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Antropogen)
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ABSTRACT

This study investigates the seasonal and spatial water quality patterns along a tropical river that continuously receives 
various pollution sources. Multivariate analysis was used to study the spatial and temporal variations of the water 
quality parameters and to determine the origin of the pollution sources. Three regions (low, moderate, and high pollution 
levels) were determined based on cluster analysis. The stepwise DA mode proposed six parameters (pH, EC, COD, 
NO3, TC, and Fe) with 75% correct assignations as the most significant water quality parameters to present the spatial 
variations. In the temporal discrimination, forward stepwise mode analysis showed eight parameters (EC, TUR, BOD, 
COD, AN, NO3, Cu, and Cr) with 92% correct assignations, while five parameters (EC, AN, Al, Cu, and Cr) affording 89% 
correct assignations in backward stepwise mode analysis. Principal component analysis and factor analysis were used 
to investigate the origins of each water quality parameter based on the three clustered regions and successfully yielded 
eight latent factors loadings for each period that significantly identified the pollution sources and types along the 
river. The pollution sources for moderate and high pollution level areas are anthropogenic sources (landfill, industrial 
activities, and sewage discharge). Agricultural runoff is the main pollution source for the low pollution level areas. This 
study has shown classifications of river water quality based on seasonal and spatial criteria. 
Keywords: Multivariate analysis; pollutants; spatial and seasonal variation; water quality

ABSTRAK

Penyelidikan ini mengkaji corak kualiti air bermusim dan ruang di sepanjang sungai tropika menerima pelbagai 
sumber pencemaran. Analisis multivariat digunakan untuk mengkaji variasi ruang dan temporal parameter kualiti air 
dan mengenal pasti sumber pencemaran. Tiga kumpulan (tahap pencemaran rendah, sederhana dan tinggi) ditentukan 
berdasarkan analisis kelompok. Mod DA langkah demi langkah mencadangkan enam parameter (pH, EC, COD, NO3, TC 
dan Fe) dengan 75% penetapan yang betul sebagai parameter kualiti air yang paling signifikan untuk menunjukkan 
variasi ruang. Dalam diskriminasi temporal, analisis mod bertahap maju menunjukkan lapan parameter (EC, TUR, BOD, 
COD, AN, NO3, Cu dan Cr) dengan 92% penetapan yang betul, sementara lima parameter (EC, AN, Al, Cu dan Cr) 
memberikan 89% penugasan yang betul dalam analisis mod bertahap mundur. Analisis komponen utama dan analisis 
faktor digunakan untuk mengkaji asal-usul setiap parameter kualiti air berdasarkan ketiga-tiga kelompok. Sumber 
pencemaran untuk kawasan paras pencemaran yang sederhana dan tinggi adalah sumber antropogen (tapak pelupusan, 
aktiviti industri, pelepasan kumbahan). Larian air pertanian adalah sumber pencemaran utama bagi kawasan paras 
pencemaran yang rendah. Kajian ini telah mendedahkan pengelasan kualiti air sungai berdasarkan kriteria bermusim 
dan ruang.
Kata kunci: Analisis multivariat; bahan cemar; kualiti air; variasi ruang dan bermusim

INTRODUCTION

Malaysia has experienced population growth and 
industrial development as a developing country. High-rise 
commercial buildings have become commonplace and 
the number of housing developments is skyrocketing at 
an unthinkable rate. These developments come at a price 
(Alssgeer et al. 2018; Bian et al. 2019). Pollution from 
unregulated man-made activities on most rivers in Malaysia 
is due to the lack of policy enforcement. Not only are the 
systems insufficiently designed and underfunded, but 

regulatory and management aspects remain shaky (Elfithri 
et al. 2011). Due to these, the government has agreed to 
review policies such as the Environment Act 1974, the 
Selangor Water Management Authority Enactment 1999, 
and the Water Services Industry Act 2006 to enforce higher 
penalties to the polluters (Ahmed et al. 2018). The focus of 
water resource management has always been on meeting 
growing water demands without properly considering the 
need to assure water quality, and maintain ecosystems and 
biodiversity. 
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Changes in land use due to deforestation, agriculture, 
and industrial and residential development have triggered 
major environmental effects such as increase in food 
production, decline in forest resources, regulation of 
climate conditions and air quality, spread of infectious 
diseases as well as deterioration of fresh water quality in 
many river systems. Continuous land changes can increase 
the sources of pollution in river systems (Yan et al. 2019). 
Various contaminants and heavy metals enter rivers from 
point sources (sewage treatment plants, landfills, animal 
farms, and factory effluents) and nonpoint inputs of 
natural and anthropogenic pollution origins (agricultural 
activities and surface runoff) (Ogwueleka 2014). In urban 
and industrial areas, the pollution loading on river basins 
combines more than one contaminant, such as nutrients, 
organic pollutants, and heavy metals (Mousa et al. 2018). 
All these can affect not only river to aquatic ecosystem, 
but also the provinces that use water as a domestic supply 
(Horn et al. 2017). At the same time, seasonal variations 
have different characteristics of water quality across 
different seasons. Thus, it is crucial to analyse water quality 
regularly and to describe the spatial and seasonal changes 
of water quality via frequent monitoring for competent 
environmental management (Zhang et al. 2017). 

Selangor is considered as the fastest developing 
state in Malaysia (Abunama et al. 2018). Consequently, 
as many rivers in Selangor are heavily utilised to fulfil 
numerous developmental needs, their water quality status 
have changed. The quality degradation of such crucial 
water resources and their ecosystems directly affects the 

country’s industry, agriculture, and living quality, and 
may result in long term economic losses (Le et al. 2017). 
According to the report by the Department of Environment 
(DOE 2017), out of 477 rivers in Malaysia, 46% were 
categorized as clean, 43% were categorized as slightly 
polluted and 11% as polluted. This classification is based 
on Water Quality Index (WQI), which was proposed by 
the DOE and this index is being practised in Malaysia for 
more than 25 years. The WQI is a single parameter that 
gives the overall status of the river water quality. It ranges 
from 0-100, and is calculated based on six parameters, 
namely dissolved oxygen (DO), biochemical oxygen 
demand (BOD, chemical oxygen demand (COD), total 
suspended solids (TSS), ammoniacal nitrogen (AN) and 
pH (DOE 2015; Idris et al. 2003; Othman et al. 2012).
Based on the WQI readings, the river can generally be 
classified into 3 categories: Clean: WQI 81-100, Slightly 
polluted: WQI 60-80, and Polluted: WQI 0-59.

A more comprehensive National Water Quality 
Standards (NWQS) based on individual parameters are 
given in Table 1.  It can be classified into 6 river classes 
(Class 1 - Class 5) according to the parameters stated in 
the table.  As a mean of comparison, the US EPA water 
quality standards are tabulated in Table 2. Furthermore, 
60% of rivers are used for domestic, crop production 
and industrial activities (Liu & Zou 2012). These are 
serious matters for decision makers who manage water 
resources as they need to conserve river water quality for 
future generations (Georgiva et al. 2013). 

