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On Diameter of Subgraphs of Commuting Graph in Symplectic Group for Elements 
of Order Three

(Diameter Subgraf bagi Graf Kalis Tukar Tertib dalam Kumpulan Simplektik bagi Unsur Berperingkat Tiga)

SUZILA MOHD KASIM & ATHIRAH NAWAWI*

ABSTRACT

Suppose G be a finite group and X be a subset of G. The commuting graph, denoted by C(G,X), is a simple undirected 
graph, where X ⊂ G being the set of vertex and two distinct vertices x,y ∈ X are joined by an edge if and only if xy = 
yx. The aim of this paper was to describe the structure of disconnected commuting graph by considering a symplectic 
group and a conjugacy class of elements of order three. The main work was to discover the disc structure and the diameter 
of the subgraph as well as the suborbits of symplectic groups S4(2)', S4(3) and S6(2). Additionally, two mathematical 
formulas are derived and proved, one gives the number of subgraphs based on the size of each subgraph and the size of 
the conjugacy class, whilst the other one gives the size of disc relying on the number and size of suborbits in each disc.
Keywords: Commuting graph; conjugacy class; disconnected graph; symplectic group

ABSTRAK

Andaikan G adalah satu kumpulan terhingga dan X adalah satu subset bagi G. Graf kalis tukar tertib, ditatatandakan 
dengan C(G,X) adalah graf mudah tidak terarah, yang  menjadi set bucu dan dua bucu berbeza x,y ∈ X disambungkan 
oleh satu garisbucu jika dan hanya jika xy = yx. Tujuan makalah ini adalah untuk memperincikan struktur graf kalis 
tukar tertib tidak berkait dengan mempertimbangkan kumpulan simplektik dan kelas konjugasi dengan unsur berperingkat 
tiga. Kerja utama adalah untuk memperoleh struktur cakera dan diameter subgraf tersebut juga suborbit bagi kumpulan 
simplektik S4(2)', S4(3) dan S6(2). Di samping itu, dua formula matematik diterbitkan dan dibuktikan, satu daripadanya 
memberikan bilangan subgraf berdasarkan kepada saiz setiap subgraf dan saiz kelas konjugasi, manakala yang satu 
lagi memberikan saiz cakera bergantung pada bilangan dan saiz suborbit dalam setiap cakera.
Kata kunci: Graf kalis tukar tertib; graf tidak berkait; kelas konjugasi; kumpulan simplektik

INTRODUCTION

Graph theory and group theory are eminently two 
distinct areas of mathematical research, each with 
its own terminologies defined to manipulate various 
characteristics, problems, and complexes that seem 
dissociate with each other. However, numerous situations 
relating to algebraic structures are best dealt by using 
graphs, see for instance in groups (Bates et al. 2007, 2004, 
2003a, 2003b; Nawawi & Rowley 2015; Nawawi et al. 
2019), and in semigroups (Abd Ghafur & Yousof 2012). 
In view of one algebraic structure namely groups, we can 
further understand the properties of certain groups when 
we represent as graphs considering that the presentations are 

more comprehensible and the problems are more feasible 
especially when breaking one whole graph representing 
the group - in which the size of the groups are very large, 
into subgraphs. In fact, the methods of combining group 
theory and graph theory are beneficial both in theory and 
in practice - assisting to validate general results on groups 
and particular results on unique groups. Apparently, one of 
the real applications is in chemistry where interactions or 
bonds between atoms and molecules can be seen as edges 
between vertices. Numerical parameters of graphs known 
as topological indices are also used to code the chemical 
structure as well as to show the chemical bond order (Wang 
& Ma 2016). Whilst on the other hand, energy of graphs 
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calculated based on eigen values of matrices associated 
with the graphs is used to approximate the total electron 
energy of molecules (Betten et al. 2001). Indeed, connected 
graphs have a significant influence in several other areas, 
see for instance in network theory (Loh et al. 2014), 
dynamic systems and complexity.

