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Predicting 30-Day Mortality after an Acute Coronary Syndrome (ACS) using 
Machine Learning Methods for Feature Selection, Classification and Visualisation
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untuk Pemilihan Ciri, Pengelasan dan Pemvisualan)
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ABSTRACT

Hybrid combinations of feature selection, classification and visualisation using machine learning (ML) methods have 
the potential for enhanced understanding and 30-day mortality prediction of patients with cardiovascular disease 
using population-specific data. Identifying a feature selection method with a classifier algorithm that produces high 
performance in mortality studies is essential and has not been reported before. Feature selection methods such as Boruta, 
Random Forest (RF), Elastic Net (EN), Recursive Feature Elimination (RFE), learning vector quantization (LVQ), Genetic 
Algorithm (GA), Cluster Dendrogram (CD), Support Vector Machine (SVM) and Logistic Regression (LR) were combined 
with RF, SVM, LR, and EN classifiers for 30-day mortality prediction. ML models were constructed using 302 patients 
and 54 input variables from the Malaysian National Cardiovascular Disease Database. Validation of the best ML model 
was performed against Thrombolysis in Myocardial Infarction (TIMI) using an additional dataset of 102 patients. The 
Self-Organising Feature Map (SOM) was used to visualise mortality-related factors post-ACS. The performance of ML 
models using the area under the curve (AUC) ranged from 0.48 to 0.80. The best-performing model (AUC = 0.80) was a 
hybrid combination of the RF variable importance method, the sequential backward selection and the RF classifier using 
five predictors (age, triglyceride, creatinine, troponin, and total cholesterol). Comparison with TIMI using an additional 
dataset resulted in the best ML model outperforming the TIMI score (AUC = 0.75 vs. AUC = 0.60). The findings of this 
study will provide a basis for developing an online ML-based population-specific risk scoring calculator. 
Keywords: Acute coronary syndrome; feature selection; hybrid model; machine learning; self-organising maps

ABSTRAK

Gabungan hibrid pemilihan ciri, pengelasan dan pemvisualan menggunakan kaedah pembelajaran mesin (ML) mempunyai 
potensi untuk pemahaman yang lebih baik untuk ramalan kematian pesakit bagi tempoh 30 hari dengan penyakit 
kardiovaskular menggunakan data penduduk yang khusus. Mengenal pasti ciri-ciri kaedah pemilihan dengan algoritma 
pengelas yang menghasilkan prestasi tinggi dalam kajian kematian adalah penting dan tidak pernah dilaporkan sebelum 
ini. Ciri-ciri kaedah pemilihan seperti ‘Boruta’, ‘Random Forest’ (RF), ‘Elastic Net’ (EN), ‘Recursive Feature Elimination’ 
(RFE), ‘Learning Vector Quantization’ (LVQ), ‘Genetic Algorithm’ (GA), ‘Cluster Dendrogram’ (CD), ‘Support Vector 
Machine’ (SVM) dan ‘Logistic Regression’ (LR) telah digabungkan dengan algoritma bagi pengelasan RF, SVM, LR dan 
EN bagi ramalan kematian bagi tempoh 30 hari. Model ML telah dibina menggunakan 302 pesakit dan 54 pemboleh 
ubah input dari Pangkalan Data Penyakit Kardiovaskular Kebangsaan Malaysia. Pengesahan terbaik model ML telah 
dijalankan dengan  Trombolisis dalam Infarksi Miokardium (TIMI) menggunakan set data tambahan daripada 102 
pesakit. Peta swaurus (SOM) telah digunakan untuk menggambarkan faktor yang berkaitan dengan kematian selepas 
ACS. Prestasi model diukur menggunakan kawasan di bawah lengkung (AUC) antara 0.48-0.80. Model terbaik mencatatkan 
(AUC = 0.80) adalah gabungan hibrid RF cara kepentingan berubah-ubah, pemilihan ke belakang berurutan dan 
pengelas RF menggunakan lima peramal (umur, trigliserida, kreatinin, troponin dan jumlah kolesterol). Model terbaik 
telah dibandingkan dengan TIMI menggunakan set data tambahan yang menyebabkan model ML mengatasi TIMI (AUC 
= 0.75 vs AUC = 0.60). Penemuan daripada kajian ini akan digunakan sebagai asas untuk membangunkan talian ML 
berdasarkan pengiraan pemarkahan risiko yang penduduk tertentu.
Kata kunci: Model hibrid; pembelajaran mesin; pemilihan ciri; peta swaurus sindrom koronari akut
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INTRODUCTION
Heart attack or acute coronary syndrome (ACS) is 
the leading cause of mortality in the world (Castro-
Dominguez et al. 2018). ACS is categorised into 
ST-elevation myocardial infarction (STEMI), non-ST 
elevation myocardial infarction (NSTEMI), and unstable 
angina (UA) (Torres et al. 2007). In Malaysia, 20-25% 
of all deaths are due to coronary artery disease (Hoo 
et al. 1969). Conventional predictive tools such as 
Thrombolysis in Myocardial Infarction (TIMI) score and 
the Global Registry of Acute Cardiac Events (GRACE) have 
limitations. Data may be lost due to fixed expectations 
on data performance and rigidness in the criteria for pre-
selecting variables (Shouval et al. 2017). The TIMI risk 
score was developed from a North American population 
with limited participation from an Asian population. It is 
the most widely used risk predictor in Malaysia to predict 
ACS outcomes.

It is important to consider the significant population-
specific mortality-related features of Malaysian ACS 
patients. It is to achieve a reliable, effective clinical 
diagnosis specifically tailored for the Malaysian population 
to reduce ACS-related mortality rate and monetary 
costs. The recognition of significant risk factors associated 
with Malaysian-specific mortality is pivotal as it allows 
for more accurate diagnosis, increases mortality rates, and 
reduces financial burdens.