TABLE 1. National Water Quality Standards (NWQS) of Malaysia (DOE 2015)

NWQS CLASSES

Parameter I IIA IIB III IV V

AN (mg/L) 0.1 0.3 0.3 0.9 2.7 >2.7

BOD (mg/L) 1 3 3 6 12 >12

COD (mg/L) 10 25 25 50 100 >100

DO (mg/L) 7 5 - 7 5 - 7 3 - 5 <3 1

pH 6.5 - 8.5 6 - 9 6 – 9 5 - 9 <3 <1

EC (µS/cm) 1000 1000 - - 6000 -

TDS (ppm) 500 1000 - - 4000 -

TSS (mg/L) 25 50 50 150 300 300

Turbidity (NTU) 5 50 50 - - -

TC (CFU/100 mL) 100 5000 5000 50000 50000 >50000

NO3 (mg/L)

Natural levels 
or absent

7 7 - 5

Levels above 
IV

PO4 - - - -

Fe (µg/L) 1 1 1 5

Al (µg/L) - - 0.06 0.5

Mn (µg/L) 0.1 0.1 0.02

Cu (µg/L) 0.02 0.02 - -

Cr (µg/L) 0.05 1.4 0.1

Zn (µg/L) 5 5 0.4 2

Cd (µg/L) 0.01 0.01 0.01 0.01

Pb (µg/L) 0.05 0.05 0.02 5
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TABLE 2. U.S. EPA water quality standards (USEPA 2001)

EU Directive or National (Ministerial Regulations) Concentration

AN (mg/L) 0.2 - 4

BOD (mg/L) 5 - 7

COD (mg/L) 40

DO (mg/L) 5 - 9

pH 5.5 - 9

EC (µS/cm) 1,000

TDS (ppm) -

TSS (mg/L) 50

Turbidity (NTU) -

TC (CFU/100 mL) 5,000 - 100,000

NO3 (mg/L) 50

PO4 0.5 - 0.7

Fe (µg/L) 0.2 - 2

Al (µg/L) 200

Mn (µg/L) 0.05 - 1

Cu (µg/L) 0.05 - 1

Cr (µg/L) 0.05

Zn (µg/L) 3 - 5

Cd (µg/L) 0.005

Pb (µg/L) 0.05

Knowledge in obtaining water quality status as well 
as in identifying pollution sources needs to be prioritised 
in the implementation of effective and sustainable water 
management by continuously monitoring, assessing, and 
applying appropriate control and mitigation measures 
(VishnuRadhan et al. 2017). It is crucial to obtain 
baseline information on the spatial seasonal attributes 
and variations in river water quality (Elias et al. 2018). 
As river water quality is measured using numerous water 
quality parameters with different units on different time 
scales, it is necessary to apply environmental analyses to 
explore the rich information behind the collected datasets 
pertaining to water quality status and behaviour. 

In water quality management, it is important to 
determine each water quality parameter to acquire 
collective water quality information, as it can provide 
succinct information on overall environmental conditions. 
The water quality indicators of important and influential 
variables are designed to give a single number to the water 
quality of a source based on a system that translates its 
existing concentrations into a single number in a sample 

(Wu et al. 2018). Various techniques can be utilised to study 
river water quality attributes and variations. In this study, 
the water quality parameters and heavy metals were 
classified based on the National Water Quality Standards 
(NWQS) for Malaysia by the Department of Environment 
to ensure that this study meets local standards. The 
United States Environmental Protection Agency (US EPA) 
standards were also used throughout the study period so 
that the outcome of this study can be used as a guide for 
new studies especially for those countries with similar 
seasonal events. Tables 1 and 2 show the water quality 
standards. 

Large scale datasets from river water quality 
monitoring programmes require statistical and even trend 
analysis for extensive interpretation and determination 
of the pollution sources and variations. Multivariate 
analysis (MVA) includes different statistical exploratory 
techniques. Various recent studies in Malaysia and 
abroad have already established these techniques as 
suitable for analysing extensive scale of water quality 
data (Mavukkandy et al. 2014). MVA can assist with the 
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statistical interpretation of complicated data matrices and 
account for the differences and similarities to better explain 
the spatial-seasonal variances of water quality. MVA is 
also capable of identifying the potential factors that affect 
such variances, such as water pollution sources. Water 
quality problems often vary from one region to another, 
even within a single country, from one year to another 
and from one season to another (Abunama et al. 2019). 
This is the first comprehensive study on water quality. 
No study has been carried out so far on seasonal effects 
and spatial variations of Sungai Sembilang. Furthermore, 
the outcomes of the research can provide a benchmark 
for exploring methods to protect human health and the 
ecosystem as well as an environmental reference for water 
pollution control of Sungai Sembilang and other tropical 
rivers that experience similar seasonal events.

The objectives are to apply MVA to determine the 
spatial-seasonal patterns and variations of the river water 
quality and identify the key water quality parameters 
responsible for the spatial-seasonal variances in river 
water quality due to the effects of point source pollutions. 
Unlike the simple identification and normal plotting/
visualising of the pollution sources across the river, 
the presented methods in the article systemically and 
statistically identified the pollution variations and pointed 
out which parameters should be further monitored and 
investigated that have the high pollution loadings. Rather 

than seasonally classifying the water quality variations 
and spatially grouping the water sampling locations, 
this study analysis identified the most significant water 
quality parameters that caused the pollution loadings 
in each category and season. This analysis can have an 
important role in river water quality management by 
lowering the number of water parameters and focusing 
on the monitoring stations affected. In order to define the 
pollution sources and types along the river, PCA (Principle 
Component Analysis) and FA (Factor Analysis) were used 
to label the latent loading factors of the water quality 
datasets during the study period. This type of method is 
well established for assessing water quality. However, as 
far as the authors are aware, there is limited information 
of the seasonal and temporal analysis of the water quality 
using this method for a tropical river, particularly within 
the study area. Therefore, the outcomes form this study 
will give more information and can be used to assist 
watershed management decision-making in accomplishing 
the objectives of water quality. 

MATERIALS AND METHODS

STUDY AREA AND MONITORING STATIONS

Sungai Sembilang, located in a tropical region, is a 
tributary of Sungai Selangor which runs through Kuala 

 

FIGURE 1. Study area and motoring stations locations 

 

FIGURE 1. Study area and motoring stations locations
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Selangor (Figure 1). The river flows through palm oil 
plantations from east to west towards the sea shore. It 
is facing real challenges due to effluents from a sanitary 
landfill and different pollution sources such as industrial 
factories, palm oil plantations, and small residential areas 
along the downstream of the river. At the same time, this 
river is also a major source of income for local people, 
namely fisheries and aquaculture activities. Pantai Remis, 
located downstream of the river, is also a major tourist 
destination in Kuala Selangor, Selangor. Malaysia faces 
two monsoon seasons, the Southwest and Northeast 
Monsoon seasons, with an average annual rainfall of about 
2,155 mm. The significance of this study relies on the 
high demand of conducting assessment of one of the most 
important attributes of Sungai Selangor. This includes 
introducing a comprehensive analysis for case studies in 
the tropical regions (Figure 1). Among the selected stations, 
two stations are situated upstream of the river, one within 
the landfill site, and the rest are located downstream of 
the landfill site. 

