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Optimised Reduction of Surgical Gloves Pinholes using Forward Search Method
(Penurunan Teroptimum Lubang Jarum pada Sarung Tangan Pembedahan menggunakan Kaedah Pencarian 
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ABSTRACT

This research investigates the factors that affect the existence of pinholes in surgical gloves during the 
manufacturing process. Since eight factors affect the existence of pinholes in surgical gloves, a two-level fractional 
factorial design 28-4 was used to study the main effects and the first-order interactions of the multiple variables. Multiple 
linear regressions are used to model the data. This paper also examines the presence of influential points in the data 
using the influential measures in linear regression such as Cook’s Distance, DFFITS, DFBETAS, Studentized Residual, 
Standardized Residual, Hadi’s measure, and the robust forward search. The impact of influential points is further 
assessed through deletion of potential influential points and model selection using adjusted R2, information criterion, 
and stepwise selection to see whether these influential points significantly improved the existing model. 
Keywords: Fractional factorial design; influential points; multiple linear regression; robust forward search; stepwise 
selection

 
ABSTRAK

Kertas penyelidikan ini mengkaji faktor-faktor ketika proses pembuatan yang menyebabkan kewujudan liang jarum 
pada sarung tangan pembedahan. Oleh kerana terdapat lapan faktor yang menyebabkan kewujudan liang jarum pada 
sarung tangan pembedahan, reka bentuk dua-peringkat faktorial pecahan 28-4 digunakan untuk mengkaji kesan-kesan 
utama dan interaksi peringkat pertama pelbagai pemboleh ubah ini. Regresi linear berganda dengan terma interaksi 
digunakan untuk memodelkan data. Kertas penyelidikan ini turut mengkaji kewujudan titik-titik berpengaruh dalam 
data dengan menggunakan ukuran berpengaruh dalam regresi linear seperti Jarak Cook, DFFITS, DFBETAS, reja 
piawai, reja studentized, Ukuran Hadi dan aturan Pencarian Kedepan yang mantap. Impak titik-titik berpengaruh 
ini terus dinilai melalui penghapusan titik-titik berpengaruh yang berpotensi dan pemilihan model menggunakan R2 
yang disesuaikan, kriteria informasi dan pemilihan bertahap untuk melihat sama ada titik-titik berpengaruh dapat 
meningkatkan model sedia ada dengan ketara.
Kata kunci: Pemilihan bertahap; pencarian kedepan mantap; reka bentuk faktorial pecahan; regresi linear berganda; 
titik-titik berpengaruh

INTRODUCTION

A pinhole defect in surgical rubber gloves may pose 
higher risks of infection in both healthcare workers and 
patients. Gessler et al. (2011) believed that gloves are 
a potential source of contamination due to their thin 
and highly flexible nature which may lead to rupture 
or puncture. Thus, glove sensitivity test procedures are 
developed to detect pinholes in gloves. Malaysian 
Rubber Glove Manufacturers’ Association (MARGMA) 
and the Malaysian Rubber Board (MRB) have formulated 
Standard Malaysian Glove (SMG) certification requiring 

manufacturers to produce gloves with defective pinholes 
rate known as Acceptance Quality Level (AQL) of 1.5 
(Ong et al. 2001). This requirement follows the European 
Standards EN-455-125 (Patel et al. 2003).

The manufacturing process usually involves 
several factors. For example, in Wahid (1998), there are 
eight factors were identified which are curing temperature 
profile (A), latex temperature in dip tank (B), oven 
temperature before coagulation (C), % of calcium nitrate 
(D), humidity (E), % of calcium carbonate (F), oven 
temperature before latex dip (G) and PH of latex compound 
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(H). For a process with eight factors, it is necessary to 
conduct 28 or 256 experiments for a complete factorial 
matrix. Due to the consideration of limited resources 
and the costs of running all experiments, it will be 
advantageous to use the fractional factorial design to 
reduce the number of runs required.

According to the Malaysian Rubber Export 
Promotion Council (MREPC), Malaysia is a leading 
rubber glove producer in the world that supplies more 
than 50% of the world’s demand for medical gloves 
(MREPC 2020a, 2020b). In 2019, Malaysia exported 
RM 1.57 billion worth of surgical gloves to meet the 
global demand. Hence, it is of interest for researchers to 
conduct a study relating to pinholes in surgical gloves 
to improve the standard and quality of surgical gloves 
produced. Lowering the ‘curing temperature profile’ 
and ‘latex temperature in dip tank’ while increasing the 
‘oven temperature before latex dip’ and high humidity 
with low latex temperature will minimize the pinhole 
defect (Wahid 1998; Wahid & Tham 2012). In both of 
the studies, the two levels saturated fractional factorial 
design was used to explain the controllable factors that 
significantly affect the pinhole defect in surgical gloves 
and multiple regression techniques are applied to the 
data. Using the Wilcoxon signed-rank tests, Tan et al. 
(2020) have found the temperature of latex and oven 
temperature after coagulant dip will affect the pinhole’s 
defect. However, these studies have excluded former oven 
temperature, humidity, calcium carbonate, and latex pH 
from the examined factors. Jirasukprasert et al. (2014) 
have optimized the oven’s temperature and conveyor’s 
speed using six sigma methods to reduce defects such as 
holes and stains in rubber gloves.