In this paper, our focused group is known as 
symplectic group that is one of the six families of so-
called classical simple groups defined in terms of a certain 
form on the vector space 𝕍𝕍 . The rest of the classical simple 
groups are the linear group, unitary group and the three 
families of orthogonal groups. All of them have been 
introduced in the forms of groups of matrices over fields. 
A set 𝔽𝔽  with two binary operations on 𝔽𝔽 , the addition 
and multiplication satisfying certain axioms, is known 
as a field. Without loss of generality, let 𝕍𝕍  be a vector 
space of dimension 2c over the finite field 𝔽𝔽𝔽𝔽𝑣𝑣𝑣𝑣2𝑐𝑐𝑐𝑐    that has 
𝑣𝑣2𝑐𝑐  elements. For an even number n = 2c, the symplectic 
group Sn(𝑣𝑣

2𝑐𝑐 ) is defined as the group containing all 
elements of the general linear group GLn(𝑣𝑣

2𝑐𝑐 ) that preserves 
a non-singular symplectic form and any such matrix 
necessarily has determinant 1. The order of the symplectic 
group is given by | S2c(𝑣𝑣

2𝑐𝑐 ) | = N, where N = 𝑣𝑣𝑐𝑐2  (𝑣𝑣2𝑐𝑐 -1) (𝑣𝑣2𝑐𝑐−2 -1) 
∙∙∙ (𝑣𝑣2𝑐𝑐 2-1) (Wilson 2009). In addition to this, a vast amount 
of information related to the symplectic group can be 
found in the ATLAS (Wilson et al. 2017).

The commuting graph of finite group arose from 
the investigation of a finite group G and the set of non-
identity elements X = G\{1} (Brauer & Fowler 1955). 
The most essential outcome is if a group G of even order 
consists of more than one class of elements of order two 
or simply called involutions, then the distance for any 
two involutions  x, y ∈ G is at most three. Additionally, 
the study on the commuting graph was also motivated by 
Fischer’s work in 1971 where the vertex set X consists of 
involutions which product of any two involutions of X has 
order at most three, known as 3-transposition group. The 
examples of 3-transposition groups can be viewed on the 
discovery of three sporadic simple groups Fi22, Fi23 and 
Fi'24. Several recent researchers (Bates et al. 2007, 2004, 
2003a, 2003b) have attributed to the studies of commuting 
graphs for certain finite groups G with conjugacy class 
of involutions being the vertex set. The finite groups are 
symmetric group, Coxeter groups, special linear groups, 
and sporadic simple groups, respectively. Then, the venture 
of commuting graph was then extended to dealing with 
elements of larger order - conjugacy class of elements 
of order three to be the vertices of commuting graph 
(Nawawi & Rowley 2015; Nawawi et al. 2019). All these 
studies specifically concentrate on the connectivity of 
commuting graphs - either connected or disconnected. 
For the case of connected commuting graphs, the diameter 

and the structure of each discs in commuting graph are 
presented in detail.
	 For the majority of cases of commuting graph, 
G acts upon X by conjugation and induces graph 
automorphisms of C(G, X). Besides, G is transitive 
permutation representation on the set of vertices X. The 
graph C(G, X) is constructed by a set of vertices X = tG and 
note that t ∈ G is chosen arbitrarily to be an initial vertex 
of C(G, X). For t ∈ G, we define the ith disc of t, Δi (t) (i ∈ 
ℕ ), which is Δi (t) = {x ∈ X | d(t, x) = i} where d(,) is the 
usual distance metric on C(G, X). The diameter of C(G, 
X) is denoted by Diam C(G, X). In this paper, the vertices 
of C(G, X) are the elements of order three in one of the 
symplectic groups G, either S4(2)', S4(3) or S6(2). Without 
loss of generality, G is assumed to be represented by its 
smallest degree of permutation representation and the 
cycle type of t is 3r 1n-3r, where r ∈ ℕ  is the number of 
-cycles in . Thus, it is expressed by
t = t1 t2∙∙∙ tr = (a1,1, a1,2, a1,3) (a2,1, a2,2, a2,3)∙∙∙ (ar-1,1, ar-1,2), 
ar-1,3) (ar,1, ar,2, ar,3).

Throughout the paper, notations used for the names of 
conjugacy class follow the ATLAS’s conventions (Wilson 
et al. 2017). 

