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The Transmission Dynamic of the COVID 19 Outbreak: A Predictive Dashboard
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ABSTRACT

COVID 19 outbreak gives a great impact worldwide. The disaster of this pandemic has resulted in a large number of 
human lives being lost. As all countries implemented quarantine and social distancing, the great lockdown all over the 
world lead to multiple crises including health, economy, financial, and collapse in industrial and educational activities. 
Movement Control Order (MCO) and social distancing which have been implemented as control measures in Malaysia 
also affected many sectors. The landscape now has successfully reduced the number of infected people. However, from 
the economic point of view, the Retail Group Malaysia (RGM) has projected the country’s retail industry suffers a 
negative growth rate for the first time in 22 years. If the epidemic continues, society will reach an impasse, a time when 
the lockdown will become more than some of them can tolerate. As recognized by the World Health Organization (WHO), 
modelling the outbreak based on the prior input data is more appropriate than the ‘risk of bias’ for decision-makers. 
Thus, this research is conducted to model the outbreak of the disease using the susceptible-infected-recovery-death 
(SIRD) compartmental model accompanying with the varying infection rate due to changes in MCO measures. The model 
assumes under the unavailability of the vaccine, recovered people can be reinfected. The epidemic parameters and 
reproduction numbers are estimated and fitted from the transmission model to the actual data using the Monte Carlo 
Markov Chain (MCMC) of Metropolis-Hasting. The model is solved using a numerical algorithm of the Runge-Kutta 
method. The predictive dashboard of a graphical user interface (GUI) is developed, hence monitoring and predicting the 
outbreak under the control measures of the two different types of MCO scenarios (which are called constant and alternate 
scenarios) can be performed. GUI for the dynamic transmission of the COVID 19 provides insight for the future outbreak, 
hence may help the respective stakeholders to propose the best policy of a new norm for all sectors. From the GUI, we 
can see that, when no or loose MCO is implemented or compliance of the public to the COVID 19 standard operating 
procedure (SOP), the infected case will increase rapidly up to 7.5 million. With strict MCO regulation or public obedient 
to the SOP, the infected case will decrease rapidly, but even after a long period of strict regulation, once the quarantine 
is stopped, the infected case will rise again. An alternative MCO scenario is suggested where a cyclic pattern of strict 
and loose MCO regulation is upheld, and it shows to flatten the curve while allow periods of less restricted lifestyle. This 
can be one of the alternatives to balance the life and livelihood. 
Keywords: COVID 19; modelling; Monte Carlo Markov Chain; reproduction number; Runge-Kutta