WATER SAMPLING

Sampling has been done for 10 times, started from May 
2015 to September 2016 for 20 parameters for each 
monitoring stations; J01, J02, J03, J04, J05, J06, J07, J08, 
J09, and J10. Water sampling, samples preservation, in-
suite measurements and laboratory tests were performed 
according to standard methods of examining water and 
wastewater (APHA 1988). The in-situ water quality 
parameters measured included pH, total dissolved solid 
(TDS), dissolved oxygen (DO), and turbidity. As for other 
parameters such as 5-day biochemical oxygen demand 
(BOD5), chemical oxygen demand (COD), ammonia 
nitrogen (AN), total suspended solid (TSS), nitrate (NO3), 
phosphate (PO4), total coliform (TC), and heavy metals, 
they were measured in the laboratory. After collecting the 
water samples, they were analysed. Table 3 summarises 
the 20 different water quality parameters as well as the 
applied analytical methods for each parameter. 

TABLE 3. List of the measured water quality parameters and the applied analytical techniques

Category Parameters Units Analytical methods

In-situ tests

pH pH meter

Electric Conductivity (EC) µS/cm
Multiple meter

Total Dissolved Solid (TDS) ppm

Dissolved Oxygen (DO) mg/L DO Meter

Turbidity (TUR) NTU Turbidity meter

Laboratory water 
quality tests

Total Suspended Solid (TSS)

mg/L Standard method (APHA)

Biochemical Oxygen Demand (BOD5)

Chemical Oxygen Demand (COD)

Ammoniacal Nitrogen (AN)

Nitrate (NO3)

Phosphate (PO4)
Total coliform (TC) CFU/100 mL

Heavy metals

Iron (Fe)

µg/L
Inductively Coupled 

Plasma Atomic Emission 
Spectrometry (ICP-OES)

Aluminum (Al)

Manganese (Mn)

Copper (Cu)

Chromium (Cr)

Zinc (Zn)

Cadmium (Cd)

Lead (Pb)
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DATA PREPARATION AND DESCRIPTIVE STATISTICS

The normality distribution of each parameter was 
checked prior to conducting analysis. It was tested 
using the Shapiro-Wilk’s test and Q-Q plots. The natural 
logarithmic transformation was carried out where 
violations of normality assumptions occurred (Garson 
2012; Hair et al. 1988; Van Ael et al. 2014; Voyles et al. 
2012). The main descriptive statistics of the sampling 
results are listed in Table 4, which include the mean, 
standard error (SE), and standard deviation (SD), compared 
against Malaysia’s National Water Quality Standards 
(NWQS) (DOE 2015). This is to ensure that this study 
meets local standards so that the outcome can be used as 
a guide for new studies especially for those countries with 
similar season conditions.

MULTIVARIATE EXPLORATORY TECHNIQUES

Multivariate statistical analysis indicates to multiple 
advanced tools for examining the connection between 
multiple variables consisting of more than one dependent 
variable (result or phenomenon of interest), more than 
one independent variable (predictor), or both (Hair et al. 
1998). A number of different statistical techniques are 
available to perform multivariate analysis which vary 
with the study dataset type and key research questions. 
For the Sungai Sembilang water quality monitoring 
programme, Cluster analysis (CA), Discriminant analysis 
(DA), Principle component analysis (PCA), and Factor 
analysis (FA) were conducted.

Cluster Analysis (CA) aims to categorise different 
variables (e.g. sampling stations and monitoring 
frequencies) that have more similar characteristics than 
those in other clusters into separate groups or clusters. CA 
was implemented to classify the spatial-seasonal patterns 
and similarities in the river water quality by grouping 
the sampling sites and frequencies into different clusters 
based on water quality characteristics. HCA was performed 
using Ward’s method by means of squared Euclidean 
distance as a similarity scale. The linkage distance was 
reported as (Dlink/Dmax)*100, which is the quotient 
between the linkage distance (Dlink) of one case over the 
maximal linkage distance (Dmax), and multiplied by 100 
to standardise the distances (Hair et al. 1998).

Discriminant analysis (DA) is a method of defining 
the differences among the clusters pre-determined by CA. 
DA provides discriminant functions (DFs) for each group, 
which can be illustrated in the following equation:

(1)

where i is the number of groups (G); ki is the constant 
inherent in each group; n is the number of parameters used 
to classify a set of data into a given group; wj is the weight 
coefficient; assigned by DA to a given selected parameter 
(pj). To determine the performance of DA, it provides a 
statistical classification table or prediction matrix that 
shows the correct and incorrect estimations. 

If the DA prediction is effective, high correct 
percentages in the classification table will be yielded. 
After HCA, DA was conducted on the spatial-seasonal 
variations in river water quality. DA was performed 
on each clustered data matrix using standard, forward 
stepwise, and backward stepwise modes in constructing 
the DFs to evaluate both the spatial and seasonal variations 
in river water quality.

Principle component analysis (PCA) is a linear 
conversion of the original variables into uncorrelated 
variables projected on a new coordinate system. The 
projected variables are called principal components 
(PCs) (equation 2) (Hair et al. 1998). The first coordinate is 
called the first PC and holds the greatest variances among 
variables. The second greatest variances lie in the second 
PC followed by the third coordinate ‘PC’. PCA defines 
the most meaningful variables capable of presenting the 
whole datasets and provides indices of the variation type 
in the analysed data.

               zij = ai1x1j + ai2x2j + ai3 x3j +...+ aimxmj              (2)

where z is the component score; a is the component 
loading; x is the measured value of the variable; i is the 
component number; j is the sample number; and m is the 
total number of variables.

Factor analysis (FA) can be defined as a data reduction 
technique that can reduce a large number of variables 
into a smaller number of factors. FA helps uncover the 
hidden patterns among variables and assists in clustering 
the highly interrelated variables into factors. This can be 
carried out by rotating the axis defined by PCA into new 
variables, called varifactors (VFs), as show in (3).

                       
           zji = af1 f1i + af2 f_2i+af3 f3i+ ... + afm fmi + efi        (3)

where z is the measured variable; a is the factor loading; 
f is the factor score; e is the residual term accounting for 
errors or other sources of variation; i is the sample number; 
and m is the total number of factors.

The resulting PCs from PCA were subjected to ‘raw 
varimax rotation’ in order to generate the VFs. Lastly, a 
small number of variables defined by FA were able to 
account for approximately the same information provided 
by the original datasets.