MATERIALS AND METHODS

FRACTIONAL FACTORIAL DESIGN

The fractional factorial design is a modified standard 
factorial design that provides information on main 
effects and low-order interactions without the need to 
conduct a full factorial design. It is advantageous to use 
fractional factorial design if we have limited resources, 
note that the high order interactions are not significant, 
and plan to do a screening experiment, i.e., intend to find 
significant factors (Oehlert 2000). A 2k factorial can be 
confounded into 2q blocks of size 2k-q. A 2k-q  fractional 
factorial consists of k factors each at two levels that use 
2k-q experimental units and factor level combination. 
Fractional factorials are categorized according to 
their resolution that shows the types of effects that are 

aliased. A design with resolution R will have no j factors 
interaction that is aliased to fewer than R-j factors 
interaction (Oehlert 2000).

MULTIPLE LINEAR REGRESSIONS

Suppose that y is a single dependent variable or response 
variable that depends on independent or regressor 
variables such as x1, x2,….., xk. A multiple linear regressions 
model is a mathematical model that characterizes the 
relationship between these variables. The equation for 
multiple linear regression models with k independent 
variables is:

(1)

where i = 1, 2, …., n. The parameter β is the regression 
coefficient where β0 is the intercept term, k refers to the 
number of independent variables and ϵ is the error term 
which is also known as the residuals. Multiple linear 
regression techniques can also be used to analyze a model 
with interaction term such as the following first- order 
model in two variables where interaction term is added:
			 

(2)

If we let x1 x2= x3  and  β12 = β3 in (2), we will get
							     

(3)

The method of least squares will be used to estimate 
the regression coefficients βk. Provided there are  
observations, then (1) can be written as:
                             

(4)

We can write (4) in matrix notation as y = Xβ + ϵ, where, 

OUTLIER

An outlier is a data point whose response y, does not follow 
the general trend of the rest of the data. The outlier may 
represent data-recording error or a poor approximation 
of the actual model (Montgomery 2009). Standardized 
residuals and studentized residuals are some of the 
methods that can be utilized to detect outliers.

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 + 𝜖𝜖𝑖𝑖                  

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽12𝑥𝑥1𝑥𝑥2 + 𝜖𝜖𝑖𝑖.    

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 +  𝜖𝜖𝑖𝑖.                       

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖1 +  𝛽𝛽2𝑥𝑥𝑖𝑖2+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑖𝑖𝑖𝑖 +  𝜖𝜖𝑖𝑖. 

𝒚𝒚 =

[
 
 
 
 
𝑦𝑦1
𝑦𝑦2
.
.

𝑦𝑦𝑛𝑛]
 
 
 
 
 , =

[
 
 
 
 1 𝑥𝑥11 𝑥𝑥12 … 𝑥𝑥1𝑘𝑘
1 𝑥𝑥21 𝑥𝑥22 … 𝑥𝑥2𝑘𝑘
. . . … .
. . . … .
1 𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 … 𝑥𝑥𝑛𝑛𝑛𝑛]

 
 
 
 
 , 𝜷𝜷 =

[
 
 
 
 𝛽𝛽0
𝛽𝛽1
.
.

𝛽𝛽𝑘𝑘]
 
 
 
 
 , and 𝝐𝝐 =

[
 
 
 
 
𝜖𝜖1
𝜖𝜖2
.
.

𝜖𝜖𝑛𝑛]
 
 
 
 
 . 
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STANDARDIZED RESIDUALS

Standardized residual is defined as ordinary residual 
divided by an estimate of its standard deviation:

where the residual ei, is the difference between the actual 
observation yi and the corresponding estimated value  
𝑦̂𝑦𝑖𝑖 (i.e., 𝑦𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖) and the estimate of standard error 
s, 𝜎̂𝜎 =  √𝑀𝑀𝑀𝑀𝐸𝐸 . . The Mean Squared Error s, 𝜎̂𝜎 =  √𝑀𝑀𝑀𝑀𝐸𝐸 . is the 

estimate of variance, 𝜎̂𝜎2.  The standardized residual has 
mean zero and approximately unit variance that is useful 
in detecting outliers. Any observation with standardized 
residual outside the interval -2 ≤ di ≤ 2 is considered as an 
outlier that should be carefully examined (Montgomery 
2009).