ABSTRAK

Wabak COVID 19 memberi kesan yang besar kepada seluruh dunia. Kemusnahan daripada wabak ini telah mengakibatkan 
banyak kematian. Semua negara melaksanakan kuarantin, penjarakan sosial dan penutupan negara di seluruh dunia 
yang akhirnya menyebabkan pelbagai krisis termasuk kesihatan, ekonomi, kewangan dan kelumpuhan sektor industri 
serta pendidikan. Perintah Kawalan Pergerakan (MCO) dan penjarakan sosial yang telah dilaksanakan sebagai 
langkah kawalan di Malaysia juga mempengaruhi banyak sektor. Landskap kini berjaya mengurangkan bilangan yang 
dijangkiti. Namun, dari sudut ekonomi, Kumpulan Peruncitan Malaysia (RGM) telah mengunjurkan industri runcit 
negara kini mengalami kadar pertumbuhan negatif untuk pertama kalinya dalam tempoh 22 tahun. Sekiranya wabak ini 
berlanjutan, masyarakat akan menemui jalan buntu dengan penutupan pelbagai sektor tidak lagi dapat ditoleransi oleh 
mereka. Seperti yang diakui oleh Organisasi Kesihatan Sedunia (WHO), pemodelan berdasarkan input data yang ada 
adalah lebih baik daripada ‘risiko pincangan’ oleh pembuat keputusan tanpa menggunakan model ramalan. Oleh itu, 
penyelidikan ini dilakukan untuk memodelkan epidemik penyakit ini menggunakan model SIRD dengan kadar jangkitan 
yang berbeza-beza susulan daripada perubahan MCO. Model ini mengandaikan dengan ketiadaan vaksin, orang 
yang pulih dapat dijangkiti semula. Parameter epidemik dan nombor reproduksi dianggar dan disuaikan dengan data 
sebenar menggunakan kaedah Monte Carlo Markov Chain (MCMC) Metropolis-Hasting. Penyelesaian model dihitung 
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menggunakan algoritma kaedah berangka Runge-Kutta. Antara muka pengguna grafikal (GUI) dibangunkan bagi 
peramalan epidemik mengikut dua situasi MCO yang berbeza (situasi tetap dan gantian). GUI bagi transmisi dinamik 
COVID 19 memberikan gambaran berkaitan keadaan wabak pada masa hadapan, seterusnya dapat membantu pihak 
berkepentingan untuk mengusulkan kaedah norma baharu yang terbaik bagi semua sektor. Daripada GUI, apabila 
tiada atau hampir tiada penguatkuasaan MCO atau ketidakpatuhan rakyat kepada prosedur operasi piawai (SOP), kes 
keberjangkitan meningkat sehingga mencecah 7.5 juta kes. Apabila MCO dikuatkuasakan secara ketat atau kepatuhan 
rakyat kepada SOP, kes akan menurun secara mendadak, tetapi walaupun setelah menjalankan kuarantin selama tempoh 
yang panjang, sejurus selepas kuarantin diberhentikan, kes akan meningkat sekali lagi. Suatu cadangan diketengahkan 
iaitu kekerasan MCO dilakukan secara berfasa berulang alik. Menggunakan kaedah ini, kes positif dapat diratakan 
manakala wujud tempoh dengan cara hidup yang kurang terikat dibenarkan. Ini boleh menjadi suatu alternatif bagi 
mengimbangi kehidupan dan punca pendapatan.
Kata kunci: COVID 19; Monte Carlo Markov Chain; nombor reproduksi; pemodelan; Runge-Kutta

INTRODUCTION

Since the coronavirus disease 2019 (COVID 19) outbreak 
in Wuhan, China in December 2019, exported cases to 
other parts of China and many countries were recorded 
globally in which the infected persons have a history of 
travel to Wuhan. By January 31, global confirmed cases 
had reached 9,776 with a total number of deaths of 213, 
and the WHO declared the outbreak as a public health 
emergency of international concern (Weston & Frieman 
2020; WHO 2020). The global death toll had climbed 
to 811 by February 9, greater than the total death toll 
of the 2003 severe acute respiratory syndrome (SARS) 
epidemic. On March 11, WHO declared the COVID 19 
outbreak a worldwide pandemic, when 114 countries 
and all continents except Antarctica have reported cases. 
Globally, the confirmed cases emerge periodically and by 
August 2021 have affected 221 countries and territories, 
with the numbers of confirmed cases are 213,752,662 
people and the total of deaths is 4,459,381. By 27 August 
2021, Malaysia had recorded a cumulative of 1,616,244 
cases with the total deaths are 14,818 (0.917%). As the 
government and the Ministry of Health (MoH) in Malaysia 
and other impacted countries respond to the outbreaks by 
implementing possible countermeasures to control the 
transmission of the disease, it is crucial for modelers to 
predict the severity of the epidemic. It was recognized 
by WHO 2020, mathematical models that are timely, play 
an important role in informing evidence-based decisions. 
Information based on the predictive models can help the 
public health agencies in making the decisions. It is crucial 
to predict the total number of infected, total deaths, and 
the basic reproduction number and to predict the time 
course of the epidemic, the arrival of its peak time, and 
total duration (Weston & Frieman 2020). In 2021, more 