Machine learning (ML) methods, consisting of 
automatic feature selection, allow the manipulation 
of large numbers of predictors and does not require 
underlying assumptions regarding the relationship between 
input and output features (Chen et al. 2012). Feature 
selection methods are categorised according to the ML 
classification algorithms used: embedded, filter, and 
wrapper methods. The filter method is a standalone feature 
selection method; the wrapper method uses data mining 
algorithms such as recursive feature elimination (RFE), 
sequential backward selection (SBS) and forward feature 
selection; and the embedded method is a combination of 
both filter and wrapper. Well-established examples for 
the wrapper and embedded methods include Random 
Forest (RF) and Elastic Net (EN). Achieving the highest 
accuracy of performance and selecting the smallest number 
of features are essential for optimising ML classification 
algorithms.

In mortality-related studies, RF, Naïve Bayes (NB), 
Logistic Regression (LR), Support vector machine (SVM) 
have been used for feature selection and prediction of 
mortality post-ACS and outperformed conventional 

methods such as TIMI and GRACE (Collazo et al. 2016; 
Motwani et al. 2016; Shouval et al. 2017; Steele et al. 
2018; Wallert et al. 2017). Kohonen Self-Organising Map 
(SOM) allows the discovery of relationship and pattern in a 
dataset that leads to the discovery of knowledge through 
the visualisation of SOM maps. SOM has been used in 
the analysis of paediatric fracture (Kohonen et al. 2001; 
Malek et al. 2018; Tuckova et al. 2013). Application of 
SOM to discover and visualise the relationship between 
mortality-related variables is essential and has not been 
addressed in mortality-related studies.

The objective was to investigate the feasibility of 
various feature selection methods and ML classifiers to 
improve the deductive reasoning and performance for 
the prediction of 30-day mortality post-ACS using 
Malaysian-specific dataset. The use of different categories 
of feature selection methods to improve mortality 
prediction models has not been reported in the literature. 
We also compare the ML model with the conventional 
TIMI risk scoring method. We also propose SOM to 
visualise and identify the mortality-related factors post-
ACS. The proposed study will further be used to develop 
an online population-specific ML-based mortality risk 
calculator.

MATERIALS AND METHODS

The National Cardiovascular Disease-Acute Coronary 
Syndrome (NCVD-ACS) Registry records information 
about patients treated at participating institutions across 
Malaysia. The study cohort was drawn from registered 
patients admitted to the Coronary Care Unit (CCU), 
Universiti Teknologi MARA (UiTM) Sungai Buloh 
Hospital for ACS between 2014 and 2016. Fifty-four input 
variables were used based on the recommendation of the 
cardiologist. The hospital cardiologist agreed to diagnosis 
ACS based on clinical symptoms, electrocardiograms, 
biomarkers, and echocardiograms. Datasets from 302 
patients with 54 variables were used without data 
imputation (11 continuous and 43 categorical; Table 1). 
Data were split for model training (70%) and testing 
(30%); similar datasets were used in the construction of 
all ML models (Hinde et al. 2003; Kuhn et al. 2008). An 
additional 102 datasets were used for comparing the best 
ML model found in this study with the conventional TIMI 
risk scoring method, a standard method, used in Malaysian 
hospitals. The present study was approved by the 
Institutional Review Board of the Universiti Teknologi 
MARA, which waived patients’ informed consent. All data 
was then provided to the researchers for this study.
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TABLE 1. Summary statistics of predictors used in this study. The table shows the values which are mean ± SD or median derived 
from SPSS; Uncorrected P-values are from Welch’s t-tests if the variable is continuous, or Pearson Chi-square test if categorical

All cases
(n =302)

Survivors
(n = 279)

Non-survivors
(n = 23) p-value Confident interval

(CI = 95%)

Age (years) 56.72 ± 11.7 56.5 ± 11.5 58.7 ± 14.3 0.001 55.40-58.06

Age group

29-55 131 (43.3%) 123 (44.1%) 8 (34.78%)

55-65 101 (33.44%) 94 (33.69%) 7 (30.43%)

Above 65 70 (23.17%) 62 (22.22%) 8 (34.78%)

Gender

Male 206 (68.2%) 189 (67.7%) 17 (73.9%) 0. 001

Female 96 (31.7%) 90 (32.2%) 6 (26.0%)

Ethnicity

Malay 159 (52.6%) 146 (52.3%) 13 (56.5%) 0. 001

Chinese 28 (9.27%) 26 (9.31%) 2 (8.69%)

Indian 104 (34.43%) 97 (34.7%) 7 (30.43)

Others 11 (3.64) 10 (3.58%) 1 (4.34%)

PCI type 286 (94.7%) 263 (94.2%) 23 (100%) 0. 001

Combined diabetes melitus 
and ACS subtypes 122 (40.3%) 112 (40.1%) 10 (43.4%) 0.612

Thrombolysis 279 (92.3%) 258 (92.4%) 21 (91.3%) 0. 001

Stk successful 279 (92.3%) 258 (92.4%) 21 (91.3%) 0. 001

LCL Simon Broome 281 (93.0%) 259 (92.8%) 22 (95.6%) 0. 001

TC Simon Broome 290 (96.0%) 269 (89.0%) 21 (91.3%) 0. 001

ACS subtype 0. 001

Unstable angina 170 (56.29%) 161 (57.7%) 9 (39.1%)

NSTEMI 77 (25.49) 67 (24.01%) 10 (43.47%)

STEMI 51 (16.88%) 47 (16.84%) 4 (17.39%)

Others ACS Subtype 4 (1.32) 4 (1.43%) 0 (0%)