STUDENTIZED RESIDUALS

Studentized residual is defined as:

for i = 1, 2, …., n. If the form of the model is correct, the 
studentized residual has variance V (ri) = 1 regardless of 
the location of xi. Any studentized residual observation 
outside the interval -3 ≤ ri ≤ 3 is considered an outlier..

LEVERAGE
An observation with extreme predictor  x  a value is 
considered as high leverage. Leverage of the ith case is 
defined as:

where H is the ith diagonal element of the hat matrix H = 
X(XT X)-1 XT. Any observation with leverage higher than2𝑘𝑘
𝑛𝑛   (where k is the number of independent variables) will 

be considered as high leverage (Montgomery 2009).

INFLUENTIAL POINTS

A data point is considered  influential  if it unduly 
influences any part of regression analysis, such as the 
predicted responses, the estimated slope coefficients, or 
the hypothesis test results. Outliers and high leverage 
data points have the  potential  to be influential, but we 
generally have to investigate to determine whether they 
are influential. It is noted that influential measures are 
employed to detect influential points.

INFLUENTIAL MEASURES

Many types of influential measures are useful in 
identifying influential observations. The influential 
measures employed in this study are Cook’s Distance, 
DFFITS, DFBETAS, and Hadi’s Measure.

COOK’S DISTANCE

Cook (1977) introduced Cook’s Distance that is made up 
of components that show how good the model fits the ith 
observation of yi and how far is the observation from 
the rest (Montgomery 2009). The Cook’s Distance is 
defined as:

where i = 1, 2, …., n.	   		
Note that Cook’s Distance is expressed as a function 
of studentized residual and the leverage where k is 
the number of independent variables. Montgomery 
(2009) highlighted that any observation which Di > 1 is 
considered as an influential point. Cook (1977) pointed 
that the cut-off for Cook’s Distance is Di > 4 𝑛𝑛⁄     and data 
point with large Di strongly influences the fitted value of 
the model.

DFFITS

The difference in fits for observation i, denoted DFFITSi, 
is defined as: 

where 𝑦̂𝑦𝑖𝑖(𝑖𝑖)   𝜎̂𝜎(𝑖𝑖)   2 √(𝑘𝑘+1)
(𝑛𝑛−𝑘𝑘−1) 

 

 is the estimated value of y without observation 
i 𝑦̂𝑦𝑖𝑖(𝑖𝑖)   𝜎̂𝜎(𝑖𝑖)   2 √(𝑘𝑘+1)

(𝑛𝑛−𝑘𝑘−1) 

 

 is the estimated standard error without a point i, 
hii is the leverage, and ri(i) is the studentized residual 
without a point i. According to Belsley et al. (1980), an 
observation is deemed influential if the absolute value of 
its DFFITS value is greater than 𝑦̂𝑦𝑖𝑖(𝑖𝑖)   𝜎̂𝜎(𝑖𝑖)   2 √(𝑘𝑘+1)

(𝑛𝑛−𝑘𝑘−1) 

 

, where, n is the 
number of observations and k is the number of predictor 
terms.  

DFBETAS

Belsley et al. (1980) suggested using the DFBETAS 
statistics to measure the changes in each regression 
coefficient. It is calculated by deleting the ith observation.  
is defined in the following equation:

𝑟𝑟𝑖𝑖 =  𝑒𝑒𝑖𝑖

√𝜎̂𝜎2(1 − ℎ𝑖𝑖𝑖𝑖)
 

 

ℎ𝑖𝑖𝑖𝑖 = [𝑯𝑯]𝑖𝑖𝑖𝑖 =  𝒙𝒙𝑖𝑖
𝑻𝑻(𝑿𝑿𝑻𝑻𝑿𝑿)−1𝒙𝒙𝑖𝑖, 

 

𝐷𝐷𝑖𝑖 =  𝑟𝑟𝑖𝑖
2

𝑘𝑘
ℎ𝑖𝑖𝑖𝑖

(1 − ℎ𝑖𝑖𝑖𝑖) , 
 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 =  
𝑦̂𝑦𝑖𝑖 − 𝑦̂𝑦𝑖𝑖(𝑖𝑖)

𝜎̂𝜎(𝑖𝑖)√ℎ𝑖𝑖𝑖𝑖
=  𝑟𝑟𝑖𝑖(𝑖𝑖)√ ℎ𝑖𝑖𝑖𝑖

1 − ℎ𝑖𝑖𝑖𝑖
 

 