comprehensive information is required to understand the 
status and epidemiology of the outbreak. How we respond 
this year will be critical in influencing the trajectory 
of the national epidemics. Estimation of changes over 
time provides insight into the epidemiological situation 
and identifies whether outbreak control measures are 
having a measurable effect (Adam et al. 2020). Several 
modelers and researchers around the world have reported 
estimations and predictions for the COVID-19 epidemic 
in journal publications or on websites, for an incomplete 
list see Anastassopoulou et al. (2020), Azar et al. (2020), 
Bai et al. (2020), Hao and Yan (2020), Imai et al. (2020), 
Rajesh and Adikari (2020), Read et al. (2020), Tang et al. 
(2020a), Weston and Frieman (2020), Leung et al. (2020), 
You et al. (2020), Zhang et al. (2020) and Zhuang et al. 
(2020). Modelling the spread of COVID 19 can be in the 
form of deterministic and stochastic (probabilistic) models. 
It is known that when dealing with a large population, 
deterministic or compartmental mathematical model have 
often been used to explain the disease outbreaks. The 
deterministic or compartmental models of Susceptible-
Exposed-Infected-Recovery (SEIR), Susceptible Infected-
Recovery (SIR), and Susceptible-Infected-Recovery-
Death (SIRD) are amongst the prominent models of the 
disease outbreak. Weston and Frieman (2020) perform 
model calibration and model selection using Bayesian 
inference (BIC) and Akaike Information Criterion (AIC), 
respectively, for the COVID 19 epidemic in Wuhan city 
after the lockdown on January 23, 2020. Using AIC 
model selection, they conclude that for the information 
containing the confirmed case data of COVID 19 in Wuhan 
city, the SIR model shows better performance than an SEIR 
model. Nevertheless, the models do not consider the death 
state and the effect of randomness. It is crucial to consider 
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the death state in the model since death is part of the real 
scenario of the COVID 19 outbreak globally. Discrete-
time modelling using the SIRD model was conducted by 
Anastassopoulou et al. (2020). The analysis is based on 
the publicly available data of the new confirmed daily 
cases reported for the Hubei province from January 11 
until February 10, 2020. The basic reproduction number is 
estimated from the SIRD model. However, the SIRD model 
studied by Anastassopoulou et al. (2020) neglects many 
factors that are crucial in the dynamic of the disease such 
as the effect of the incubation period in the transmission 
dynamics, the heterogeneous contacts transmission 
networks, the countermeasure has been taken to combat 
the epidemic and the population demographics (age 
and people who had health problems). SIR model of the 
spread of novel coronavirus that considers both age and 
social contact structure for COVID 19 outbreak in India 
was proposed by Rajesh and Adhikari (2020). This model 
although neglecting the death state, it has significant 
information for the assessment of the differential impact 
of social distancing measures. Tang et al. (2020a, 2020b) 
proposed a deterministic compartmental model of SEIR 
modification based on the clinical progression of the 
disease, epidemiological status of the individuals, and 
intervention measures. Estimation of the basic reproduction 
number for the prevention policy was performed based on 
2019-novelcoronavirus (2019-nCoV) cases data in Wuhan 
China, until 22 January 2020 (prior to the lockdown of 
Wuhan city) by Tang et al. (2020a). The mean control of 
reproduction number was estimated to be as high as 6.47 
(95% CI 5.71-7.23) which is consistent with the expert 
opinion that the virus has gone through at least three to 

four generations of transmission during this period of study 
(Tang et al. 2020a). Under countermeasure of locked down 
Wuhan city on 23rd January 2020, Tang et al. (2020b) use 
the same model and refit the model to the data available 
until 29th January 2020. The daily reproduction number 
has been re-estimated and has already fallen below one, 
which shows the effectiveness of the control strategy. As 
recognized by WHO no single ‘one-size-fits-all’ approach 
is appropriate to assess the quality of modelling studies. 
However, the concept of the ‘credibility’ of the model, 
which takes the conceptualization of the problem, model 
structure, input data, different dimensions of uncertainty, 
as well as transparency and validation into account, is 
more appropriate than ‘risk of bias’. Thus, during this 
outbreak, modelling is one of the appropriate approaches 
to strengthen public health decision-making. However, 
for the policymaker, the predictive model needs to be 
embedded behind the user-friendly dashboard so that they 
are able to predict and monitor the outbreak along with 
the implemented control measures. Although potentially 
useful, no predictive dashboard has been proposed to the 
extent of author’s knowledge. This research develops a 
predictive dashboard of the Malaysia COVID 19 outbreak 
using the SIRD model by assuming that the recovered 
people can be reinfected under the unavailability of the 
vaccine. The algorithm for model simulation is formulated 
based on two different scenarios of MCO (constant and 
alternate) control measures so that the policymaker is 
able to predict the future outbreak under the intervention 
measure implemented.  The predictive dashboard is able 
to predict the basic reproduction number based on the 
MCO starting and lifting date choose by the policymaker.