Smoker 232 (76.8%) 212 (75.9%) 20 (86.9%) 0. 001

Ex-smoker 270 (89.4%) 248 (88.8%) 22 (95.6%) 0. 001

Hypertension 230 (76.1%) 210 (75.2%) 20 (86.9%) 0. 001

Alcohol 292 (96.6%) 270 (96.7%) 22 (95.6%) 0.001

Diabetes mellitus 180 (59.6%) 167 (59.8%) 13 (56.5%) 0. 001

Newly dm 294 (97.3%) 271 (97.1%) 23 (100%) 0.005

TC (mmol/L) 4.89 ± 1.31 4.92 ± 1.30 4.52 ± 1.48 0. 001 4.74-5.04

LDL (mmol/L) 3.04 ± 1.13 3.07± 1.13 2.70 ± 1.11 0. 001 2.92-3.17

HDL (mmol/L) 1.02 ± 0.27 1.03 ± 0.26 0.94 ± 0.28 0.103 0.99-1.05

Ticagrelor 293 (97.0%) 270 (96.7%) 23 (100%) 0. 001
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FBS (mmol/L) 7.98 ± 3.43 7.97 ± 3.37 8.13 ± 4.19 0. 001 7.59-8.37

eGFR (mL/min) 66.55 ± 34.11 67.33 ± 33.77 56.99 ± 37.39 0. 001 62.6-70.4

ACE 204 (67.5%) 191 (68.4%) 13 (56.5%) 0. 001

CCB 225 (74.5%) 206 (73.8%) 19 (82.6%) 0. 001
Beta blockers 221 (73.1%) 206 (73.8%) 15 (65.2%) 0. 001
Treatment-modality 277 (91.7%) 256 (91.7%) 21 (91.3%) 0. 001
Clopidogrel 235 (77.8%) 221 (79.2%) 14 (60.8%) 0. 001

ARB 283 (93.7%) 260 (93.1%) 23 (100%) 0. 001

Statins 292 (96.6%) 269 (96.4%) 23 (100%) 0. 001

Statin dosage(mg) 164 (54.3%) 150 (53.7%) 14 (60.8%) 0. 001

Statin medication type 147 (48.6%) 141 (50.5%) 6 (26.0%) 0. 001

ASA 276 (91.3%) 255 (91.3%) 21 (91.3%) 0. 001

Nitrates 182 (60.2%) 170 (60.9%) 12 (52.1%) 0. 001

LM coronary angiogram 293 (97.0%) 272 (97.4%) 21 (91.3%) 0.003

LAD coronary angiogram 267 (88.4%) 247 (88.5%) 20 (86.9%) 0.001

LCx coronary angiogram 271 (89.7%) 251 (89.9%) 20 (86.9%) 0.019

RCA coronary angiogram 271 (89.7%) 252 (90.3%) 19 (82.6%) 0. 001

LAD stent 290 (96.0%) 268 (96.0%) 22 (95.6%) 0.001

LCx stent 296 (98.0%) 274 (98.2%) 22 (95.6%) 0.019

RCA stent 297 (98.3%) 275 (98.5%) 22 (95.6%) 0.025

Stroke 284 (94.0%) 266 (95.3%) 18 (78.2%) 0. 001

IHD 178 (58.9%) 165 (59.1%) 13 (56.5%) 0. 001

Fx IHD 267 (88.4%) 245 (87.8%) 22 (95.6%) 0. 001

CCF 270 (89.4%) 252 (90.3%) 18 (78.2%) 0. 001

COAD 287 (90.0%) 265 (94.9%) 22 (95.6%) 0. 001

BA 282 (93.3%) 262 (93.9%) 20 (86.9%) 0. 001

Obesity 296 (98.0%) 275 (98.5%) 21 (91.3%) 0.014

CKD 274 (90.7%) 255 (91.3%) 19 (82.6%) 0. 001

Dyslipidemia 176 (58.2%) 160 (57.3%) 16 (69.5%) 0. 001

HbA1c (mmol/mol) 7.46 ± 2.23 7.49 ± 2.26 7.10 ± 1.85 0. 001 7.20-7.71

Creatinine (µmol/L) 103.44 ± 61.5 101.5 ± 57.63 126.2± 96.22 0. 001 96.47-110.4

Troponin_1(ng/L) 12.38 ± 135.1 4.60 ± 18.47 106.7 ± 485.3 0.112 -2.91-27.69

Tg (mg/dL mmol/L) 1.85 ±1.20 1.84 ± 0.95 1.96 ±2.89 0. 001 1.71-1.98

CK (u/L) 361.3 ± 735.5 344.8 ± 698.9 562.2 ± 1087.4 0. 001 278.0-444.6
PCI: Percutaneous Coronary Intervention; ACS: Acute coronary syndrome; Stk: Streptokinase; HDL: High-density lipoprotein; Tg: Triglycerides; TC: Total cholesterol; 
CK: Creatine kinase; LDL: Low-density lipoprotein; eGFR: Estimated glomerular filtration rate; FBS: Fasting blood sugar; CCB: Calcium channel blockers; Newly dm: 
Newly diagnosed diabetes mellitus; CKD: Chronic kidney disease; ASA: Aspirin; BA: Bronchial asthma; COAD: Chronic obstructive airway disease; ARB: Angiotensin 
II receptor blockers; CCB: Calcium Channel Blocker; ACE: Angiotensin-Converting Enzyme; CCF: Congestive cardiac failure; IHD: Ischemic Heart Disease; Fx IHD: 
Fracture Ischemic Heart Disease; LM: Left main; LAD: Left anterior descending; LCx: Left–circumflex; RCA: Right coronary artery 
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A 10-fold cross-validation re-sampling with three 
repeats was used for model development of the training set 
to avoid over-fitting (Geisser 1993). Parameter tuning was 
carried out on all models. Later, the values of the parameters 
were selected based on a model that had performed higher 
than others. The hold-out, untouched test set was only 
used for validation, i.e. the final performance test of the 
developed models. This untouched set was predicted 
according to the class incidence as occurring in the clinical 
population. The area under the curve (AUC) was used as a 
predictive performance metric that is insensitive to class 
imbalances (Fawcett 2006). The sequential backwards 
selection (SBS) method was used to eliminate ranked 
variables in ascending order iteratively employing feature 
selection methods to improve model performance (Genuer 
et al. 2010). The SBS algorithm relies on significance as a 
sufficient condition to remove insignificant variables from 
the model (Dunkler et al. 2014). The variable that causes 
a significant increase in AUC in the testing dataset of the 
prediction model is considered necessary.