This paper is organized as follows. The next section 
begins with some details of how the calculations were 
performed as well as introducing relevant notations. 
The following section presents the tabulated data on the 
diameters and the orbit structures of subgraph D(G, X) of 
disconnected C(G, X) in Tables 1 and 2 and provides some 
general results in accordance to the properties of certain 
elements in the connected component of disconnected 
C(G, X). Finally, a conclusion about the whole research is 
drawn in the last section.

MATERIALS AND METHODS

This paper considers all graphs to be simple, finite, and 
undirected. A graph Γ is built with the set of vertices V 
and the set of edges E. Two vertices u,v ∈ V are adjacent 
if there is an edge joining them. A graph Γ is connected 
if for any two vertices u,v ∈ V are linked by a path in Γ, 
otherwise the graph is disconnected. The distance between 
vertices u, v ∈ Γ or the length of a shortest path is written 
as d (u,v). Then, Diam (Γ) = max{d(u,v) | u,v ∈ V}. The 
degree of u ∈ V, deg(u) is the number of edges incident 
with u. Let Γ1 and Γ2 be two graphs with  V1 ⊆ V2 and E1 
⊆ E2, respectively, then Γ1 is a subgraph of Γ2 (Malik et 
al. 2014).

Recall that, for G a symplectic group either S4(2)', 
S4(3) or S6(2), and X a G-conjugacy class of elements of 
order p = 3. The calculations will be carried out using the 
smallest permutation representation for G supplied by the 
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ATLAS together with the aid of algebra package MAGMA 
(Bosma et al. 1997). For the commuting graph C(G, X), an 
element t ∈ G is fixed, and then the size of Δi (t) on X and 
Diam C(G, X) are determined. Clearly, when t is adjacent 
to some elements x ∈ X, it will be linked by edges since 
tx = xt. All neighbours of t are now located in the first disc 
Δ1 (t) which shows d(t, x) = 1 for x ∈ Δ1 (t). Despite the 
fact that some elements y ∈ Δ1 (t) might commute with 
some other elements in the same disc, they will also be 
connected to the rest of elements x ∈ X\ Δ1 (t) such that yx 
= xy. Therefore, all the elements are put in the second disc 
Δ2 (t). This process repeated and will be stopped until the 
last disc of t. However, if |t| + ∑i|Δi(t)| ≠ |X|, then the graph 
C(G, X) is actually disconnected. Thus, the elements 
with the size |t| + ∑i|Δi (t)| are putting in a component or 
subgraph, called D(G, X).

Under the action of the centralizer of t in G, 
denoted by CG(t), the discs Δi(t) are broken into smaller 
understandable parts called suborbits or we call them as 
CG(t)-orbits. An arbitrary element x ∈ X is selected to 
represent each CG(t)-orbit to be a CG(t)-orbit representative. 
The interest in identifying the size of each CG(t)-orbit of  is 
to compute the size of centralizer 𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉)  〈t,x〉. 

Now, for each CG(t)-orbit, the focus is on the 
subgroup  H = 〈t,x〉 that is generated by t, x ∈ X . Let 
m to be the order of the product tx ∈ X and m||〈t,x〉|. Up 
to isomorphisms, the group that is isomorphic to H is 
identified. The cases of the abelian groups are done by 
comparing the orders of elements in H. If H are found to 
be non-abelian and non-simple groups, a group extension is 
solved by breaking down a group as a certain combination 
of simple groups. The group extension can be classified 
by letting N and F be two groups, then H' is an extension 
of F by N if there is an exact sequence 1→N→H'→F→1. 
Clearly, H' is a group, N is a normal subgroup of H' and 
the group F is isomorphic to the quotient group H'/N. Then, 
H' is decided to be either H' = N × F (the direct product), 

H' = N : F (the split extension of N and N ), or H' = N ∙ F 
(the non-split extension of N and F).