𝑓𝑓(𝐺𝐺𝐺𝐺) = 𝑘𝑘𝑖𝑖 +∑ (𝑤𝑤𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖)
𝑛𝑛

𝑗𝑗=1
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RESULTS AND DISCUSSION

SPATIAL AND SEASONAL SIMILARITIES AND GROUPING 
USING CLUSTER ANALYSIS

The spatial application of the hierarchical cluster analysis 
(CA) on the monitoring stations helped to detect 
similarities between three main groups with respect to 
river water quality. The dendrogram in Figure 2 illustrates 
the three groups of ten monitoring stations for (Dlink/
Dmax)*100 < 40. These clusters, namely Group A, Group 
B, and Group C were classified depending on the water 
quality parameters shown in Table 3. These clusters of 
monitoring stations indicate that each cluster has a water 

quality of its own which is different from the other clusters.
Group A corresponded to less polluted sites, which 

included the first two upstream sites (J01 and J02), as well 
as midstream stations (J06, J07, and J08) that are further 
downstream of the landfill and palm oil plantation areas. 
The stations J03, J04, and J05 were clustered in Group B, 
which exhibited a higher pollution level than Group A. 
In this group, three sites are located close to the landfill 
and palm oil plantation areas. The last two downstream 
stations J09 and J10 were included in Group C, which 
also showed higher pollution levels. This is probably due 
to the pollutants coming from nearby industrial factories 
and residential areas as well as their close proximity to 
the estuarine area, which receives discharge from the 
industrial area. 

 
 

FIGURE 1. Dendrogram of spatial CA 
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FIGURE 2. Dendrogram of spatial CA

TABLE 4. Mean, SE and SD of Sungai Sembilang water quality parameters throughout the study period

Parameter
NWQS 
Class 
I-V

Statistical 
parameters J01 J02 J03 J04 J05 J06 J07 J08 J09 J10

pH

6.5-9 Mean 3.84 3.52 4.76 5.55 5.51 5.73 6.22 6.45 6.54 6.57

SE 0.27 0.17 0.46 0.45 0.46 0.40 0.39 0.40 0.35 0.41

SD 0.85 0.53 1.46 1.42 1.45 1.26 1.24 1.27 1.12 1.31

EC (µS/cm)

1000-
6000 Mean 459.1 512.1 1,218 1,171 1,074 1,310 1,418 2,494 4,479 6,943

SE 83.3 89.4 205.1 243.6 198.4 273.3 285.8 982.8 2,358 2,346

SD 263.3 282.7 648.6 770.3 627.4 864.4 903.8 3,108 7,456 7,419

TDS (ppm)

500-
4000 Mean 293.1 334.4 786.4 717.6 627.1 800.6 829.8 1,973 3,775 3,400

SE 55.1 59.9 130.9 138.1 95.7 152.2 138.4 655.9 1,875 1,321

SD 174.3 189.5 413.8 436.8 302.6 481.2 437.8 2,074 5,929 4,177
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DO (mg/L)

7-3 Mean 4.20 4.17 3.88 3.21 3.70 4.26 4.21 3.38 3.76 4.32

SE 0.77 0.65 0.69 0.55 0.54 0.62 0.59 0.39 0.62 0.79

SD 2.44 2.06 2.19 1.73 1.71 1.96 1.87 1.23 1.96 2.50

Turbidity 
(NTU)

5-50 Mean 6.14 7.62 35.91 36.82 37.45 74.58 41.16 44.17 58.62 47.36

SE 1.65 1.64 18.89 8.78 9.53 17.95 11.03 14.63 13.90 6.65

SD 5.21 5.20 59.75 27.75 30.15 56.76 34.89 46.27 43.94 21.02

TSS (mg/L)

25-300 Mean 7.50 10.20 33.40 41.90 36.60 28.59 27.30 33.00 46.20 54.00

SE 3.41 2.72 17.72 14.93 9.61 8.22 10.41 7.49 14.33 13.04

SD 10.79 8.61 56.02 47.20 30.39 25.98 32.92 23.69 45.30 41.23

BOD (mg/L)

1-12 Mean 0.34 2.08 10.73 7.53 4.77 5.24 6.22 8.69 7.16 8.20

SE 0.18 0.69 2.03 1.73 1.06 1.11 2.39 2.45 1.89 2.14

SD 0.57 2.19 6.42 5.48 3.34 3.52 7.55 7.75 5.99 6.77

COD (mg/L)

10-100 Mean 19.10 44.45 134.47 90.61 84.25 86.45 79.94 91.88 74.36 59.69

SE 4.80 7.39 33.81 14.53 22.10 19.01 15.82 18.95 13.85 9.53

SD 15.19 23.37 106.91 45.96 69.90 60.11 50.04 59.91 43.79 30.14

AN (mg/L)

0.1-2.7 Mean 0.75 1.23 11.78 15.14 15.30 11.32 15.56 13.89 11.94 8.30

SE 0.26 0.12 5.20 4.76 5.12 3.11 4.57 4.00 2.75 1.63

SD 0.83 0.39 16.44 15.05 16.18 9.82 14.45 12.66 8.69 5.16

NO3 (mg/L)
 - Mean 1.19 5.08 75.85 71.36 53.73 36.49 31.28 99.36 43.46 33.73

SE 0.51 2.15 35.50 31.88 21.82 11.78 8.82 42.26 20.11 13.29

Parameter
NWQS 
Class 
I-IV

Statistical 
Parameters J01 J02 J03 J04 J05 J06 J07 J08 J09 J10

SD 1.62 6.80 112.27 100.82 69.01 37.24 27.88 133.65 63.59 42.03

PO4 (mg/L)

- Mean 0.02 0.32 0.28 0.42 0.14 0.57 2.66 10.33 4.41 4.53

SE 0.01 0.09 0.12 0.11 0.05 0.18 1.85 3.67 2.05 2.04

SD 0.03 0.29 0.39 0.36 0.17 0.58 5.86 11.61 6.47 6.46

TC 
(CFU/100 

mL)

100-
50,000 Mean 2,100 2,350 10,875 2,750 3,825 9,450 4,562.5 1,063 4,650 5,038

SE 787 919 3,345 864 727.7 1,361 594.4 327 612 2,165

SD 2,489 2,907 10,577 2,733 2,301 4,305 1,880 1,035 1,935 6,847

Fe (µg/L)

1000-
5000 Mean 1,667 2,736 4,623 4,533 3,991 2,822 3,016 2,493 2,289 1,927

SE 196 344 431 828 730 720 1,069 881 800 694

SD 620 1,089 1,363 2,619 2,309 2,278 3,379 2,785 2,531 2,194

Al (µg/L)

60-500 Mean 4,911 5,084 6,492 7,352 7,883 4,237 4,642 3,027 2,769 3,149

SE 743 956 1079 1703 1665 906 1747 864 971 1326

SD 2,229 2,867 3,236 5,110 4,993 2,718 5,241 2,590 2,911 3,977

Mn (µg/L)

100-200 Mean 497 568 663 792 813 804 793 584 705 559

SE 57 102 74 118 107 104 138 157 154 118

SD 180 323 233 372 339 330 438 497 487 373

Cu (µg/L)

20-200 Mean 31.6 22.9 27.6 26.1 40.9 24.4 30.7 22.1 21.3 19.8

SE 14.0 9.6 11.7 10.5 10.0 10.3 12.1 10.3 9.3 8.9

SD 44.2 30.4 37.0 33.3 31.7 32.4 38.3 32.7 29.4 28.1

Cr (µg/L) 50-100 Mean 5.41 3.53 12.01 7.70 9.32 5.78 7.50 4.69 7.08 5.55

SE 1.34 1.07 3.73 1.65 1.63 1.37 2.01 1.12 1.84 1.14

SD 4.23 3.40 11.78 5.23 5.15 4.34 6.34 3.56 5.83 3.59
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Zn (µg/L)