A hybrid combination of SBS and feature selection 
methods from embedded, filter, and wrapper methods 
was combined with classifier algorithms (Chandrashekar 
et al. 2014; Saeys et al. 2007). The filter method Cluster 
Dendrogram (CD) using Euclidean distance is a standalone 
feature selection method (Cox et al. 1958); CD calculates 
the correlation between the features in terms of Euclidean 
distance. The feature selection using CD was obtained 
by cutting the dendrogram at the desired level, where 
each connected component forms a cluster and the 
characteristics were selected based on the levels of each 
cluster. Wrapper method uses data mining algorithms such 
as Boruta (Kursa et al. 2010), RFE (Jafarian et al. 2011), 
LVQ (Hammer et al. 2002), GA (Holland et al. 1992), RF 
(Breiman 2001), and SVM with Radial Basis Function 
(RBF) (Vapnik 1998). The Boruta approach compares 
the importance of real predictor variables with those 
of random shadow variables using statistical testing and 
several RF runs. The goal of the RFE method is to find a 
minimal and best-performing set of variables by using the 
RFE feature importance function, and RFE tries to remove 
dependencies and collinearity that might occur in the model 
by recursively removing a small number of features at 
each iteration. The parameter settings for the GA in this 
study were experimentally determined by parameter 
optimisation. The final feature selection was conducted 
based on a population size of 275 and iteration of 200.

RF is an ensemble method that builds many decision 
trees randomly from bootstrapping samples, which are 
then clustered together by a classification method and-a 
by-product of RF-the variable importance. In this study, 
different values of mtry (mtry: 5, 7, 10, 15, and 20) 
and the number of trees (ntree: 500-4000) were used to 

determine the optimum RF model that produced the best 
results. The RF variable importance method was used to 
generate ranked variables that were then reduced using 
SBS iteratively.

For this analysis, SVM was implemented using the 
RBF kernel. The tuning parameters for SVM are the C 
parameter (cost), which regulates the margin width, and 
the gamma-parameter for the kernel calculation. In this 
study, SVM uses the Receiving Operating Characteristic 
(ROC) variable importance to select and rank important 
variables. In the case of two-class problems, a series 
of cut-offs were applied to predictor data to predict the 
class. Sensitivity and specificity were calculated for each 
cut-off and the ROC curve is computed. ROC is used as 
a measure of variable importance. The parameter tuning 
used was sigma 0.5 and cost 10 using a grid search for the 
SVM classifier.

The embedded method is a combination of both 
filter and wrapper, such as elastic net (EN) (Zou & Trevor 
2005) and LR (Menard 2002). The function glm with the 
family binomial was used for constructing the LR model. 
EN optimises the coefficients until the change of the 
coefficients is less than the predetermined toleration value. 
Parameter tuning with maxit = 1000000, alpha = 0.5, 
lambda = 100 was done to improve model performance.
The feature selection methods were then combined with RF, 
SVM, EN and LR classifier algorithms. These classifier 
algorithms were selected based on their higher predictive 
overall performance reported in previous mortality studies. 
In this study, we calculated the developed model predictive 
performance with a testing dataset that was not used for 
model development.

SOM was then used to ordinate ACS-related factors 
using features selected from the best model (Kohonen 
2001). High dimension data is best visualised using 
SOM as it reduces the complexity of high dimension 
data by plotting data similarity in 1-dimensional or 
2-dimensional maps through clustering techniques. 
Light colour represents clusters, whereas dark clusters 
represent cluster separators. SOM enables the discovery 
or identification of most relevant features or patterns 
through data reduction and projection. The quality of the 
map is measured by quantification and topological error. 
The Euclidean distance between the inputs was calculated 
and visualised as a distance matrix known as the U-matrix 
(unified distance matrix).

Statistical Package for Social Sciences (SPSS) 
program version 16.0 was used for statistical analysis, 
whereas the R package (Version 3.3.2) and the SOM 
toolbox in MATLAB VER. (R2013, Math Works) were 
used for model development. Figure 1 summarises the 
steps and algorithms used in this study.
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RESULTS AND DISCUSSION

Table 1 presents the characteristics of the patients used in 
this study. The mean age was 56.72 ± 11.7, and 67% were 
males. The majority (82%) of them have an ACS subtype 
of unstable angina and NSTEMI. Overall, the 30-day 
mortality rate was 7.6%. Predictor differences between 
survivors and non-survivors were significant and expected 

FIGURE 1. A summary of the steps and algorithms used

at 30 days in terms of age, gender, cardiovascular disease 
(CVD) diagnosis and severity, CVD risk factors, CVD 
comorbidities, biomarkers, and medicines (pb = 0.0001). 
Non-survivors are those associated with higher risk 
factors for CVD, such as smokers, history of hypertension, 
alcoholism, and diabetes. Among CVD biomarkers, there 
was no significant difference in troponin value between 
survivors and non-survivors.
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RF, Boruta, RFE, LVQ, GA, CD, LR, EN, and SVM 
methods were used to rank predictor importance against 30-
day mortality post-ACS. Figures 2 and 3 illustrate the ten 
most significant predictors chosen by each model out of 
a total of 54 predictors. Some predictors were significant 
across all models-Age, triglycerides (Tg), total cholesterol 
(TC), troponin, creatinine, estimated glomerular filtration 