FIGURE 1. Diagram of SIRD ModelFigure 1. Diagram of SIRD Model
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MATHEMATICAL MODEL

EPIDEMIOLOGICAL MODEL

The model is developed based on the compartmental 
diagram as depicted in Figure 1.

S is referred to as the stage of the susceptible person 
at a time, t . At all times when the spreading starts, 
all Malaysian populations become susceptible. COVID 
19 spreading amongst susceptible persons is highly 
influenced by the percentage rate of the public to obey 
the MCO. The rate of spreading will be severed if there 
is inconsistent respect and abide by the MCO rules. The 
number of susceptible persons at the initial time is the 
difference between the Malaysian population and the 
infected person (assuming that there is no birth and 
death in the system, the total population, N is constant 
and initially only one person is infected). Therefore, the 
susceptible person at the initial time 0 ,t 0S  is 1N −  
and the initial infected person is 0( ) 1I t = . Initially, no 
recovery, R and death, D cases in this stage and at the 
initial time, 0 0( ) ( ) 0R t D t= = . Once the infected person 
is recognized, contact tracing to the infected person will 
be investigated. This person is categorized as the individual 
under investigation (PUI) and will be quarantined. PUI also 

refers to the person who has an acute respiratory infection 
with/without fever, being traveled to, or resided in a 
foreign country within 14 days before the onset of the 
illness, close contact in 14 days before illness onset with 
the confirmed case of COVID 19 and attended an event 
associated with known COVID 19 outbreaks. Once PUI 
has been tested positive (symptomatic/asymptomatic) 
of COVID 19, they will be isolated and treated as an 
infected person, I(t). Then, once recovered, they will be 
transformed into a stage of recovery person, R(t). Death is 
also a part of the real scenario of the COVID 19 outbreak; 
hence the stage of death is included in the model. The 
death person at a time t, D(t) is those who are infected 
and die due to this outbreak. SIRD model describing the 
outbreak is in (1) and the description of the notation 
presented in Table 1.

(1)

TABLE 1. Parameters and description used in the SIRD model

Parameters Description

Variables

S Number of susceptible persons at time t

I Number of the infected person and hospitalized to get treatment at time t

R Number of the recovery person at time t

D Number of the death at time t

t time in days ( t  = 1, 2, 3, …)

Transition rate parameters 

/ Nα Rate of the susceptible person become infected (isolate and treat)

β The recovery rate of the infected person

γ The fatality rate of the infected person

δ The rate of immune lost

Constant

N Number of the population (Malaysian population is approximately 32.37 million)

dS IS R
dt N
dI IS I I
dt N
dR I R
dt
dD I
dt

 

  

 



= − +

= − −

= −

=
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The assumptions in modelling the SIRD model. 
First, the net population growth due to natural birth 
and death rate is constant, and Second, individuals are 
assigned to one of the following disease states at one 
time - Susceptible (S) or infected (I) or Recovery (R) or 
Death (D) .

CONSERVATION OF POPULATION AND EQUILIBRIUM 

For proving the conservation of population as stated in 
the first assumption, using the total number of populations 
N S I R D= + + + , we have
	

(2)
	
By substituting (1) into (2),
		

(3)

Therefore, there is no change in the total population N, 
showing the conservation of total population.
To find the equilibrium points of the state variables, the 
rate of change in system in (1) is equated to 0. Based on 
the death rate equation in (1)

(4)
		

*I is substituted into the recovered equation,
	

(5)

	
*I  is substituted into the infected equation,

		

(6)

Using (4) - (6) and total number of populations,
	

(7)
	

Thus, the equilibrium points are ( ) ( ),0,0,N N N
β γ β γ
α α

 + +
− 

 
This shows during equilibrium, the disease will die out as 
the infected cases will reach the equilibrium point, I* = 0.

From Equation (4), if the term 1β γ
α
+

> , the value for *S N>  

which is not possible since S is bounded from 0 to N. 