 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 =  
𝛽𝛽𝑗𝑗 − 𝛽𝛽𝑗𝑗(𝑖𝑖)

𝜎̂𝜎(𝑖𝑖)√(𝑿𝑿𝑇𝑇𝑿𝑿)𝑗𝑗𝑗𝑗
−1

 

 

𝑑𝑑𝑖𝑖 =  𝑒𝑒𝑖𝑖
𝜎̂𝜎  
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where βj(i) is the regression coefficient computed without 
the ith observation; 𝑦̂𝑦𝑖𝑖(𝑖𝑖)   𝜎̂𝜎(𝑖𝑖)   2 √(𝑘𝑘+1)

(𝑛𝑛−𝑘𝑘−1) 

 

 is the estimated standard error 
without the ith observation; X is (n x k) matrix of the 
independent variables; and XTXjj

-1 is the (jj)th element of 
(XTX)-1. There are different DFBETAS plots for each term 
in the model. Usually, observations with a high value of 
DFBETAS are considered influential points. A general 
cut-off value of 2 indicates influential points and  2

√𝑛𝑛
  is a 

size-adjusted cut-off.

HADI’S MEASURE

Hadi (1992) introduced another influential measure with 
the following formula to measure the influence of the ith 
observation:

where 𝑎𝑎𝑖𝑖2 =
𝑒𝑒𝑖𝑖2
𝑆𝑆𝑆𝑆𝑆𝑆  is the square of the ith normalized 

residual; hii is the leverage of the ith case; and k is the 
number of independent variables. An influential point will 
have large values of Hi.

FORWARD SEARCH METHOD

The objective of the forward search is to find observations 
that are different in the data and to determine the effect 
of this observation on inferences made about a model 
(Atkinson et al. 2012). Initially, the small size of subset, 
m0  from n observations is robustly selected. For example, 
take m0 = k, the number of parameters in the regression 
model. Subsequently, a sample of 1,000 subsets to each 
of which regression is fitted by least- squares and the 
median of the n squared residuals need to be computed 
(Atkinson & Riani 2000). The starting subset will 
be S*(m0)  that provides the smallest median squared 
residual. Then, a larger subset is considered by ordering 
the n squared residuals from the least-squares fit to the 
subset S*(m) of m observations and using the m + 1 
observations with the smallest squared residuals to form 
S*(m+1) (Atkinson & Riani 2000). As a result, a series 
of parameter estimates for k ≤ m ≤ n is obtained. The 
parameter estimates are consistent as m increases if there 
is no outlier. At the end of the search, observations that 
are remote from the fitted model will be included. These 
points can be possible outliers or influential points. Since 
our data is quite small, we can search over all subsets 
of size k of the n observations. In this forward search 
regression, the progress of S2, the estimate of the error 
variance, can also be monitored (Atkinson & Riani 2000). 
The forward search function for the linear model can be 
obtained using the forward package in R.

THE DATA AND MISSING VALUE TREATMENT

The surgical gloves data were obtained from Wahid 
(1998) in a locally owned Malaysian rubber glove 
company for her doctoral dissertation. The Surgical 
Gloves data consists of 32 datasets with 15 independent 
variables (Variables A-H and 7 interaction terms AB, AE, 
BD, BE, BF, BG, and CD) and 3 response variables (Y1-
Y3). In this paper, we focus on the response variable, Y3 
(Mean of Pinholes). Hence, the other response variables 
Y1 and Y2 were excluded from this study. 

There are four missing values in the response 
variable of Y3 due to run number 2, 5, 7, and 8 of the 
second replicate (or observation number 18, 21, 23, 
and 24) of the experiment, suspected the water to the 
coagulant tank promotes the stirrer speed and create 
bubbles in the tank. These four missing values are 
imputed using Multivariate Imputation via Chained 
Equation (MICE) - MIDAStouch package in R statistical 
software. MICE have emerged as a method of addressing 
missing data and the missing data are Missing at Random 
(MAR). In MAR, the probability that a value is missing 
depends on the observed value only (Azur et al. 2011). 
Missing values are imputed based on the observed values 
for a given observation and the relations observed in 
the data for other observations, assuming the observed 
variables are included in the imputation model (Schafer 
& Graham 2002). MIDAS, an acronym for Multiple 
Imputation using Distance Aided Selection of Donors, 
is a method described in Siddique and Belin (2008) 
which can handle a variety of data types and has desirable 
features of Bayesian approaches such as the ability to 
reflect parameter uncertainty, handle missing covariate 
values, incorporate all available information into the 
imputation model and allow the user to impute non-
ignorable missing values. MIDAStouch is a new Predictive 
Mean Matching (PMM) procedure proposed by Gaffert 
et al. (2016) which explains that MIDAStouch is the best 
way in doing Multiple PMM imputations. MIDAStouch 
improved the MIDAS method by estimating a value of K 
in the data rather than using a fixed K and apply piece-
wise linear function (PLF) correction to the total variance.