5000-
2000 Mean 132.6 194.1 639.7 172.7 528.8 184.9 228.7 276.5 266.7 259.7

SE 20.1 64.0 331.9 29.9 195.5 26.6 23.9 37.6 32.0 50.3

SD 63.7 202.5 1,050 94.4 618.2 84.2 75.5 118.8 101.3 159.1

Cd (µg/L)

10 Mean 1.43 1.47 1.58 1.47 6.49 1.46 1.43 1.67 1.47 1.44

SE 0.71 0.74 0.70 0.68 3.08 0.67 0.65 0.65 0.59 0.57

SD 2.24 2.33 2.22 2.14 9.74 2.12 2.06 2.05 1.86 1.81

Pb (µg/L)

50-5000 Mean 4.24 3.34 5.67 3.96 12.46 5.28 3.60 2.93 1.97 2.60

SE 1.74 1.64 1.48 1.73 3.11 2.13 1.71 1.67 1.22 1.45

SD  5.51  5.19  4.68  5.48  9.83  6.74  5.39  5.28  3.85  4.59 

On the other hand, the seasonal hierarchical clustering 
divided the water quality datasets representing one year and 
a half (May 2015 to September 2016) into two seasons 
(dry season and wet season), as shown in the dendrogram 
in Figure 3. At distance (Dlink/Dmax)*100 < 80, the 
differences among these clusters/periods were significant. 
Dry season included mostly samplings during the southwest 
monsoon (SWM) season (October to March) while wet 
season comprised samplings from the northeast monsoon 
(NEM) season (May to September). During SWM, the area 
experiences heavy rain, so the water pollution is lower 
than the samplings from NEM.  The river water quality is 
also affected by the river’s hydrological conditions apart 
from the seasonal variations. Previous study showed that 
high volume of inflow following heavy rainfall promotes 

mixing and disturbs stratification in the river. The low 
and high precipitation during dry and wet seasons in a 
tropical country like Malaysia can greatly change the 
water quality of the river. High precipitation during the wet 
season can reduce the pollutant concentration by dilution 
and deteriorate the water quality of the river due to higher 
surface runoff from anthropogenic activities (Wang et al. 
2016). Hierarchical CA provides a decent technique for 
categorising surface water in the study area and makes 
it viable to have a better future monitoring strategy that 
can decrease the number of monitoring periods and sites. 
For future studies, it is proposed that sampling rates are 
carried out in a span of multiple years to observe significant 
changes that may result from pollutant sources along the 
river.

 

FIGURE 3. Dendrogram of temporal CA
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SPATIAL AND SEASONAL VARIATIONS USING 
DISCRIMINANT ANALYSIS

The spatial variations between the three monitoring 
station groups were assessed using discriminant analysis 
(DA) after dividing the whole data sets to Group A, B, 
and C obtained through the spatial CA. The spatial DA 
was implemented using standard and stepwise modes 
in order to testify for the significance of the discriminant 

functions (DFs) and to define the most significant variables 
that created the differences among clusters. The Wilks’ 
lambda and chi-square are values estimated for the DFs 
to ensure that the spatial DA is applicable (Table 5). The 
Wilks’ lambda and chi-square values of the DFs in both 
standard and stepwise DA modes varied from 0.223 to 
0.718 and from 31.3 to 131.2, respectively.  The p-values 
were less than 0.001, which shows that the spatial DA is 
accurate and acceptable. 

TABLE 5. Wilks lambda and Chi-square tests and p-values in the standard and stepwise spatial DA modes

Modes DF R Wilks lambda Chi-square p-value

Standard DA 
mode

1 .780 .223 131.172 .000

2 .655 .571 49.025 .000

Stepwise DA 
mode

1 .634 .430 79.768 .000

2 .531 .718 31.276 .000

The discriminant functions (DFs) calculated with both 
standard and stepwise DA modes are listed in Tables 6 and 
7, respectively. The standard DA mode yielded DFs with 
approximately 90%, 77%, and 60% correct prediction 
rates for the Groups A, B, and C, respectively. Overall, 
the total correct percentage was 80%. Hence, the most 
significant parameters via the standard DA mode were 

pH, DO, BOD, AN, and the heavy metals (Cr, Cd, Cu, and 
Pb). However, by applying the stepwise mode, the DA 
reduction produced DFs with 75% correct assignment by 
using 6 discriminant parameters. The suggested DFs in 
this mode belonged to parameters pH, EC, COD, NO3, TC, 
and Fe. These DFs were the most significant water quality 
parameters to describe and account for ¾ of the expected 
spatial variations among the three groups.

TABLE 6. Classification matrix for the spatial DA modes

Modes Cluster Percent 
correct %

Cluster assigned by DA

Group A Group B Group C

Standard DA mode

Group A 90.0 45.0 7.0 8.0

Group B 76.7 3.0 23.0 0.0

Group C 60.0 2.0 0.0 12.0

Total 80.0 50.0 30.0 20.0

Stepwise DA mode

Group A 76.0 43.0 10.0 12.0

Group B 83.3 5.0 19.0 1.0

Group C 60.0 2.0 1.0 7.0

Total 75.0 50.0 30.0 20.0
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TABLE 7. Discriminant functions (DFs) coefficients for the spatial DA modes

Parameter
Standard DA mode Stepwise DA mode

Group A Group B Group C Group A Group B Group C

pH 4.656 4.543 5.719 2.588 2.200 3.321
EC .000 -.001 .000 .000 .000 .000

TDS .000 .001 .000      
DO 3.091 2.841 2.746      

TUR -.009 -.026 -.015      
TSS -.007 .015 .021      
BOD .144 .214 .121      
COD .003 .013 -.018 -.001 .011 -.009
AN -.206 -.209 -.296      

NO3 -.015 .010 -.022 -.008 .007 -.012

PO4 -.013 -.275 -.045      

TC .003 .006 .006 .001 .003 .004

Fe -.001 .000 -.001 .001 .001 .001

Al .000 .001 .000      

Mn .012 .008 .015      

Cu .131 .073 .108      

Cr .249 .433 .428      

Zn .002 .003 .004      

Cd -.204 -.130 -.146      

Pb .120 .361 .066      

(Constant) -24.368 -30.154 -32.142 -7.968 -11.070 -14.465

Figure 4 shows the mean ±0.95 confidence interval 
plots of the 6 discriminating parameters nominated by the 
spatial DA. The lower pH and EC levels at Group A and B 
stations were due to leachate whereby in Group C, the pH 
and EC increased to 6.57 and 6943 µS/cm, respectively, 
which added to the industrial sewage effluents from the 
last two monitoring stations. The pH falls within Class 
I according to NWQS and under US EPA (USEPA 2001) 
standards (i.e. 6-9). As the pH levels move away from 
this range, they can stress aquatic organisms and reduce 
hatching and survival rates. The solubility and toxicity of 
chemicals and heavy metals in water can also be affected 
by pH (Sarkar et al. 2007). Studies showed that the pH 
level for Sungai Sembilang is acidic due to the oxidation 
activity of pyrite (FeS2) in the river soil. The acidity is also 
caused by the nitrification process in leachate treatment. 
Moreover, the higher pH reading in Group C is caused 
by the palm oil plantation near the landfill where NPK 
fertiliser is used (Psaltopoulos et al. 2017).