RESULTS AND DISCUSSION

This section is begun by providing the supplementary 
notations and preliminaries. Let Ω = {1,2, …, n} and 
Sym(Ω) = Sym(n). For t ∈ G and x is any other permutation 
in X, supp(x) is denoted as the set of points of Ω not fixed 
by x. Suppose two sets X and Y in G and X ⊆ Y which 
simply means either X is contained inside Y or X = Y. 
Besides, Λ and Δ  are given as  Λ = supp(t) ∩ supp(x) and 
Δ = supp(t) ∪ supp(x). Now, let  i, j, k ∈ ℕ  and assume x 
to be one or combinations of these products - the product 
of 3-cycles αi which are left uncycled or being inverted, 
the product of 3-cycles ρj which are obtained by cycling 
disjoint sets of three 3-cycles of t and the product of 
3-cycles σk with supp(σk) = Ω\ supp(t), in whichi, j, k ∈ ℕ   
are actually the lengths of the product of pairwise disjoint 
3-cycles of t.

Let G be a symplectic group and X is a G-conjugacy 
class for p = 3. By applying the methods explained in 
previous section on MAGMA (Bosma et al. 1997), 
observe that C(G, X) is disconnected when:

G = S4(2)' and X = 3A, 3B, 3AB; G = S4(3) and X = 3C,3D; 
G = S6(2) and X = 3B,3C.

Moreover, let D(G, X) be the connected component 
of C(G, X), then D(G, X) is also subgraph of C(G, X). Then, 
the diameters and the orbit structures of subgraph D(G, 
X) for p = 3 are presented in Tables 1 and 2, respectively. 

These analyses also include other important 
measures such as |D(G, X)| - the sizes of subgraphs D(G, 
X) of C(G, X), |Δi(t)| - the sizes of Δi(t), ND - the numbers 
of subgraphs D(G, X) in C(G, X), tx ∈ X - the conjugacy 
class of the product t ∈ G and x ∈ X, |Oi(t)| – the sizes 
of CG(t)-orbits in each Δi(t) and 〈t,x〉 - the subgroups 
generated by  t ∈ G and x ∈ X, as well as their orders.

TABLE 1.  The diameters of each D(G, X)
 

G X |CG(t)| |X| |D(G, X)|  |Δ1(t)|  |Δ2(t)| ND

S4(2)' 3A 9 40 4 3 - 10

3B 9 40 4 3 - 10

3AB 18 80 8 7 - 10

S4(3) 3C 108 240 6 5 - 40

3D 54 480 12 11 - 40

S6(2) 3B 648 2 240 80 25 54 28

3C 108 13 440 12 11 - 1 120
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TABLE 2.  The orbit structures of each D(G, X)
 

G X  Δi (t) tx ∈ X N Oi(t) |Oi(t) | |〈t,x〉| 〈t,x〉

S4(2)' 3A  Δ1(t) 1A 1 1 3 A3

3B 2 1 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3B  Δ1(t) 1A 1 1 3 A3

3A 2 1 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3AB Δ1(t) 1A 1 1 3 A3

3AB 3 2 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

S4(3) 3C Δ1(t) 1A 1 1 3 A3

3D 1 4 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3D Δ1(t) 1A 1 1 3 A3

3A 1 2 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3B 1 2 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3C 1 2 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3D 2 2 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

S6(2) 3B Δ1(t) 1A 1 1 3 A3

3A 1 12 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3C 1 12 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

Δ1(t) 4A 1 27 24      Q 8 : ℤ3 × ℤ3 

 

3 

6C 1 27 24      Q 8 : ℤ3 × ℤ3 

 

3 

3C Δ1(t) 1A 1 1 3 A3

3A 1 2 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3B 1 4 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

3C 1 4 9     ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 

Lemma 1 Let t ∈ G be an element of order three of 
cycle type 3r 1n-3r and x ∈ X = tG (or simply an element in 
the same conjugacy class as t), then t commutes with some 
of the following observations:
x = α1 α2 …αi, the product of r = i pairwise disjoint 3-cycles 
of t; x = α1 α2…αi ρ1 ρ2 … ρj, the product of  r = i + j pairwise 
disjoint 3-cycles of , the product of  pairwise disjoint 
3-cycles of  t; and x = ρ1 ρ2 … ρj σ1σ2…σk, the product of  
r = j + k pairwise disjoint 3-cycles of t.