FIGURE 2. The graph of feature importance rank of the ten most important predictors 
chosen by (a) Learning Vector Quantification, (b) Random Forest, (c) Logistic 

Regression, (d) Elastic Net, (e) Support Vector Machine and (f) Genetic Algorithm

rate (eGFR), high-density lipoprotein (HDL) and Creatine 
kinase (CK); whereas other predictors were model-specific-
fasting blood sugar (FBS), Haemoglobin A1c (HbA1c), 
ethnicity statin medications, stroke, ACS subtype and 
treatment modularity. Overall, the different models chose 
a heterogeneous set of the most important predictors 
(cardiac variables, medications, and demographics).
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SBS was used for feature reduction to improve 
the predictive performances of the ML model measured 
using AUC on the testing dataset, as illustrated in Figure 

 

 

 
 

(a) 

(b) 

FIGURE 3. Illustration of all predictors that were selected by both Dendrogram (a) and Boruta (b)

4. The AUC of 0.5 suggests no discrimination, 0.7 to 0.8 
is measured as acceptable, 0.8 and above as excellent 
(Mandrekar et al. 2010).

 

 

(a) (b) 

(d) (c) 

 

 

 
 

(a) 

(b) 

FIGURE 4.The graphs of feature selection and classifier combination performance. The predictive
performance of 30 days’ mortality prediction using different feature selection method and classifier: (a) 

Random Forest, (b) Logistic Regression, (c) Support Vector Machine and (d) Elastic Net
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SVM reported the highest AUC (0.73), outperforming 
RF (0.62), EN (0.52), and LR (0.61) among the models 
developed using all 54 predictors. In this study, significant 

predictors with optimum ML performance identified 
across all ML models after SBS were age, Tg, TC, 
creatinine, CK, and troponin as presented in Table 2. 

TABLE 2. The selected variables for each of the feature selection method proposed in this study. List of all the variables used for 
classification and its performance results are in AUC

Feature selection and 

classification model

Variable selected

RANDOM FOREST

RF All variables
RFVarImp-SBS-RF Age, TC, Tg, Troponin, Creatinine
SVMVarimp - SBS - RF TC, Tg, Troponin, CK
ENVarimp-SBS - RF Troponin, Creatinine, Stroke, CKD
LRVarImp-SBS-RF TC, HDL, HbA1c, LDL, COAD, ASA, ACE, ethnicity, LM coronary angiogram, Ticagrelor, 

alcohol, Statin
RFE-SBS - RF Age, TC, Tg, Troponin, Stroke
Boruta-SBS-RF Age, TC, Tg, Troponin, LDL
CD-SBS- RF Age, Troponin, Creatinine, eGFR, CK, HbA1c, FBS
LVQ- SBS- RF Tg, Troponin, Creatinine, HDL, Stroke, eGFR, CK, Ethnicity
GA- SBS- RF Tg, Troponin, Ethnicity, FBS, Newly dm, Hypertension, Ex-smoker, TC Simon Broome, LCL 

Simon Broome, LCx coronary angiogram

SUPPORT VECTOR MACHINE

SVM All variables
RFVarImp-SBS-SVM Age, TC, Tg, creatinine, Troponin, HDL, eGFR, CK
SVMVarImp – SBS – SVM TC,Tg, Troponin, creatinine, eGFR, CK, LDL, statin_meds, ACS_SUBTYPE, HbA1c
ENVarImp-SBS – SVM Troponin, Creatinine, Stroke, CKD
LRVarImp-SBS- SVM TC, HDL, HbA1c, LDL, COAD, ASA, ACE, ethnicity, LM coronary angiogram, Ticagrelor, 

alcohol, Statin
RFE-SBS – SVM Age, TC, Tg
Boruta -SBS-SVM Age, TC, Tg
CD-SBS- SVM Age, Troponin, Creatinine, eGFR, CK, HbA1c, FBS
LVQ- SBS- SVM Tg, Troponin, Creatinine, HDL, Stroke, eGFR, CK, Ethnicity
GA- SBS- SVM Tg, Troponin, Ethnicity, FBS, Newly dm, Hypertension, Ex-smoker, TC Simon Broome, LCL 

Simon Broome, LCx coronary angiogram

ELASTIC NET

EN All variables
RFVarImp-SBS-EN Age, TC, Tg, Troponin, creatinine, HDL, eGFR, CK
SVMVarImp – SBS – EN TC, Tg, Troponin, CK
ENVarImp-SBS – EN Troponin, Creatinine, Stroke, CKD
LRVarImp-SBS- EN TC, HbA1c, COAD, ASA
RFE-SBS – EN Age, TC, Tg
Boruta -SBS- EN Age, TC, Tg
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CD-SBS- EN Age, Troponin, Creatinine, eGFR, CK, HbA1c, FBS
LVQ- SBS- EN Tg, Troponin, Creatinine, HDL, Stroke, eGFR, CK, Ethnicity
GA- SBS- EN Tg, Troponin, Ethnicity, FBS

LOGISTIC REGRESSION

LR All variables
RFVarImp-SBS-LR Age, TC, Tg, Troponin, Creatinine
SVMVarimp – SBS – LR TC, Tg, Troponin, CK
ENVarImp-SBS –LR Troponin, creatinine, HDL, CK, Stroke, CKD, CCF, RCA coronary angiogram
LRVarImp-SBS-LR TC, HbA1c, COAD, ASA
RFE-SBS – LR Age, TC, Tg
Boruta -SBS- LR Age, TC, Tg
CD-SBS- LR Age, Troponin, Creatinine, eGFR, CK, HbA1c, FBS
LVQ- SBS- LR Tg, Troponin, Creatinine, Stroke
GA- SBS- LR Tg, Troponin, Ethnicity, FBS