In contrast, the EC values are higher than both 
NWQS and US EPA standards (USEPA 2001). Conductivity 
has no direct effects on human health. Variances in EC 
values are based on factors such as agricultural and 
industrial activities and land use, which impact the 
mineral content and thus, the water’s EC.

High concentrations of COD (Figure 4(c)) and NO3 
(Figure 4(d)) were observed at the Group B sites. This 
can be attributed to the treated leachate effluents from the 
nearby landfill as well as the use of fertilisers that contain 
nitrogenous elements in palm oil plantation areas at these 
sites. The COD level was greater than 50 mg/L except for 
Group A due to the higher rate of oxygen consumption 
from water. The COD values of water samples ranged 
between minimum 19.10 mg/L in Group A and maximum 
134.47 mg/L in Group C. Meanwhile, higher NO3 (31.28-
99.36 mg/L) concentrations were found downstream of 
the river due to fertiliser runoff from the nearby palm oil 
plantation. Both parameters exceed the NWQS for Class 
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V (Table 1) and the US EPA standards (USEPA 2001). 
Stevenson and Rollins (2017) also reported high nitrate 
content in the river due to plantation activity which 
contributes nutrients to the body of water. 

Nitrate enrichment in rivers can lead to increased 
algae and macrophytes growth, reduced biodiversity, and 
odour problems (Stevenson & Rollins 2017). In addition, 
the high values of TC (Figure 4(e)) and Fe (Figure 4(f)) in 
this group (Group C) are related to biological and heavy 
metal pollutions mainly due to treated effluents caused 
by young leachate. Based on landfill age, the leachate is 
generally classified as young or stabilised (5-10 years old) 
with low pH values and high organic matter content and 
biodegradability of heavy metals (Corsino et al. 2020; 
Stefania et al. 2018). The TC values varied from 1063 
CFU/100 mL in Group A to 10875 CFU/100 mL in Group 

C, which fall within class III according to NWQS. They 
also do not meet the US EPA standards (USEPA 2001). 
TC is widely measured and used as indicators of the 
presence of pathogenic microbes that pose a threat to 
people, animals, and aquatic life (Chatanga et al. 2019). 
The Fe values of surface water of all groups were > 1000 
µg/L and they are within the recommended limit of the 
NWQS Class IV (i.e. 1000-5000 µg/L). However, the 
values exceed the US EPA standards (USEPA 2001). The 
impact of Fe contamination can minimise the occurrence 
and diversity of numerous aquatic organisms, such as 
fish. High Fe concentrations along with their precipitation 
in aquatic ecosystems do have harmful effects on the 
behaviour, reproduction, and survival of aquatic animals 
(Edokpayi et al. 2016). 

 

  

FIGURE 1. Mean ±0.95 confidence interval plots for the 6 parameters (pH, EC, COD, NO3, 
TC and Fe) recognized with the spatial DA 
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Fe) recognized with the spatial DA
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The seasonal DA was conducted using standard, and 
both forward and backward stepwise modes. Forward 
and backward stepwise modes gave a good sequence and 
showed correlation coefficients (R) of 0.831, 0.826, and 
0.777, respectively (Table 8). For the two clustered seasons, 

the Wilks’ lambda and the Chi-square for the DFs were 
ranged from 0.310 to 0.396 and from 88.6 to 105.7 for 
the three modes of DA.  Table 8 shows that the p-values of 
less than 0.001 indicated that the seasonal DA is reliable, 
as the DFs were correlated with seasonal variations among 
the two clusters. 

TABLE 8. Wilks lambda and Chi-square tests and the p-values of the temporal DA modes

Modes DFs R Wilks lambda Chi-square p-value

Standard DA mode 1 .831 .310 103.012 .000

Forward stepwise DA mode 1 .826 .317 105.715 .000

Backward stepwise DA 
mode 1 .777 .396 88.578 .000

Both standard and forward DA modes were showed 
to a correct percentage of 92% of the cases in the two 
seasons (Table 9). Hence, the most significant DFs were 
EC, TUR, BOD, COD, AN, and NO3, as well as heavy metals 
such as Cu and Cr as shown in Table 9. Meanwhile, in 
the backward stepwise mode, the DA produced DFs with 
89% correct assignment using only five discriminant 

parameters, namely EC, AN, Al, Cu, and Cr (Table 
10). Therefore, the seasonal stepwise DA modes have 
suggested that parameters such as EC, TUR, BOD, COD, 
AN, and NO3, as well as heavy metals (Al, Cu and Cr) 
as the most vital parameters to distinguish between the 
two seasons and account for the most predicted seasonal 
variations in the river water quality.

TABLE 9. Classification matrix for the temporal DA modes

Modes Cluster Percent 
correct %

Cluster assigned by DA

Period_1 Period_2

Standard mode

Period_1 93 56.0 4.0

Period_2 90 4.0 36.0

Total 92 60 40

Forward stepwise 
mode

Period_1 93 56.0 4.0

Period_2 90 4.0 36.0

Total 92 60 40

Backward stepwise 
mode

Period_1 92 55.0 5.0

Period_2 85 6.0 34.0

Total 89 61 39
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TABLE 10. Discriminant function’s (DF’s) coefficients for the temporal DA modes

Parameter
Standard DA mode Forward stepwise DA mode Backward stepwise DA mode

Period_1 Period_2 Period_1 Period_2 Period_1 Period_2

pH 4.700 4.585
EC .000 .000 .001 .000 .001 .000

TDS .000 .000
DO 2.999 3.239

TUR -.027 .004 -.020 .011
TSS -.026 -.021
BOD .334 .176 .312 .137
COD .022 .005 .033 .015
AN -.104 -.198 .022 -.069 .111 .012

NO3 -.021 -.011 .005 .014
PO4 -.040 -.083
TC .000 .000
Fe -.001 -.001 -.001 .000
Al .001 .000 .000 .000 .001 .000
Mn .013 .010 .011 .008
Cu .249 .116 .150 .013 .084 -.009
Cr -.157 .268 -.261 .143 -.041 .255
Zn .002 .002
Cd -.352 -.197 .061 .227
Pb .112 .123

(Constant) -29.784 -24.083 -10.755 -4.875 -6.494 -2.334

Figures 5 and 6 show the mean ±0.95 confidence 
interval plots of the discriminant parameters selected by 
the seasonal DA. The electrical conductivity (EC) is due 
to the dissolved salts present in the water. EC values of 
the river water in both dry and wet seasons are within the 
NWQS and US EPA standards which are 6000 and 1000 
µS/cm, respectively (Sarkar et al. 2007). The average 
concentration of electrical conductivity (Figure 5(a)) was 
higher in the dry season (2725 µS/cm) compared to the 
wet season (1181 µS/cm) due to the dilution impact of 
high rainfall and runoff. The average BOD concentrations 
(Figure 5(c)) followed the same trend with higher values 
observed in the dry season. The lower concentrations of 
BOD recorded in wet season (4.94 mg/L) compared to dry 
season (6.865 mg/L) is a result of higher concentrations of 
organic substances. The maximum BOD value to maintain 
the presence of aquatic organisms must be 6 mg/L for 

NWQS and 5 mg/L for US EPA standards (USEPA 2001). 
It is important to keep the BOD below these values for 
aquatic organisms such as fishes, molluscs, crustaceans, 
and other organisms to survive. As the values of BOD 
have exceeded the maximum requirement for healthy 
ecosystem, it is important for the environmental planner 
and management to incorporate the best management 
practices and to upgrade this river for sustainability and 
livelihood of the local people.