Proof Suppose x = α1 α2…αi, the product of r = i pairwise 
disjoint 3-cycles of t. By the definition, the product of 
αi are the 3-cycles of  which are left uncycled or being 
inverted. Clearly, supp(t) = supp(x) and Λ = Δ. Furthermore, 
x = t-1 is one of the elements in X which has the required 
property where all of 3-cycles of  are being inverted and 
consequently tx = xt. 
Let x = ρ1 ρ2 … ρj be the product of r = j pairwise disjoint 
3-cycles of t. It is defined as the product of 3-cycles ρj 
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which are obtained by cycling disjoint sets of three 3-cycles 
of t. Hence there is a connection between t, x ∈ X due to 
supp(t) = supp(x) and Λ = Δ. Let say t = t1 t2 … tr, then 
any three disjoint 3-cycles of t are chosen such that t1 t2 t3 
= (a1,1, a1,2, a1,3) (a2,1, a2,2, a2,3) (a3,1, a3,2, a3,3) where {a1,1, 
a1,2, a1,3} ∈ t1, {a2,1, a2,2, a2,3} ∈ t2 and {a3,1, a3,2, a3,3} ∈ t3 . 
For any three disjoint 3-cycles of x = ρ1 ρ2 … ρj , consider 
ρ1 ρ2 ρ3 = (b1,1, b1,2, b1,3) (b2,1, b2,2, b2,3) (b3,1, b3,2, b3,3), with  
{b1,1, b1,2, b1,3} ∈ ρ1, b2,1, b2,2, b2,3} ∈ ρ2 and b3,1, b3,2, b3,3} ∈ 
ρ3. In making sure supp(t1t2t3) = supp(ρ1ρ2ρ3), note that s* 
= supp(t1t2t3) ∩ supp(ρ1ρ2ρ3) with |s*| = 9 and supp(t1t2t3) 
∪ supp(ρ1ρ2ρ3) . 

For x = α1 α2…αi ρ1 ρ2 … ρj, the product of r = i + j pairwise 
disjoint 3-cycles of t. Following the same argument as in 
Part 1 and Part 2, supp(t) = supp(x) and Λ = Δ, then  t, x ∈ 
X commute with each other.

Suppose x = ρ1 ρ2 … ρj σ1σ2…σk be the product of r = j 
+ k pairwise disjoint 3-cycles of t. With the existence of 
k  pairwise disjoint 3-cycles of σ1σ2…σk, then supp(t) ≠  
supp(x) and Λ ⊆ Δ. Furthermore, t satisfies supp(t) ⊆ Ω 
and it is proved that t, x ∈ X commute.

In the next result, any three disjoint 3-cycles of  are 
focused such that t1t2t3 = (a1,1, a1,2, a1,3) (a2,1, a2,2, a2,3) (a3,1, 
a3,2, a3,3) where a1,1, a1,2, a1,3} ∈ t1, {a2,1, a2,2, a2,3} ∈ t2 and 
{a3,1, a3,2, a3,3} ∈ t3.
Theorem 1 Suppose that D(G, X)  denotes one of the 
subgraph in the disconnected C(G, X). Then, D(G, X) is 
isomorphic to each other. Thus, the number of subgraphs 
equals the size of each subgraph divides the size of the 
conjugacy class X, ND = |𝑋𝑋𝑋𝑋|

|𝐷𝐷𝐷𝐷(𝐺𝐺𝐺𝐺,𝑋𝑋𝑋𝑋)|
 .

Proof Note that t is of cycle type 3r 1n-3r where r ∈ ℕ ,  X = 

tG and G < Sym(Ω) (or Sym(n)). Let q = Ω\supp(t). If  n = 
3r + q then, t fixes only q points. Clearly, any conjugate 
of  t(x ∈ X) that commute with t will also fix q points. So 
does every conjugate of t contained in the subgraph of 
C(G, X). Hence C(G, X) is disconnected. In other words, all 
subgraphs D(G, X) are isomorphic of size h ∈ ℕ . In order to 
compute the number of subgraph in the disconnected C(G, 
X), every subgraph contains elements of  X which giving 
a path (t, x) in D(G, X). As G is transitive on the vertices of 
C(G, X), then this simply contributes the formula .	             	
	