RFVarImp: Random forest variable importance ranking; SVMVarImp: Support vector machine variable importance ranking; ENVarImp: Elastic net variable importance 
ranking; LRVarImp: Logistic regression variable importance ranking; SBS: sequential backward selection

Table 3 provides additional results on model 
performance. The best-performing models were RFVarImp-
SBS-RF model (AUC = 0.79; Five predictors: age, TC, Tg, 
troponin, and creatinine) and RFE-RF model (AUC = 0.78; 
Five predictors: age, TC, Tg, troponin, and stroke). There 
were no significant differences in performance between the 
two models (p > 0.05). Combinations of feature selection 

methods with classifiers such as LR, EN reported the lowest 
performance value. The sensitivity and specificity in Table 
3 are based on the 0.5 cut-off point for comparison. The 
AUC provides model performance on average for various 
cut-off points, but at 0.5 cut-off point, some lower AUC 
models perform better. However, higher AUC models are 
preferred in mortality risk studies.
 

TABLE 3. Additional performance measures each machine learning model

Model Sense/Spec PPV/NPV Detection 
rate

Detection 
incidence AUC Accuracy (95% CI)

RF 0.17/0.98 0.33/0.94 0.01 0.03 0.62 0.92(0.84,0.97)

RFimp - SBS-RF 0.33/0.94 0.28/0.95 0.02 0.08 0.79 0.89 (0.82,0.95)

SVMimp-SBS-RF 0.17/0.87 0.08/0.93 0.01 0.13 0.75 0.82(0.72,0.89)

ENimp-SBS-RF 0.33/0.92 0.22/0.95 0.02 0.10 0.61 0.88(0.79,0.94)

LRimp-SBS-RF 0.17/0.90 0.11/0.94 0.01 0.10 0.71 0.85(0.76,0.92)

RFE-RF 0.50/0.87 0.23/0.96 0.03 0.15 0.78 0.85(0.76, 0.92)

Boruta -SBS-RF 0.00/0.95 0.00/0.93 0.00 0.04 0.68 0.89(0.80,0.94)

CD-SBS-RF 0.33/0.95 0.33/0.95 0.02 0.07 0.69 0.91 (0.83,0.96)

LVQ-SBS-RF 0.17/0.90 0.11/0.94 0.01 0.10 0.70 0.53 (0.76,0.92)

GA-SBS-RF 0.17/0.84 0.07/0.93 0.01 0.16 0.75 0.80(0.70,0.87)



  763

SVM 0.00/0.99 0.00/0.93 0.01 0.00 0.73 0.92(0.84,0.97)

RFimp-SBS-SVM 0.50/0.67 0.10/0.95 0.03 0.34 0.63 0.66(0.55,0.76)

SVMimp-SBS-
SVM 0.00/.987 0.00/0.93 0.00 0.01 0.73 0.92(0.84,0.97)

ENimp-SBS-SVM 0.50/0.84 0.19/0.96 0.03 0.18 0.68 0.82(0.72,0.89)

LRimp-SBS-SVM 0.17/0.8 0.06/0.93 0.01 0.19 0.69 0.76(0.66,0.85)

RFE-SVM 0.17/0.67 0.04/0.92 0.01 0.31 0.77 0.64(0.53, 0.74)

Boruta -SBS-SVM 0.17/0.64 0.03/0.91 0.01 0.35 0.76 0.61(0.50,0.71)

CD-SBS-SVM 0.17/0.69 0.04/0.92 0.01 0.30 0.68 0.65(0.54,0.75)

LVQ-SBS-SVM 0.17/0.84 0.07/0.93 0.01 0.16 0.67 0.80 (0.70,0.86)

GA-SBS-SVM 0.00/0.53 0.00/0.88 0.00 0.44 0.73 0.80(0.70,0.87)

EN 0.17/0.82 0.06/0.93 0.01 0.18 0.52 0.76(0.67,0.85)

RFimp-SBS-EN 0.67/0.53 0.09/0.96 0.04 0.48 0.64 0.54(0.43,0.65)

SVMimp-SBS-EN 0.00/0.70 0.00/0.91 0.00 0.28 0.76 0.65(0.54,0.75)

ENimp-SBS-EN 0.50/0.75 0.13/0.95 0.03 0.27 0.62 0.73(0.63,0.82)

LRimp-SBS-EN 0.50/0.64 0.09/0.95 0.03 0.37 0.57 0.63(0.52,0.73)

RFE-EN 0.50/0.60 0.08/0.94 0.03 0.40 0.62 0.60(0.49,0.70)

Boruta -SBS-EN 1.00/0.24 0.09/1.00 0.07 0.78 0.66 0.29(0.20,0.40)

CD-SBS-EN 0.50/0.54 0.07/0.94 0.03 0.46 0.54 0.54(0.43,0.65)

LVQ-SBS-EN 0.50/0.76 0.13/0.95 0.03 0.26 0.62 0.74(0.64,0.83)

GA-SBS-EN 0.00/0.94 0.00/0.92 0.00 0.06 0.79 0.87(0.78,0.93)

LR 0.33/0.81 0.11/0.94 0.02 0.20 0.61 0.78(0.67,0.85)

RFimp-SBS-LR 0.29/0.76 0.09/0.93 0.02 0.24 0.55 0.72(0.62,0.81)

SVMimp-SBS-LR 0.50/0.72 0.12/0.95 0.03 0.29 0.56 0.71(0.61,0.80)

ENimp-SBS-LR 0.17/0.87 0.08/0.94 0.01 0.13 0.48 0.82(0.72,0.89)

LR-SBS-LR 0.17/0.59 0.03/0.91 0.01 0.39 0.63 0.56(0.45,0.66)

RFE-LR 0.00 /0.80 0.00/0.92 0.00 0.19 0.74 0.74 (0.64,0.83)