Due to the runoff effects, the TUR levels were higher 
in the wet season as shown in Figure 5(b). Urban land 
cover often corresponds with increased loads of suspended 
solids and decreased water quality (Cunha et al. 2016). The 
differences in TUR levels were recorded during dry season 
(36.27 NTU) and wet season (43.35 NTU). The values fall 
within the acceptable limit of NWQS for Malaysian rivers 
and are categorised as Class II. Higher TUR can negatively 
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affect fish and other aquatic life by reducing food supplies, 
degrading spawning beds, and affecting gill functions. This 
can also decrease the river’s aesthetic quality and adversely 
impact recreation and tourism (Matta 2015).

The COD levels (Figure 5(d)) slightly differed 
between the two seasons and were higher in the wet 
season. This is due to pollutant runoff from surrounding 
areas. Matta (2015) demonstrated the same results 
where the overall water quality of Rwizi catchment in 
Uganda was low, particularly during the dry season. The 
values are within the NWQS, Class IV but exceed the 
US EPA standards (USEPA 2001) (i.e. 100 and 40 mg/L, 
respectively). This could be related to the leaching and 
transports of natural and domestic sewage, and agricultural 
and industrial pollutants (Ojok et al. 2017).

The primary source of AN is fertilisers that are used 
for agricultural activities within the study area. AN and 
NO3 in Figure 5(e) and 5(f) showed an inverse pattern in 
the two seasons. In the dry season, the AN concentration 
was higher (12.70 mg/L) than that in the wet season (7.28 
mg/L). Based on NWQS and US EPA standards (2001), the 
value of AN along this river is at the maximum level (0.2 
mg/L). In contrast, the NO3 level were higher in the wet 
season (77.77 mg/L) while lower concentration of NO3 
was recorded in the dry season with 23.40 mg/L. Nitrogen 
is the most widely used nutrient for agricultural production. 
In addition to fertilisers, nitrogen naturally occurs in the 
soil in organic forms decomposing plant materials, animal 
residues, and domestic sewage. The concentration of 
unionised ammonia (<0.2 mg/L) can affect some species 
of fish. Eutrophication and methemoglobinemia will occur 
at high nitrate concentrations (Barakat et al. 2016). During 
the study period, NO3 concentrations are higher than the 
limits of NWQS and US EPA standards which are 5 and 50 
mg/L, respectively (USEPA 2001). 

As for heavy metals, the main three parameters 
were Al, Cu, and Cr. Figure 6 shows a similar trend for 
the selected metals by the DA. In dry season, the heavy 
metal concentrations were higher than in the rainy season 
because of the dilution effect. The values for Al are above 

the limits of both NWQS and US EPA standards (USEPA 
2001) (i.e. 60-500 µg/L and 200 µg/L, respectively) and can 
be classified under Class V (NWQS). High levels of Al may 
impact the ability of certain species to regulate ions, such 
as salts, and may constrain respiratory functions, including 
breathing. Al can build up on the surface of the gill of 
fish, resulting in respiratory dysfunction and eventually 
death (Cano-Rocabayera et al. 2019). This is particularly 
alarming because fishing activities are a major source of 
income to the locals. If Al high concentration continues, 
fishing activities can be affected in the study area. As for 
Cu and Cr, the average values along the river are within 
the permissible standards of US EPA (USEPA 2001). Based 
on NWQS, Cu can be classified under Class III while Cr 
is classified under Class I. Anthropogenic sources of Cu 
include agriculture, and pesticide use. Cu is an essential 
nutrient at low concentrations, but at higher concentrations, 
it is harmful to aquatic organisms that can adversely affect 
survival, growth, reproduction, and mortality (Jaishankar 
et al. 2014). 

Results have shown that the stepwise DA can generate 
DFs and recognise the most significant variables in 
seasonal and spatial variations. Hence, DA has pointed 
out a few parameters responsible for large variations in 
water quality that could decrease the number of sampling 
parameters. The results of spatial and seasonal CA have 
also supported the trends of discriminant parameters in 
water quality. A combination of low discharge and high 
residence times of water with constant discharge from 
agriculture, industry, and urban areas as well as diffuse 
polluted waters can expedite the decline of water quality. 
Previous studies reported higher concentration of water 
quality parameters in dry season. Increased pollution 
values and anthropogenic drainage water depletions have 
caused critical situation in the water quality of Sungai 
Sembilang downstream. Extreme weather events such as 
severe droughts, rainfall, and floods can adversely impact 
the water supply system. Mitigation techniques are needed 
to prevent decline in water quality and damage to public 
health. Our results have suggested that seasonal variations 
clearly affect the river water quality. 

 

FIGURE 1. Mean ±0.95 confidence interval plots for the water quality parameters selected by 
the temporal DA (EC, TUR, BOD, COD, AN and NO3) 
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POLLUTION SOURCE IDENTIFICATION USING PRINCIPLE 
COMPONENT ANALYSIS (PCA) AND FACTOR ANALYSIS 

(FA)

PCA/FA was used to examine the differences within the 
clustered groups or seasons, and to determine the latent 

 

FIGURE 1. Mean ±0.95 confidence interval plots for the water quality parameters selected by 
the temporal DA (EC, TUR, BOD, COD, AN and NO3) 
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FIGURE 5. Mean ±0.95 confidence interval plots for the water quality parameters selected by the 
temporal DA (EC, TUR, BOD, COD, AN and NO3)

 

FIGURE 1. Mean ±0.95 confidence interval plots of some selected heavy metals with the 
temporal DA (Al and Cu) 
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FIGURE 6. Mean ±0.95 confidence interval plots of some selected heavy metals with the 
temporal DA (Al and Cu)

factors. As shown in the scree plot of eigenvalues in Figure 
7, eigenvalues equal to or greater than 1 are considered 
significant. The analysis yielded six varifactor (VF) 
loadings or principal components (PCs) for each season. 
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These factors explained 87.8% and 89.6% of the total 
variances of water quality in dry season and wet season, 
respectively.