					                	                            
Lemma 2 Assume that t ∈ G be an element of order three 
and i ∈ ℕ  then, x ∈ Δi (t) if the following observations hold:

Proof The fact that the subgroup H = 〈t, x〉 is of order three 
which is a prime number, then there is a unique, up to 
isomorphism, a group of prime order named as the cyclic 
group. Clearly, 𝐻𝐻 ≅ ℤ3 ≅ 𝐴𝐴3  which has the presentation  
〈t, x|t3 = x3 = tx = 1〉 and contains elements of orders 1 and 
3. Additionally, the subgroup H is an elementary abelian 
and simple group.  

For this case, the subgroup H = 〈t, x〉 is of order 9. Clearly, 
there are only two possibilities of groups having order 
9, either it is a cyclic group ℤ9 , or a direct product of 
two cyclic groups, ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3. Knowing that t and x are both 
elements of conjugacy class of order three and the order 
of tx is also three in which consequently H can have the 
presentation 〈t, x|t3 = x3 = (tx)3 = 1〉, the latter candidate of 
group of order 9. The subgroup ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 is an elementary 
abelian, non-cyclic and non-simple group.

The subgroup H = 〈t, x〉 is of order 24 = 23 ⋅ 3. Undeniably, 
there are 15 candidates of small groups of order 24 and 
both t and x are elements of conjugacy class of order 
three and the product tx is either element of class 4A or 
6C. Note that H is non-abelian, non-simple and solvable 
group. In order to guess which group is isomorphic to 
H, assume that N be a normal subgroup of H which is 
isomorphic to a quartenion group of order 8, Q8. Then, 
the corresponding factor group F = H/N is determined as 
a cyclic group of order 3. Moreover, we can tackle this 
case by using another normal subgroup N' of S ∈ Syl2(H) 
with factor group R = S/N' such that N'R = S and N' ∩ 
R. There exists an identity of group in S/N' to show that 
S splits over N', so does H. Therefore, 𝐻𝐻 ≅ 𝑄𝑄8: ℤ3, , a split 
extension of a cyclic group of order 3 by Q8.	

Theorem 2 Let  NOi(t)  be the number of 𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉) -orbit in each 
Δi (t). Then we have 
					   
						    

Proof In order to obtain which disc of t contain the vertices 
of X, we may utilize the size of Δi (t) to unite certain of 
𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉) -orbits of X. The size of Δi (t) is merged by the variety 
size of 𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉) -orbits where |𝒪𝒪𝑖𝑖(𝑡𝑡)| =

|𝐶𝐶𝐺𝐺(𝑡𝑡)|
|𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉)|

⁄          

|CG(t)|is divided by |𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉) (〈t, x〉)|, instead of considering  
𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉)  (x) (Nawawi 2013). Simultaneously, |Oi(t)|are 
positioned together with NOi(t) of the same size of the 
CG(t)-orbit. So, we formulate Δi (t) = NOi(t)(|CG(t)|/|𝐶𝐶𝐶𝐶𝐺𝐺(𝑡𝑡)(〈𝑡𝑡, 𝑥𝑥〉) 
(〈t, x〉)|). 	             			                        

One of the features in studying of commuting graph 
is that it can be represented pictorially where we can draw 
a diagram so-called the collapsed adjacency diagram. Let 
Δℓ
𝑘𝑘(𝑡𝑡)  and Δℓ′

𝑘𝑘′(𝑡𝑡)  are two CG(t)-orbits of X. A collapsed 
adjacency diagram defines the interactions between these 

𝑁𝑁𝐷𝐷 = |𝑋𝑋|
|𝐷𝐷(𝐺𝐺,𝑋𝑋)|.           

1. 𝑥𝑥 ∈ Δ1(𝑡𝑡) and |〈𝑡𝑡, 𝑥𝑥〉| = 3, then 𝐻𝐻 = 〈𝑡𝑡, 𝑥𝑥〉 ≅ 𝐴𝐴3. 

2. 𝑥𝑥 ∈ Δ1(𝑡𝑡) and |〈𝑡𝑡, 𝑥𝑥〉| = 9, then 〈𝑡𝑡, 𝑥𝑥〉 ≅ ℤ3 × ℤ3. 

3. 𝑥𝑥 ∈ Δ2(𝑡𝑡) and |〈𝑡𝑡, 𝑥𝑥〉| = 24, then 〈𝑡𝑡, 𝑥𝑥〉 ≅ 𝑄𝑄8: ℤ3. 