Therefore, the equilibrium ( ) ( ),0,0,N N N
β γ β γ
α α

 + +
− 

 
 

only true for value 1β γ
α
+

< . 
For 1β γ

α
+

> , the initial condition of  I0 and S0 are substituted 
into the infected equation of the system in (1) such that
		

(8)

Let, 0 1I =  and 0S N≈ , 0 / 1S N ≈ , Equation (8) is written 
as

(9)
		
and from 1β γ

α
+

> , ( ) 0α β γ− + <  which then imply

(10)

Hence, removed the first infected case, leaving * 0I = , 
and the equilibrium point for 1β γ

α
+

> is ( ),0,0,0N .

It is observed that From Figure 2, the infected 
case initially increases rapidly at t below 35. Due to 
this, susceptible population decreases rapidly, and both 
recovered, and death cases rises. This is caused by the 
high infectivity of the epidemic. As the susceptible 
cases drop to 40% of the original population, we can 
observe that the infected cases drop even with the same 
infectivity rate. This shows even in high infectivity 
epidemic, low numbers of the susceptible class will lead 
to the extinction of virus. Similar result by artificially 
reducing the susceptible class by quarantine, and social 
distancing will give a similar result. This shows in high 
infectivity epidemic, social distancing and quarantine is 
a major factor in decreasing the disease spread.

dN dS dI dR dD
dt dt dt dt dt

= + + +  (1) 
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PARAMETER ESTIMATION

The epidemiological parameters are estimated using 
MCMC of the Metropolis-Hasting algorithm. The 
algorithm associated with a target density, π  requires 

the choice of a conditional density q  also called proposal. 
The transition from the value of the Markov Chain (X (t)) 
at the time t  and its value at time 1t +  is computed using 
the following algorithm.

Algorithm		   Metropolis-Hastings

Given X (t) = x (t) Generate ( )( )t
tY q y x�

 
Take

	                               with probability
                                              with probability

where

	

FIGURE 2. Numerical simulation of first equilibrium, 
, , , 0.3,0.1,0.05,0.05α β γ δ =

( )
( )

( )
( 1)

( ) ( )

,
1 ,

t
tt t

t t
t

x YYX
x x Y

ρ
ρ

+
= 

−
( )
( )

( )
( 1)

( ) ( )

,
1 ,

t
tt t

t t
t

x YYX
x x Y

ρ
ρ

+
= 

−

( ) ( )
( )

( )min, ,1
( )

q x yyx y
x q y x

πρ
π

  =  
  





~

The parameters are estimated from the COVID 
19 Malaysia data obtained from http://covid-19.moh.
gov.my, 25 January 2020 to 24 January 2021. The 
epidemiological parameters are presented in Table 2. 
The model is designed to handle varying infection rate 

for both past simulation and predicted simulation, where 
the values for past simulation are obtained from the 
parameter estimation and for predicted are obtained from 
values assigned by the user. 
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TABLE 2. Estimation of the epidemiological parameter based on MCO control measures in Malaysia

Starting Date End Date Infection rate, Recovery rate, Immune Lost rate, Fatality rate, 

