency.

The RDT does capture the impulse response of 
this system when the wave tank input is used. Figure 
21 shows that the theoretical impulse response is quite 
similar to the one captured by the RDT for the OFWEC 
systems with a wave tank input. It is shown in Figure 22 
that the estimated backbone curve for the OFWEC system 

FIGURE 19.  The semi-logarithmic plot of the instantaneous envelopes 
against times for the OFWEC system with an impulse input

FIGURE 20.  Estimated backbone curves for the OFWEC system with 
an impulse input

with tank input which is almost similar to the estimated 
backbone curve for the OFWEC system with impulse 
input show in Figure 20.

NONLINEAR SYSTEMS WITH NOISE

Table 1 shows the comparison between the Wavelet 
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and Hilbert estimation of instantaneous envelope and 
frequency. For this comparison, the impulse response 
was polluted with three different levels of white noise 
where the standard deviations are 0.005 (low noise), 
0.01 (medium noise) and 0.025 (high noise) for each 
level, respectively. The comparison between both 

FIGURE 21.  Impulse response (IRF) captured by the RDT for the 
OFWEC system with a wave tank input

FIGURE 22.  Estimated backbone curves for the OFWEC system with a 
wave tank input

It is shown that the wavelet approach was better 
in estimating the instantaneous frequency compared 
to the Hilbert approach when the impulse response was 
either polluted or not by the noise, except when the 

approaches when the impulse response was not polluted 
by noise was also provided in Table 1. The root-mean-
square error (RMSE) was used to assess each approach’s 
performance in estimating those instantaneous modal 
parameters, where lower RMSE values pointed out that 
the estimates are closer to the actual values. 

impulse response of the OFWEC system was polluted by 
high-level noise. Meanwhile, the Hilbert approach was 
better on estimating the instantaneous envelope, except 
when noises polluted the Duffing system’s impulse 
response.
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TABLE 1.  RMSE for Wavelet (WT) and Hilbert (HT) estimates of the instantaneous modal parameters for Duffing, Van der Pol 
and OFWEC systems

System RMSE
No noise Low noise, s=0.005 Medium noise, s=0.01 High noise, s=0.025

WT HT WT HT WT HT WT HT

Duffing

Instantaneous 
Envelope

0.00460 0.00351 0.00484 0.00651 0.00517 0.01132 0.00653 0.02638

Instantaneous 
Frequency

0.00268 0.00563 0.00268 0.00600 0.00272 0.01458 0.19132 0.21992

Van der Pol

Instantaneous 
Envelope

0.07097 0.04316 0.07098 0.04362 0.07099 0.04466 0.07106 0.05086

Instantaneous 
Frequency

0.00101 0.01086 0.00101 0.01072 0.00104 0.01061 0.00108 0.01061

OFWEC 
(case 
study)

Instantaneous 
Envelope

0.03652 0.03619 0.03651 0.03595 0.03640 0.03504 0.03292 0.03082

Instantaneous 
Frequency

0.00150 0.00614 0.01570 0.01795 0.09638 0.25450 1.14803 0.54056

CONCLUSION AND DISCUSSION

This study has shown that the wavelet ridge can be 
used to identify nonlinearities in oscillating systems. It 
can also be used to categorize the type of nonlinearity 
of the system. Using the information on the system’s 
instantaneous envelope and instantaneous frequency, 
which are estimated from the wavelet ridge and wavelet 
skeleton, the parameters such as the damping ratio and 
the nonlinear coefficients can be estimated. Based on the 
information found from these estimates, the parameters 
of the nonlinear system, such as the damping ratio and 
the nonlinear coefficients can be approximated.

In the cases of both the Duffing and the Van der 
Pol weakly nonlinear oscillators, the wavelet approach 
capable of identifying the system’s parameter given that 
we know the type of that system. However, the wavelet 
approach is not suitable to estimate the heavily nonlinear 
system’s parameters even though it can determine 
the nonlinearity of the systems. This is based on our 
investigation, where the wave tank signals were used 
as the input force on the oscillators. The results show 
that the RDT does not converge and so does not lead 
to capturing the impulse response of the Duffing and 
the Van der Pol oscillators. Presumably, this is because 

both nonlinear oscillators’ system response to forcing is 
chaotic (Strogatz 2000). 

For the case study, the RDT does capture the impulse 
response for the OFWEC, and there is no suggestion of 
a chaotic response. When the impulse response was 
polluted with noise, the wavelet approach was better in 
estimating the instantaneous frequency than the Hilbert 
approach, except for the OFWEC system with high-level 
noise. However, the Hilbert approach was better at 
estimating the instantaneous envelope compared to the 
wavelet technique, except for the Duffing system.

Overall, the wavelet method does provide useful 
insight into the process through the wavelet ridge and 
is recommended for nonlinear system identification, 
especially if the RDT can be used to capture the impulse 
response. This study had shown that the wavelet approach 
is useful when the form of the system is unknown and 
have better accuracy for estimating the instantaneous 
frequency even when the impulse responses were 
polluted with noise.
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