RESULTS AND DISCUSSION

As mentioned earlier, there are four missing values 
in this surgical gloves data. Since there are only 32 
observations, we impute the missing values using the 
MICE-MIDAStouch in R software since the imputation is 
better than removing missing values (Lüdtke et al. 2017). 
The comparisons of F-statistics and 𝑅𝑅2̅̅̅̅   between the full 
linear regression model with removed missing values and 
full linear regression model with imputed missing values 

𝐻𝐻𝑖𝑖 =  ℎ𝑖𝑖𝑖𝑖
1−ℎ𝑖𝑖𝑖𝑖

+  𝑘𝑘+1
1−ℎ𝑖𝑖𝑖𝑖

𝑎𝑎𝑖𝑖
2

1−𝑎𝑎𝑖𝑖
2 ,        𝑖𝑖 = 1,2, … , 𝑛𝑛, 
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using MICE-MIDAStouch, MICE-PMM, and MICE-mean, 
it is concluded that the full model with imputed missing 

values using MICE-MIDAStouch gives a better fit model. 
Hence, the comparisons of the statistical summary of 
these 4 models are shown in Table 1.

TABLE 1. Comparison of full model with and without imputation

Linear Models Full model with 
removed missing values

Full model with 
imputation using MICE 

MIDAStouch

Full model with 
imputation using MICE 

mean

Full model with 
imputation using MICE 

PMM

Res Standard Error 0.07395 on 12 degrees 
of freedom

0.07943 on 16 degrees 
of freedom

0.0849 on 16 degrees of 
freedom

0.0834 on 16 degrees 
of freedom

Multiple R2 0.7227 0.6999 0.5128 0.5825

0.3761 0.4186 0.056 0.191

F Statistics 2.085 on 15 and 12 DF, 2.488 on 15 and 16 DF, 1.123 on 15 and 16 DF 1.488 on 15 and 16 
DF,

p-value 0.1028 0.0401 0.4093 0.2194

The full model with imputed missing values using 
MICE-MIDAStouch will be the null model. The null model 
is a multiple linear regression with interaction term that 
has the following formula:

(5)

𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝛽𝛽4𝑥𝑥4 + 𝛽𝛽5𝑥𝑥5 

        + 𝛽𝛽6𝑥𝑥6 + 𝛽𝛽7𝑥𝑥7 + 𝛽𝛽8𝑥𝑥8+ 𝛽𝛽12𝑥𝑥1𝑥𝑥2+ 𝛽𝛽15𝑥𝑥1𝑥𝑥5+ 𝛽𝛽24𝑥𝑥2𝑥𝑥4 

         + 𝛽𝛽25𝑥𝑥2𝑥𝑥5+ 𝛽𝛽26𝑥𝑥2𝑥𝑥6+ 𝛽𝛽27𝑥𝑥2𝑥𝑥7+ 𝛽𝛽34𝑥𝑥3𝑥𝑥4 + 𝜖𝜖      (5) 

where y=Y3, x1=A, x2=B, x3=C, x4=D, x5 = E, x6=F, x7=G and x8=H. 

 

The F-value and probability of F-value for each 
factor in the null model can be found in the Analysis of 
Variance (ANOVA) table. A variable with high F-value is 
considered to be a significant variable. From the analysis, 
the variable G gives the highest F-value of 10.41 followed 
by B(7.86), CD(4.38), AB(4.02), D(3.52) & BE(3.04). 
Hence, we can conclude that these seven variables are 
significant.

The response variable Y3 is a continuous variable 
whilst all other independent variables are categorical. 
The independent variables (A-H) are represented 
symbolically by a low level (-1) and a high level (+1) as 
presented in Table 2, which indicate the high and low level 
of each variable. 