Boruta -SBS-LR 0.83/0.54 0.12/0.98 0.06 0.48 0.66 0.56(0.45,0.67)

CD-SBS-LR 0.17/0.76 0.05/0.93 0.01 0.24 0.51 0.72(0.61,0.81)

LVQ-SBS-LR 0.00/0.92 0.00/0.93 0.00 0.08 0.75 0.85(0.76,0.92)

GA-SBS-LR 0.57/0.60 0.11/0.94 0.04 0.41 0.60 0.60(0.49,0.70)
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Theoretically, for a survival model, for one new 
patient at the time of the first ACS, the best ML model 
RFVarImp-SBS-RF (5 predictors), the average mortality 
risk is reduced to 4.9% (NPV). If the model outcome is 
non-survival, the average risk of a patient being deceased 
is increased to 28.3% (PPV), which represents an average 
risk ratio of 5.9 (ratios of non-survivors to survivors) by 
this model. Additional dataset of 102 patients including 
predictors: age, TC, Tg, troponin, and creatinine were 
tested and compared to the TIMI score. The additional test 
performed for the comparative purpose for the ML model 
recorded an AUC value of 0.75 vs. the TIMI score with an 
AUC value of 0.60.

The SOM map was used to investigate and visualise 
the association between predictors and mortality for 
the best  model  (RFVarImp-SBS-RF).  SOM map 
performance reported quantisation and topographic error 

of 0.150 and 0.056, respectively. Figure 5 illustrates the 
coloured scale of the U-matrix cluster map symbolising 
vector distances (predictors are vector elements). The 
blue colour represents the minimum distance (create 
clusters of vectors with similar features), whereas the 
red colour represents the maximum distance (the vectors 
are dissimilar). Component planes are represented by the 
predictors by warm colours corresponding to high mean 
values and vice versa. Non-survivals are explained in 
older patients (> 65 years of age) with a high troponin 
value (>11.4 ng/L). Survivors are categorised: Older 
patients (>65 years of age) who survived post-ACS, with 
the lower troponin value (~0.5 ng/L) and higher creatinine 
value (>138 µmol/L); younger patients (< 55 years of age) 
with lower creatinine value (<138 µmol/L) irrespective of 
Tg, TC and troponin values.

FIGURE 5. The SOM represents the association of selected variables with post ACS mortality

In the case of mortality prediction, AUC is an 
important performance measure as it helps to evaluate 
a model’s performance, regardless of the decision 
boundary chosen. Although some models in this study 
showed a better result on sensitivity and specificity at the 
decision boundary of 0.5, lower AUC was reported for 
overall model performance. High performances of AUC 
> 0.75 for a testing dataset, which was not used for model 
development, were reported for 8 out of 36 models in this 
study. RFVarImp-SBS-RF classifier model and RFE-RF 
model performance in this study using five predictors 
were similar to the ML model performance recorded in 
other mortality-related studies (Shouval et al. 2017; Steele 
et al. 2018; Tuckova 2013; Wallert et al. 2017). The best 

model, RFVarImp-SBS-RF, when tested against TIMI 
risk scores using an additional dataset, outperformed 
TIMI (AUC = 0.75 vs. AUC = 0.65), which is consistent 
with findings from population-specific mortality studies 
comparing TIMI and ML (Shouval et al. 2017; Wallert et 
al. 2017).
 The hybrid combination of SVM and RF resulted 
in higher performance compared to LR and EN models. 
Combination of a feature selection method with 
classification algorithms reported higher performances in 
the literature (Mokeddem et al. 2013; Perez-Riverol et al. 
2017; Sonawane et al. 2014). The RFE feature selection 
method used in various clinical datasets performs better 
when combined with the ML classifier, especially SVM 
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and RF (Chopra et al. 2017; Lin et al. 2017; Perez-Riverol 
et al. 2017; Yang et al. 2017). Boruta, GA, CD and RFE 
have been reported to achieve higher performance when 
combined with ML classifiers such as SVM and RF 
(Alalyan et al. 2019; Chopra et al. 2017; Galili et al. 2015; 
Prokashgoswami et al. 2013; Zhang et al. 2017).
 In this study, all models improved with parameter 
optimisation via feature selection. The application 
of feature selection algorithms improves model 
performance using a reasonable number of predictors by 
reducing predictor’s dimensionality (Yang et al. 2018). 
RF and SVM with standard implementation and default 
parameters outperformed LR due to parameter optimisation 
that enables the algorithm to adjust the data information 
to increase the predictive model performance (Couronné 
et al. 2018; Fernández-Delgado et al. 2014; Huang et al. 
2016; Liu et al. 2017).
 The univariate analysis indicates the relationship 
between the predictor selected from ML algorithms and 
the outcome that is vague to the clinician. The univariate 
analysis (Table 1) also illustrates the significance of the 
selected variables. The best ML model in this study 
selected five predictors: age, Tg, creatinine, troponin, 
and TC. Tg, troponin, and TC were among the high-
ranking variables chosen for all models. In this study, 
various feature selection algorithms selected a different 
combination of predictors for 30-day mortality predictions 
post-ACS. Model-specific predictors that were highly 
ranked include age, HbA1c, FBS, CK, eGFR, creatinine, 
ethnicity, ACS subtype, and stroke history. Levels of 
FBS and HbA1c, especially in non-diabetics, are related 
to increased risk of ACS-related mortality (Liang et al. 
2016). Glucose levels support the relationship between 
hyperglycaemia and increased risk of mortality in 
patients with STEMI in the Asian population (Johansson 
et al. 2017). Risk factors leading to worse post-MI 
outcomes include comorbid diabetes, hypertension, older 
age, reduced renal function, and stroke history (Wu et al. 
2018).
 We have also demonstrated that clinical data can be 
visualised in a 2-dimensional representation using SOM 
to understand the association of predictors with mortality. 
This allows a clinician to place a new patient within the 
context of previous or similar cases if there is confidence 
in the original training data. The results of the SOM 
technique prove its ability to perform with the lowest 
quantisation and topographic errors (Zhou 2010).
 Non-survivals from the SOM map were related to 
higher troponin levels in older patients. Meanwhile, 
survival in the same age group was related to lower levels 
of troponin, Tg, TC, and creatinine. Cardiac troponin 
levels have been an independent predictor of all-cause 
mortality. The prognostic importance of troponin must 
be recognised with the patient’s age. Higher mortality has 