24/1/2020 13/2/2020 0.1191200 0.0199990 0.00139640 0.00017965

14/2/2020 25/2/2020 0.0592960 0.1463800 0.01232200 0.00556370

26/2/2020 14/3/2020 0.2386200 0.0162440 1.0547×10-7 0.00073866

15/3/2020 25/3/2020 0.2277500 0.0247450 0.01892400 0.00231060

26/3/2020 07/4/2020 0.0864070 0.0390170 0.00625460 0.00296470

08/4/2020 28/5/2020 0.0504110 0.0660400 0.00519710 0.00063741

29/5/2020 09/6/2020 0.0647300 0.0546540 0.00350820 0.00207740

10/6/2020 09/7/2020 0.0334590 0.1283000 0.00025825 0.00166760

10/7/2020 18/9/2020 0.0874380 0.0551310 1.0021×10-7 0.00052585

19/9/2020 30/10/2020 0.1691900 0.0878360 0.00517200 0.00089812

31/10/2020 23/11/2020 0.1287900 0.1166700 0.01551100 0.00033274

24/11/2020 09/12/2020 0.1567200 0.1807500 0.01412000 0.00027618

10/12/2020 04/1/2021 0.1016000 0.0707640 1.5601×10-5 0.00032804

05/1/2021 10/1/2021 0.2261300 0.1911100 0.03531600 0.00032800

11/1/2021 23/1/2021 0.2750000 0.2485000 0.06195000 2.2972×10-7

α β γ δ

PROGRAM FEATURES OF THE PREDICTIVE DASHBOARD

The program code for the predictive dashboard is written 
in Python. The model was simulated using the fourth-
order Runge-Kutta method and the parameter is fitted 
via MCMC of the Metropolis-Hastings method. The 
data and simulated results are displayed in the form of 
number of active cases, cumulative death, and cumulative 
recovery cases. For future approximations, infection 
rate approximations are estimated from the historical 
data and can guide the user in choosing the values 
based on the MCO control measures. The recovery, 
fatality, and immune lost rate for future approximation 
are considered equal to the average rate and calculated 
from the data and assumed to be constant throughout 
the approximations. This first option simulates constant 

scenario MCO measures throughout time. The weakness 
of this approximation is it does not reflect the varying 
strictness of MCO measures and initiating and closing of 
quarantine that was previously done by the Malaysian 
Government. The second option, the alternating scenario 
MCO measures simulates if the MCO is repeatedly opened 
and closed for a certain duration. The infection rate in 
the period of MCO and out of MCO period as well as 
the duration are set as input in GUI. The third option, 
the structured MCO, uses the same value of infection 
rate as the second option but the date of initiating and 
ending the MCO is set by the user. This option reflects 
the MCO planning the best among the three options. The 
program features of the predictive dashboard algorithm 
are depicted in Figure 3 and the dashboard is illustrated 
in Figure 4.
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FIGURE 3. Flowchart of the algorithm
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The value for the real time reproduction number of 
R  is calculated for a specific day chosen by the user. The 
approach used in calculating R  for a specific day is by 
taking a ratio of the active case population for the date to 
the active population for the previous 14 days, written as
		

(11)

RESULTS AND DISCUSSION

This section presents the predictive measures of the 
outbreak under different types of MCO control measures. 
Malaysia has implemented various types of partial 
lockdown including movement control order (MCO), 
conditional movement control order (CMCO), and 
recovery movement control order (RMCO). The prediction 
is performed based on three different types of MCO 
which are loose MCO (RMCO), strict MCO (CMCO) with 
different time of lifting date, and alternate MCO (14 days 
MCO and 14 days no MCO, then repeatedly continue 
till the curve is flattened). Alternate MCO is a choice 
of the adopted control measure to balance the lives and 

livelihoods. The result is discussed in terms of the trend 
of active cases, recovered cases, and death cases and the 
effects of the MCO.

SIMULATION RESULT UNDER LOOSE MCO

The first situation is simulated by assuming loose MCO 
measures are taken and after the MCO lifting date, all 
sectors can resume under standard operating procedure 
(SOP) of the social distancing, checking the temperatures, 
and wearing masks. Some gatherings are allowed such 
as meetings, seminars, weddings, religious gatherings, 
and social activities with a limited number of guests. 
The sectors under tourism, wellness, and foot massage 
centers and spas are allowed to operate. Historically, 
similar regulations have been conducted and the 
observed infection rate ranges from 0.12879 (31 October 
2020 - 23 November 2020) to 0.22613 (5 January 2021 
- 10 January 2021), assuming the difference is due to 
public compliance toward the SOP. The infection rate of 
0.16 is chosen for this simulation. For the input of the 
GUI, this simulation in Figure 5 is achieved by using 
‘Choose option = 1, Infection rate = 0.16’.

FIGURE 4. Graphical User Interface

 

( )
( ) 1 ln /14

( 14)
I t

R t
I t

  = +   −  
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FIGURE 5. Result using constant MCO option and infection rate of 0.16

Figure 5 shows the active cases increase rapidly 
and peaked when reached about 7.5 million active cases 
from January 2021 until late April 2021 and then declined 
until September 2021. This is caused by high recovered 
cases at the time. Even with the low immune loss, the 
recovered started declining and the reinfection could 
be seen will occur in October 2021 as the active case 
increase. This method is not viable as the active case 
peaked at 7.5 million infected at once which is far more 
than any countries’ medical infrastructure could handle 
and the total fatality cases will be significantly higher 
than approximated which is already approximated at 0.3 
million in early 2022.