TABLE 2. Level of independent variables

Variable Definition Level
Low (-1) High (+1)

A curing temperature profile 80 °C

100 °C

115 °C

120 °C

130 °C

95 °C

110 °C

125 °C

130 °C

150 °C
B latex temperature in dip tank 25-26 °C 29-30 °C
C oven temperature before coagulation 75-80 °C 90-95 °C
D calcium nitrate (%) 7.0-8.0% 11.0-12.0%
E humidity Low High
F calcium carbonate (%) 2.5-3.5% 4.5-5.5%
G oven temperature before latex dip 170-180 °C 190-200 °C
H PH of latex compound 10.1-10.5 10.6-10.9
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A factorial design experiment with eight independent 
variables required 28=256 runs, where it is very costly 
and time-consuming. Since the resources are limited, it 
is more economical and timesaving to run a fractional 
factorial design that only used 16 runs. Hence, the L16 
array is the suitable orthogonal array to be used for this 
experimental design. The fractional factorial design 
enables us to obtain information on main effects and low-
order interactions without having to do the full factorial 
design. Hence, a 28 factorial design can be confounded 
into sixteen (24) blocks of size 16(24), which means that 
the 28-4 fractional factorial consists of 16 factors at every 
two levels. The order of these 16 trials were run and 

randomized completely to reduce the effects of factors 
that were not controlled in the experimentation (Wahid & 
Tham 2012). These 16 trials run is replicated twice which 
means 32 experiments were conducted for the mean of 
the pinholes. Table 3 shows the fractional factorial design 
of the data. Please note that observation numbers 18, 21, 
23, and 24 were imputed using MICE-MIDAStouch. (-1) 
in a column means that the factor listed above the column 
should be adjusted at its low-level while (1) indicates 
that the factor should be adjusted at its high level in that 
particular run. For example, all factors in the first trial run 
are set at low levels while in the second trial run, factors 
A, E, F, and G are set at high levels and factors B, C, D, 
and H are set at low levels.

TABLE 3. 32 Experiment runs on factors affecting mean of pinholes

Obs A B C D E F G H Y3
1 -1 -1 -1 -1 -1 -1 -1 -1 0.2236
2 aefg 1 -1 -1 -1 1 1 1 -1 0.1000
3 befh -1 1 -1 -1 1 1 -1 1 0.2000
4 abgh 1 1 -1 -1 -1 -1 1 1 0.2000
5 cegh -1 -1 1 -1 1 -1 1 1 0.0000
6 acfh 1 -1 1 -1 -1 1 -1 1 0.2445
7 bcfg -1 1 1 -1 -1 1 1 -1 0.1414
8 abce 1 1 1 -1 1 -1 -1 -1 0.4243
9 dfgh -1 -1 -1 1 -1 1 1 1 0.2828
10 adeh 1 -1 -1 1 1 -1 -1 1 0.1000
11 bdeg -1 1 -1 1 1 -1 1 -1 0.1732
12 abdf 1 1 -1 1 -1 1 -1 -1 0.2445
13 cdef -1 -1 1 1 1 1 -1 -1 0.1000
14 acdg 1 -1 1 1 -1 -1 1 -1 0.0000
15 bcdh -1 1 1 1 -1 -1 -1 1 0.2236
16 abcdefgh 1 1 1 1 1 1 1 1 0.1732
17 -1 -1 -1 -1 -1 -1 -1 -1 0.2000
18 aefg 1 -1 -1 -1 1 1 1 -1 0.0000
19 befh -1 1 -1 -1 1 1 -1 1 0.2000
20 abgh 1 1 -1 -1 -1 -1 1 1 0.1732
21 cegh -1 -1 1 -1 1 -1 1 1 0.2236
22 acfh 1 -1 1 -1 -1 1 -1 1 0.2828
23 bcfg -1 1 1 -1 -1 1 1 -1 0.2444
24 abce 1 1 1 -1 1 -1 -1 -1 0.4223
25 dfgh -1 -1 -1 1 -1 1 1 1 0.0000
26 adeh 1 -1 -1 1 1 -1 -1 1 0.2000
27 bdeg -1 1 -1 1 1 -1 1 -1 0.1000
28 abdf 1 1 -1 1 -1 1 -1 -1 0.2445
29 cdef -1 -1 1 1 1 1 -1 -1 0.1732
30 acdg 1 -1 1 1 -1 -1 1 -1 0.1000

31 bcdh -1 1 1 1 -1 -1 -1 1 0.1000
 32 abcdefgh 1 1 1 1 1 1 1 1 0.2236
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We used statistical software Minitab to perform the 
fractional factorial design of the null model. From Figure 
1, we conclude that the factors B and G are significant 

based on the Normal Plot while Pareto Chart shows the 
factors CD, AB, D, and BE are the next significant factors 
after G and B. 

FIGURE 1. Normal Plot & Pareto Chart of the Standardized Effects for Y3

 

 

The stepwise selection was conducted suggested the 
following model (Model 1) as the best model. Model 1 
has a linear regression formula as follows:

(6)

where y = Y3 is the response; x1= A, x2= B, x3= D, x4= 
G, x5 = AB, x6= BE  and x7 = CD are the predictors or 
independent variables and  is the intercept. 