been associated with patients age 65 years and older with 
troponin < 0.01 ng/mL for troponin I and T (Cheng et al. 
2015). Younger patients (< 55 years of age) with low levels 
of creatinine, regardless of Tg, TC, and troponin, have 
been associated with survival, indicating that older age 
and creatinine levels had a considerable unfavourable 
consequence on mortality (Marenzi et al. 2015).
 High troponin level and age have also been associated 
with non-survival. Ageing is a significant predictor of 
mortality in ACS and an independent risk factor for adverse 
outcomes post-ACS (Engberding et al. 2017). Age has been 
selected as a factor that affects mortality post-STEMI by 
ML models in previous studies (Shouval et al. 2017; Wallert 
et al. 2017). Older patients usually have more complex 
cardiovascular disease, more comorbidities, and more 
atypical clinical presentation (Engberding et al. 2017). 
Elderly patients had a higher burden of cardiovascular 
risk factors in this study. Compared to younger patients, 
more elderly patients had a history of diabetes mellitus, 
hypertension, dyslipidaemia, stroke, ischemic heart 
disease, chronic obstructive airways disease, bronchial 
asthma, and chronic kidney disease. However, what 
is interesting to note is that creatinine in the younger 
population is a better predictor of survival compared to 
TC, Tg, or troponin. Troponin, which is a risk marker for 
survivors in the Caucasian population, has been tested to 
be a better predictor compared to other comorbid diseases. 
From SOM, we discovered that troponin is identified as 
a risk predictor for this population, generating a new 
hypothesis that the choice of risk predictors should be 
population specific.
 This present study chose age, creatinine, and cardiac 
markers for the best model similar to GRACE and TIMI. 
Variables related to medical history, although not selected 
during feature selections, were considered insignificant. 
The data on the vital signs at admission and the ECG 
findings were not available for the current study, which is 
considered a limitation and will be implemented for future 
research.
 TIMI scores were derived from Western Caucasian 
cohort. These models are population-specific and may 
not be capable of taking into account nuances related to 
a specific region. In this study, TIMI comparisons were 
made only on the best-selected model due to the limited 
dataset that allows this comparison. ML using additional 
datasets outperformed TIMI risk score in this study. It is 
important to recognise the significant features affecting the 
population-specific mortality rate in ACS patients in order 
to achieve a reliable and valid clinical diagnosis. Prediction 
of the future health status of a patient may be a significant 
part of the medical sector, as it can promote early detection 
of diseases, effective treatment, disease prevention, and 
patients with high-risk can also be distinguished, and 
appropriate measures can be taken.
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 ML, especially RF, can handle a noisy dataset. RF 
has a built-in variable importance method that enables 
numerous input variables without having to delete certain 
variables for reduced dimensionality. Variable importance 
generates RF scores by measuring the increase in the 
prediction error (Kesavaraj et al. 2013; Zhang et al. 2011).
 The limited number of datasets was the limitation of 
this study. However, ML methods allow classifications 
involving a high dimensional dataset (p) with a low number 
of samples (n) (Shaikhina et al. 2019). 

The study allows the evaluation of a hybrid 
combination of various feature selection methods (filter, 
wrapper, and embedded) with predictive machine learning 
methods that enable the development of a population-
specific module that outperforms the conventional TIMI 
risk score method. The models developed may be useful as 
complementary decision support tools used in conjunction 
with the traditional risk scoring method for improving 
patient health. The application of the SOM method 
allows the visualisation of the association among various 
mortality risk factors that have not been reported in any 
other mortality-related studies. The high performance of 
the RF model was achieved by dimensionality reduction of 
the variables using a feature selection method that enables 
model interpretation using the SOM method from a clinical 
point of view. 

Future work will look into larger datasets obtained 
from the Malaysian National Cardiovascular Disease 
Registry that can be used to for continuous external 
model validation and improvement using the most recent 
high-quality data with the possibility of developing models 
that focus on a specific type of ACS such as STEMI and 
NSTEMI mortality. This work will be used as a basis for 
selecting the best combination of feature selection and 
ML classifiers for the online population-specific risk 
calculator.

CONCLUSION

In conclusion, we have demonstrated the ability to 
apply a hybrid combination of methodologies for feature 
selection and 30-day mortality predictions in ACS patients. 
A combination of applying RF variable importance 
along with the SBS technique for variable ranking and 
selection technique proves that it is an effective method for 
selecting significant variables and prediction. It is evident 
from this work that it is possible to create a compressed 
data representation that can be used as a tool where the 
abundance of data obscures the straightforward diagnostic 
reasoning in the ACS-related mortality study. A conclusion 
is drawn that the use of such a map in conjunction with 
the presentation of ACS-related mortality can be a useful 
screening mechanism for detecting patients with a high risk 

of ACS. At this stage, it is not possible to claim that the 
results of this study are universally applicable. Since the 
study is based on limited clinical data, more data is needed 
to improve and validate the system. Once developed, it 
has great potential as a risk assessment tool that enables 
a consensus to be achieved between clinicians on the risk 
stratification of ACS patients. Only then can we develop a 
useful tool for placing a patient within a clinical context, 
thereby allowing a consensus to be achieved between 
clinicians and assessing the particular risk to the patient.
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