SIMULATION RESULT UNDER STRICT MCO

This simulated results in this section are performed 
assuming the constant strict MCO measures are taken 
for a certain period. In this strict MCO, schools and 
universities are closed. Some essential economic 
activities are allowed but they are limited to shorter 
operating hours with a limited number of workers. 
Interstate travel is not permitted. Historically, a similar 
restriction is conducted and the result for the infection 
rate are 0.033459 (10 June 2020 – 9 July 2020) and 
0.059296 (14 February 2020 – 25 February 2020). We 
can replicate the result by inserting ‘Choose option = 
1, infection rate = 0.033459’.

FIGURE 6. Result using constant MCO option, infection rate 0.033459
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FIGURE 7. Result using strict MCO, infection rate 0.033459 with exit date 1/7/2021

Figure 6 as expected shows the active case decreases 
rapidly. Though, this option needs an exit strategy as 
the strict MCO measures for a long period will lead to 
the collapse in economy, starvation among the poverty, 
and depression among the public. In real life situation, 
prolonged strict MCO will cause the public’s compliance 
to drop, thus, making the infection rate higher than 
simulated. Thus, the lifting date needs to be planned. 
Next subsection the strict MCO is simulated for a certain 
lifting date.

Simulation Result under Strict MCO with Opening 
Lockdown Date of 1/7/2021
This simulation is replicated by the user using ‘Choose 
option = 3, infection rate during lockdown = 0.033459, 
infection rate outside lockdown = 0.16, Date to start 
MCO = 2021-01-24, Date to end MCO = 2021-07-01’. 
The prediction result is simulated in Figure 7.

Figure 7 illustrates the number of active cases, 
recovered cases, and death cases that are low during the 
MCO. Once the date is lifted the active cases increase 
rapidly which is resemble with the simulated result in 
Figure 4. This shows that even after six months of strict 
lockdown, the cases will show a soaring trend. Obeying 
SOP may decline the infection rate, however, with the 
limited number of workers and social distancing may 
give an impact on the economic sectors in a long run.

Simulation Result under Strict MCO with Opening 
Lockdown Date of 1/10/2021
This simulation is replicated by the user using ‘Choose 
option = 3, infection rate during lockdown = 0.033459, 
infection rate outside lockdown = 0.16, Date to start 
MCO = 2021-01-24, Date to end MCO = 2021-10-01’. 
The result is depicted in Figure 8. The simulated results 

show that the curve is flattened during MCO. Once the 
date is lifted, the active cases increase rapidly which is 
resemble with the simulated result for loose and strict 
MCO of lifting date 1/7/2021. 

SIMULATION RESULT UNDER ALTERNATING MCO 
MEASURES

A more sustainable method is to control the infection at 
a rate that is optimal in order to reduce the infection as 
well as maintaining the negative effects of strict MCO. 
Since most regulations in MCO exist in a binary form such 
as opening or closing a certain sector or allowing cross 
border or not, a method of achieving the optimal rate is by 
periodically opening and closing MCO. This method 
will allow most sectors to be relatively active while allow 
to periodically reduce the infection rate. The period of 
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FIGURE 9. Alternating MCO measures, infection rate 0.033459 and 0.16, duration 14 days

active MCO could also be chosen in such a way, during 
the period asymptomatic infected would be quarantined. 

The assumption for the simulations is the lockdown 
periodically initiated every 28 days and the lockdown 
has a duration of 14 days. During the lockdown, all 
governments and private sectors are closed, no interstate 
travel is allowed, and SOP compliance is high. Only 
essential services those involved in water, electricity, 
energy, telecommunications, postal, transportation, 

FIGURE 8. Result using strict MCO, infection rate 0.033459 with the exit date 1/10/2021

irrigation, oil, gas, fuel, lubricants, broadcasting, finance, 
banking, health, pharmacy, fire, prison, port, airport, 
safety, defense, cleaning, retail, and food supply can 
operate. The infection rate during lockdown is assuming 
to be 0.033459. Outside of lockdown, most business 
sectors are allowed but still maintaining SOP. The first 
simulation is performed by using ‘Choose option = 2, 
Infection rate during lockdown 0.033459, Infection rate 
outside lockdown = 0.16, duration = 14’. The predictive 
result is illustrated in Figure 9.
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The second simulation is performed using ‘Choose 
option = 2, Infection rate during lockdown 0.033459, 

FIGURE 10. Alternating MCO measures, infection rate 0.033459 and 0.1, duration 14 days

FIGURE 11. Alternating MCO measures, infection rate 0.033459 and 0.1, duration 5 days

Infection rate outside lockdown = 0.1 (assuming the 
infection rate is low), duration = 14’, as the result is 
illustrated in Figure 10.