In Table 4, the ANOVA table of the null model where 
the factors B, D, G, AB, and CD are significant variables 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 +  𝛽𝛽3𝑥𝑥3 +  𝛽𝛽4𝑥𝑥4 +  𝛽𝛽5𝑥𝑥5 +  𝛽𝛽6𝑥𝑥6 +  𝛽𝛽7𝑥𝑥7 + 𝜖𝜖𝑖𝑖 

𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 +  𝛽𝛽3𝑥𝑥3 +  𝛽𝛽4𝑥𝑥4 +  𝛽𝛽5𝑥𝑥5 +  𝛽𝛽6𝑥𝑥6 +  𝛽𝛽7𝑥𝑥7 + 𝜖𝜖𝑖𝑖 
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 +  𝛽𝛽3𝑥𝑥3 +  𝛽𝛽4𝑥𝑥4 +  𝛽𝛽5𝑥𝑥5 +  𝜖𝜖𝑖𝑖  

because they have a smaller p-value that is lesser than 
0.10. We use these significant variables B, D, G, AB, and 
CD to construct Model 2 that has the following linear 
regression formula:
				  

(7)

where yi= Y3 is the outcome, x1= B, x2= D, x3= G, x4= AB 
and x5 = CD are the predictors or independent variables 
and β0 is the intercept. The comparison of the statistical 
summary of the Null Model, Model 1, and Model 2 is 
shown in Table 4.

TABLE 4. Comparison of Null Model, Model 1 and Model 2

Linear Models Null Model Model 1 Model 2

ResidualStandard Error 0.07943 on 16 degrees 
of freedom

0.0699 on 24 degrees of 
freedom

0.07491 on 26 degrees 
of freedom

Multiple R2 0.6999 0.6514 0.5663

0.4186 0.5497 0.4829

F Statistics 2.488 on 15 and 16 DF, 6.406 on 7 and 24 DF 6.79 on 5 and 26 DF,

p-value 0.0401 0.0002574 0.0003588

AIC -59.48 -70.68 -67.69

BIC -34.56 -57.49 -57.43
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Based on Table 4, Model 1 is found to be the best-
fitted model with the highest 𝑅𝑅2̅̅̅̅  value and the lowest AIC 
and BIC values.

We further our investigation to diagnostic checking 
on Model 1 including using influential measures to find 
any influential points, leverage, or outliers. Figure 2 shows 
that Standardized Residual & Cook’s Distance detects 
observation numbers 5, 9, and 25 as possible outliers. 
The second plot (top right) in Figure 2 shows that the 

Studentized Residual does not detect any possible outlier 
with the threshold (±3). If we reduce the threshold (±2), 
the same points highlighted in the first plot which are 
observation number 5, 9, and 25 will be detected as outliers. 
The third plot (bottom left) in Figure 2 highlighted there 
are no points with high leverage in the data. Based on 
the third plot, we can imply that there is a possibility that 
there is no influential point in Model 1 since there is no 
high leverage point. 

Figure 3 shows that DFBETAS of the intercept and 
all factors in Model 1 also concluded that points number 
5, 9, and 25 are possible influential points as shown in the 

first and second plot of Figure 3. The same observations 
number 5, 9, and 25 were detected by the DFFITS method 
and Hadi’s measure as shown in the third and fourth plots 
of Figure 3.

FIGURE 2. Standardized Residuals, Studentized Residuals, Outlier, 
Leverage and Cook’s Distance for Model 1

 

 

 



	 	 3741

FIGURE 3. DFBETAS, DFFITS and Hadi’s Measure of Model 1

 

 

 
Our investigation continues with the last 5 units that 

are included in the Forward Search method which are 
observations number 26, 27, 15, 25, and 5. The Scaled 
Residuals in Figure 4 pointed out that in addition to 
potential influential points that are observations number 
5, 9, and 25 detected by the influential measures of linear 
regression, the Forward Search method also detects 
observation number 15 as a potential influential point 
as shown in the forward plot of least- squares residuals 
scaled by the final estimate of σ. Note that the last three 
units included in the Forward Search method, which are 
observations number 15, 25, and 5 are among the potential 
influential points shown in the Scaled Residuals in Figure 
4.

The scaled Coefficient in Figure 4 provides evidence 
that there is a changed relationship in the estimated 

coefficients of Model 1. For example, β2 and β4 are initially 
stable, but they start to diverge after  and respectively. In 
Figure 4, we can see that Cook’s Distance value and S2 

value are increased when m = 30, 31, and 32, respectively. 
This indicates the values increases when the last 3 
observations (5, 15 and 25) were included in the last step 
of the search.