 

.
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orbits. Figure 1 considers a circle to denote an orbit with 
a name within the circle. A line together with an arrow on 
one end of the line is drawn from an orbit to other orbit, 
thus it displays some edges exist between vertices in these 

orbits. A vertex in the orbit Δℓ
𝑘𝑘(𝑡𝑡)  may be connected to ϵ 

vertices in Δℓ
𝑘𝑘(𝑡𝑡) , and to α vertices in Δℓ′

𝑘𝑘′(𝑡𝑡) . Then, a vertex 
in the orbit Δℓ′

𝑘𝑘′(𝑡𝑡)  is connected to ϵ' vertices in Δℓ′
𝑘𝑘′(𝑡𝑡) , and 

to α' vertices in Δℓ
𝑘𝑘(𝑡𝑡) .

FIGURE 1. Interactions of orbits in a collapsed adjacency diagram

FIGURE 2. Interactions of trivial orbits in a collapsed adjacency diagram

 

 

 

 

If every CG(t)-orbit contains only one vertex, then that orbit 
is illustrated by a small black circle without any labeling 
as in Figure 2.

 

 

 

 

Example 1 By referring to ATLAS (Wilson et al. 2017), 
symplectic group S4(2)' is isomorphic to L2(9), the projective 
special linear group of degree two over field  𝔽𝔽9 , and also 
to A6, the alternating group of degree 6. From now, for the 
purpose of computation, let S4(2)' 𝐻𝐻 ≅ 𝑄𝑄8: ℤ3,  A6 which are generated 
by a = (1,2) (3,4) and b = (1,2,3,5) (4,6). Consider the first 
conjugacy class of element of order three in S4(2)' which is 
denoted by 3A. Assume t now as  3A class representative 
which is given as the product ababab-1 ab2 which is actually  
t = (1,6,3) (Wilson et al. 2017), an element of cycle type 
3113. Now, observing the conjugacy class 3A:

𝑋𝑋 = 3𝐴𝐴 = 𝑡𝑡𝐺𝐺 = (1,6,3)𝐺𝐺 

𝑋𝑋 = {(1, 6, 3), (2, 6, 4), (2, 4, 5), (3, 4, 6), (1, 3, 5), (1, 3, 6), (3, 6, 4), (4, 5, 6), (1, 2, 5), 

          (2, 4, 6), (2, 5, 4), (4, 6, 5), (3, 5, 6), (1, 4, 6), (1, 5, 2), (1, 2, 3), (1, 5, 3), (3, 6, 5), 

           (1, 6, 4), (1, 4, 5), (2, 3, 6), (1, 3, 2), (1, 4, 2), (2, 3, 5), (1, 5, 4), (2, 6, 3), (1, 2, 6), 

          (3, 5, 4), (1, 2, 4), (2, 5, 3), (1, 6, 2), (3, 4, 5), (2, 3, 4), (1, 6, 5), (2, 4, 3), (1, 5, 6), 

          (1, 4, 3), (2, 6, 5), (1, 3, 4), (2, 5, 6)}.
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Clearly, t = (1,6,3) commutes with only three elements 
in X, that is t-1 = (1,3,6), which satisfying Lemma 1 (1), and 
also with (2,4,5) and (2,5,4), which satisfying Lemma 1 
(4). Hence, it is now confirmed that the commuting graph 
C(S4(2)',3A) is disconnected and we may set the vertex set 

of first subgraph (or component) of C(S4(2)',3A) to be:  

The subgraph D1(S4(2)',3A) can be viewed as a 
complete graph K4 of diameter 1 as shown in Figure 3: 

𝑉𝑉(𝐷𝐷1(𝑆𝑆4(2)′, 3𝐴𝐴)) = {(1,6,3), (1,3,6), (2,4,5), (2,5,4)}. 