For both cases, the infection rate during MCO is 
0.033459. The infection rate outside of lockdown is 0.16 
and 0.1 for simulations 1 and 2, respectively. This shows 
even with regular strict regulation during the lockdown, 
the active case could only be controlled by reducing the 
infection rate outside lockdown. Maintaining the active 
case from increasing rapidly, will prevent the exhaustion 

of the medical infrastructures and the economic sectors 
can still be operated. During the 14 days’ lockdown, the 
workers can still work from home. Online teaching and 
learning still can be implemented for education sectors.  
The third simulation is performed using ‘Choose option 
= 2, Infection rate during lockdown 0.033459, Infection 
rate outside lockdown = 0.1 (assuming the infection rate 
is low), duration = 5’. The prediction result of 5 days 
alternating MCO is shown in Figure 11.



3452	

Surprisingly, even the only difference is the 
duration, the active case is steadily increasing unlike the 
simulation of alternating MCO for the period of 14 days. 
This may be occurred due to the incubation period which 
can take up three to fourteen days (compared to one to 
four days’ flu). The transmission from person to person 
can still happen after 5 days of quarantine and isolation 
period. Study shows that after SARSCoV2 has invaded a 
person via his mouth, nose, or eyes, the first symptoms 
in most of the cases will only appear around four to five 
days after exposure. 97.5 percent of the infected people 
who develop symptoms will do so within 11.5 days.

SIMULATION RESULT UNDER PLANNED MCO MEASURES

The third option provided to the user is to plan the initial 
and terminal date of MCO with different period. This 

provides user the choice to plan and design MCO contain 
measure. The user can insert up to 7 different lockdown 
period. The values for infection rate during and outside 
lockdown are taken from option 2 in the GUI.

The functionality of this option is shown in 
Simulation Result under Strict MCO with Opening 
Lockdown Date of 1/7/2021 and Simulation Result 
under Strict MCO with Opening Lockdown Date of 
1/10/2021 sections in planning exit strategy. Another 
example, if the guideline planned by the policymakers 
is MCO regulations will become strict if the active case 
at any time reaches 50,000 cases and the strict policy 
is kept until the active cases decrease below 25,000. In 
this example, the infection rate values used during 
lockdown are 0.0504110 and outside of lockdown is 
0.1287900. Figure 12 shows the approximation by 
implementing the aforementioned policy.

FIGURE 12. Planned MCO measures, infection rate 0.0504110 and 0.1287900

By following this policy, six strict MCO duration 
is needed in one year with a duration of over a month 
each. By using the GUI, user can see the frequency 
and duration of strict MCO needed to achieve a certain 
policy, and whether the planned policy is viable to be 
implemented.

CONCLUSION

COVID-19 is an epidemic that greatly affected citizens 
of Malaysia not only in health, but economically, 

socially, financially, and even emotionally. The MCO 
implementation is a great short-term solution in flattening 
the graph of infected cases, and greatly helps to preserve 
our medical facilities to ensure every infected person 
receives proper care. Thus, the fatality and severity 
rate in our country is among the least around the world. 
However, many other factors should be considered if 
the MCO is continued, the poor getting poorer, industrial 
activities plummeted and educational activities are 
in halt. Therefore, GUI is created as a tool in strategy 
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making by using historical data and parameters as an 
example of possible action that could be taken to curb 
the spreading of COVID 19 and developing a sustainable 
plan. The model proposed is embedded in the proposed 
predictive dashboard which considering simple SIRD 
model. Currently, the proposed model is in progress to be 
improved by considering incubation period of the virus as 
well as the stochastic effect which influences the spread 
of the disease. The proposed predictive dashboard is also 
currently being improved by including the simulation of 
the economic impact in the presence of the various types 
of MCO control measures.
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