We removed the potential influential points detected 
by the influential measures, i.e., observations number 5, 
9 and 25 and define it as Model 1A. Another model by 
removing potential influential points detected by Forward 
Search method, i.e., observations number 5, 9, 15, and 25 
from Model 1 and define it as Model 1B. The comparison 
of the statistical summary of Model 1, Model 1A and 
Model 1B is shown in Table 5.
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TABLE 5. Comparison of Model 1, Model 1A and Model 1B

Linear Models Model 1 Model 1A Model 1B

Residual Standard Error 0.0699 on 24 degrees of 
freedom

0.04959 on 21 degrees 
of freedom

0.04323 on 20 degrees 
of freedom 

Multiple R2 0.6514 0.8009 0.8552 

𝑅𝑅2̅̅̅̅  0.5497 0.7345 0.8045 

F Statistics 6.406 on 7 and 24 DF 12.07 on 7 and 21 DF 16.87 on 7 and 20 DF 

p-value 0.0002574 4.166e-06 4.048e-07 

AIC -70.68 -83.29 -87.87 

BIC -57.49 -70.98 -75.88 

 

 

 

 

FIGURE 4. Scaled Residuals, Scaled Coefficient, Cook’s Distance and 
S2 of Forward Search on Model 1
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Based on Table 5, we found Model 1B is the most 
reliable model since it has the highest 𝑅𝑅2̅̅̅̅   and F-statistics 
value and the lowest AIC and BIC values. This also 
indicates that observations numbers 5, 9, 15, and 25 are 
influential points. Hence, the final model is:
	

(8)

where 𝑌𝑌3̂  is the estimated outcome; x1= B, x2= D, x3= G, 
x4= AB and x5 = CD are the predictors. The residuals and 
coefficients of equation (8) are in Tables 6 and 7.

𝑌𝑌3̂ = 0.184 + 0.012𝐴𝐴 + 0.025𝐵𝐵 − 0.034𝐷𝐷 − 0.031𝐺𝐺 + 0.042𝐴𝐴𝐴𝐴 + 0.026𝐵𝐵𝐵𝐵 − 0.044𝐶𝐶𝐶𝐶, 
𝑌𝑌3̂ = 0.184 + 0.012𝐴𝐴 + 0.025𝐵𝐵 − 0.034𝐷𝐷 − 0.031𝐺𝐺 + 0.042𝐴𝐴𝐴𝐴 + 0.026𝐵𝐵𝐵𝐵 − 0.044𝐶𝐶𝐶𝐶, 

TABLE 6. Residuals of the Final Model

Min 1Q Median 3Q Max

-0.06 -0.03 -0.00 0.03 0.07

TABLE 7. Coefficients of the Final Model

Estimate Standard Error T-Value

Intercept 0.184 0.009 21.653

A 0.012 0.009 1.370

B 0.025 0.009 2.858

D -0.034 0.008 -4.128

G -0.031 0.009 -3.534

AB 0.042 0.009 4.836

BE 0.026 0.008 3.061

CD -0.044 0.009 -4.975

The 𝑌𝑌3̂  is optimized when the process is set at high 
curing temperature (A), low latex temperature (B), high 
oven temperature before coagulation (C), high volume 
of calcium nitrate (D), high humidity (E), and high oven 
temperature before latex dip (G). 

CONCLUSION

This study aimed to explain the relationship between 
the number of pinhole defects in surgical gloves and the 
factors cause during the manufacturing of surgical gloves. 
A two-level fractional factorial design 28-4 was used to 
study the main effects and the first-order interactions of 
the multiple variables. Multiple linear regressions with 
interaction terms are used to model the data. Imputation 
using MICE-MIDAStouch is employed to provide values 

for missing data. The preliminary test shows that the 
model with imputation using MIDAStouch gives a better 
fit than the model without any imputation. Stepwise 
linear regression is then employed to find a model with 
the best fit.

We further investigate the presence of influential 
points in the linear model using influential measures 
in linear regression such as Cook’s Distance, DFFITS, 
DFBETAS, Studentized Residual, Standardised Residual, 
and Hadi’s Measure. The robust Forward Search is also 
conducted and applies to the model to find possible 
influential points. The impact of influential points is 
further assessed through deletion of potential influential 
points to see whether influential points that significantly 
change the fit of the model exist. We found that the 
Forward Search method provides better identification 
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of influential points. The final model from this study 
deduced that that the estimated 𝑌𝑌3̂ , is minimized when 
the manufacturing process of surgical gloves is set at high 
curing temperature (A), low latex temperature (B), high 
oven temperature before coagulation (C), high volume 
of calcium nitrate (D), high humidity (E) and high oven 
temperature before latex dip (G).
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