 

FIGURE 3.  The subgraph D1(S4(2)',3A)  

FIGURE 4.  The subgraph D2(S4(2)',3A)  

 

 

 

 

 

 

 

(1,3,6) 

(2,5,4) 

(1,6,3) 

(2,4,5) 

In order to construct another subgraph (or 
component) of C(S4(2)',3A), we may choose, without 
loss of generality, an element X in which is not in 
V(D1(S4(2)',3A), say x = (1,2,5). Obviously, we can have 
the vertex set of second subgraph (or component) of 

𝑉𝑉(𝐷𝐷2(𝑆𝑆4(2)′, 3𝐴𝐴)) = {(1,2,5), (1,5,2), (3,4,6), (3,6,4)}. 

 

C(S4(2)',3A) to be:  

The subgraph D2(S4(2)',3A) also can be viewed as a 
complete graph K4 of diameter 1 as in Figure 4: 

 

 

 

 

 

 

 

(1,5,2) 

(3,6,4) 

(1,2,5) 

(3,4,6) 

Thus, the subgraph D1(S4(2)',3A)  is isomorphic to the 
subgraph D2(S4(2)',3A) and in fact, if we proceed for the 
rest of elements in X = 3A, we will get the isomorphism 
between all subgraphs of C(S4(2)',3A). Therefore, the 

number of subgraphs ND can be obtained by dividing the 
size of X and the size of each subgraph as shown below:

𝑁𝑁𝐷𝐷 =
|𝑋𝑋|

|𝑉𝑉(𝐷𝐷(𝑆𝑆4(2)′, 3𝐴𝐴))|
= 40

4 = 10 

 



556	

conforming the information given in Table 1 and 
consequently satisfying Theorem 1.

Now, dealing with elements in V(D1(S4(2)',3A), say  t 
= (1,6,3) and x1 = (1,3,6), the product tx1 = (1) ∈ 1A whilst 
if x2 = (2,4,5) and x3 = (2,5,4), their products tx2 = (1,6,3) 
(2,4,5) and tx3 = (1,6,3) (2,5,4) are both elements in 3B (a 
conjugacy class of element of order three and the cycle 
type of its elements is 32). 
Additionally, the subgroup generated by t = (1,6,3) and 
x1 = (1,3,6), denoted by < t, x1>, can be described below:

< t, x1> = < (1,6,3), (1,3,6) > = {(1),(1,6,3),(1,3,6)}

which is isomorphic to the alternating group A3, thus 
satisfying Lemma 2(1).

Furthermore, the subgroup generated by t = (1,6,3) 
and x2 = (2,4,5), denoted by < t, x2>, can be described 
below:

  < t, x2 > = < (1,6,3), (2,4,5) >
                ={(1), (1,6,3), (1,3,6), (2,4,5), (2,5,4), (1,6,3) 	
		       (2,4,5), (1,6,3) (2,5,4), (1,3,6) (2,4,5),  		
		       (1,3,6) (2,5,4)}
              
which is isomorphic to the direct product of an elementary 
abelian group Z3 with itself or simply written as  ℤ3 × ℤ3 

 

3 × ℤ3 × ℤ3 

 

3 ,  
thus satisfying Lemma 2(2). Therefore, D(S4(2)',3A) breaks 
into 3 CG(t)-orbits in Δ1(t) which supports Theorem 2 such 
that:

Each CG(t)-orbit in D(S4(2)',3A) is of size 1 and the 
collapsed adjacency diagram of D(S4(2)',3A) is designed 
as in Figure 4. On the other hand, the commuting graph 
C(S4(2)',3B) also demonstrates the same properties as the 
commuting graph C(S4(2)',3A). 

CONCLUSION

This research contributes to the study of commuting 
graph C(G, X) for symplectic groups S4(2)', S4(3) and S6(2). 
The graphs C(G, X) considered here are all disconnected 
hence motivated us to determine the structure of the 
components or subgraphs of C(G, X), denoted by D(G, 
X). Our main concern is its diameter as well as the size 
of each discs in the subgraphs. Additionally, study of 
the commuting graphs leads naturally to consideration 
of the suborbit structure of the class X. Once all the 
suborbits have been located, we determine the subgroup 
〈t, x〉 for every representative  x ∈ X in all discs Δi(t). Two 
mathematical formulas are also derived and proved, one 
gives the number of subgraphs based on the size of each 

subgraph and the size of the conjugacy class, whilst the 
other one gives the size of disc relying on the number and 
size of suborbits in each disc.
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