Table 11 summarises the varifactor (VF) loadings, 
eigenvalues, percentage of variances, and cumulative 
variance contributions in percent for both seasons in group 
B Factor loading can be categorised as strong for loading 
value >0.75 and <-0.75. Meanwhile, the categorisation is 
moderate for values between ±0.75 and ±0.5, and weak for 
the range of ±0.5 to ±0.3. In dry season, VF1 explained 
30.7% of the total variances in Group B stations which had 
strong loadings in heavy metals and moderate negative 
loadings in DO, and positive moderate loadings in BOD 
and PO4. VF1 represents oxygen depletion, and organic 
and heavy metal pollutions due to treated landfill leachate 

 

 
 

FIGURE 1. Screen plot of eigenvalues in group B a. Period_1 b. Period_2 
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FIGURE 7. Screen plot of eigenvalues in group B a. Period_1 b. Period_2

discharge in the river. VF2 (19.2% of the total variance 
in the group) had high loadings in pH, TDS, NO3, and Fe, 
and mild loadings in NO3 and Cu. VF3 (14.6% of the total 
variance) had high positive loadings in TUR, TSS, and 
BOD. The last three VFs, represented by 11.75%, 6.08%, 
and 5.86% of the total data variances, had high positive 
loadings in COD, AN, and some heavy metals, and high 
negative loadings in TC. The first VF explained 33.49% 
of the data variance in the second sampling period. It had 
strong positive loadings in TSS, AN, and heavy metals. VF2 
(17.9%) also showed strong positive loading values in EC, 
TDS, and NO3. VF3 (13.3%) showed negative loadings in 
pH and strong positive of some heavy metals i.e. Fe and 
Al. The last three VFs, however, indicated various pollutant 
types as shown in Table 12.
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TABLE 11. Loading factors of the water quality parameters in Group B for the two periods

Parameter
Period_1 Period_2

VF1 VF2 VF3 VF4 VF5 VF6 VF1 VF2 VF3 VF4 VF5 VF6

pH .760 .106 .449 -.212 .290 .202 .258 .310 -.843 -.095 .141 .196

EC .147 .842 .416 .152 -.041 -.047 -.132 .942 -.242 -.090 .042 .013

TDS -.045 .899 -.224 .155 .023 -.094 -.128 .947 -.221 -.102 .039 .067

DO -.555 .318 -.169 -.158 -.463 -.326 -.130 .279 -.033 .139 .312 .857

TUR -.001 -.063 .951 .034 -.134 .008 .367 -.368 .308 -.145 .675 .162

TSS .001 -.066 .896 .052 .325 .079 .857 -.143 .063 -.061 .095 -.155

BOD .554 .002 .538 .134 .362 -.255 -.153 -.299 .125 -.216 -.888 -.078

COD .255 .279 .323 .787 .094 -.105 .398 -.123 .176 .065 -.809 -.005

AN .013 -.025 .035 .336 .798 .151 .766 -.195 -.364 -.013 .216 .326

NO3 .005 .687 .343 .046 .608 .047 -.254 .873 -.264 .051 .224 .177

PO4 .573 -.240 .080 -.025 .408 -.134 .163 .234 -.174 -.636 .102 .648

TC -.118 .172 -.044 -.134 -.130 -.904 .003 -.390 -.220 -.784 .256 -.181

Fe .006 -.873 .237 .065 .154 .069 .029 -.455 .736 .152 -.199 -.123

Al -.877 -.117 .001 -.333 -.062 .038 .357 -.338 .778 .149 .144 -.211

Mn -.926 .011 -.037 -.174 -.056 .100 .055 .128 .406 .222 .167 -.853

Cu .509 -.654 .020 .250 -.009 .457 .778 -.127 .293 .164 -.161 -.349

Cr .258 -.318 .080 .810 .347 .057 .256 -.093 .004 .780 .124 -.269

Zn -.194 .155 -.152 .878 .080 .248 .766 -.102 .214 .342 -.412 -.116

Cd .863 -.027 -.056 -.150 -.152 .301 .725 -.096 -.244 .364 .044 .231

Pb .728 -.009 -.160 -.070 -.434 .331 .240 -.387 .139 .663 .188 .030

Eigenvalue 6.05 3.85 2.92 2.35 1.22 1.17 6.70 3.59 2.67 2.29 1.57 1.10

Percentage 
of variance 30.27 19.24 14.60 11.75 6.08 5.86 33.49 17.94 13.34 11.43 7.87 5.52

Cumulative 
% 30.27 49.51 64.11 75.86 81.94 87.80 33.49 51.42 64.77 76.19 84.06 89.58

Similarly, the previous procedure was applied on the 
two seasons for Group A and Group C to summarise and 
identify the pollution’s pattern and seasonality (Tables 13 
& 14). Table 11 lists the results of the pollution sources and 
features based only on the first four loading factors. Overall, 
the results have indicated that there are different pollution 
types along the river during the study period, which include 
organic pollutants, nutrients, phosphorous, turbidity, 
salinity, fecal pollutant, heavy metals, and natural pollutant. 
For Group A sites located along the upper river stream, 
the main effects observed were oxygen depletion, salinity, 
nutrients, phosphorous, and heavy metals. The effects 

were due to nearby agricultural activities mainly palm oil 
plantation and domestic activities from small residential 
areas. Mousa et al. (2018) reported that non-point source 
is primarily from agricultural activities where atmospheric 
deposition is a major source of nutrient pollution which 
highlights ammonia nitrogen. Meanwhile, industrial and 
domestic waste water lead to organic pollution (BOD and 
COD). Lastly, natural pollution is mainly affected by the 
meteorological variations (temperature and DO) (McKinley 
et al. 2019). This can be supported by the fact that as water 
temperature increases in the river, biological activities of 
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aquatic organisms strengthen, hence, the concentration of 
oxygen consumption rises. More oxygen also dissolves in 

cooler water (Dobsa et al. 2014).
TABLE 12. Pollution source identification based on the 

significant VFs for each period

Periods VF1 VF2 VF3 VF4 VF5 VF6

Group A

Period_1 Oxygen depletion 
Heavy metals 

Salinity 
Nutrients 
Phosphorous

Turbidity 
Natural pollution Heavy metals

Organic 
pollution

Nutrients
Fecal pollution

Period_2
Salinity 
Phosphorous 
Natural pollution

Nutrients
Natural pollution

Oxygen 
depletion 
Turbidity 
Heavy metals

Heavy metals

Turbidity 
Organic 
pollution

Heavy 
metals

Oxygen 
depletion 
Phosphorous

Group B        

Period_1

Oxygen depletion 
Organic Pollution 
Phosphorous 
Heavy metals 

Salinity 
Nutrients 
Heavy metals 

Turbidity 
Organic pollution

Organic pollution 
Heavy metals Nutrients Fecal pollution

Period_2
Turbidity 
Organic pollution
Heavy metals

Salinity 
Nutrients 

Salinity 
Heavy metals 

Phosphorous 
Heavy metals 
Fecal pollution 

Turbidity 
Organic 
pollution

Oxygen 
depletion 
Phosphorous

Group C        

Period_1
Salinity 
Oxygen depletion 
Heavy metals 

Salinity 
Heavy metals 

Organic pollution 
Nutrients 
Fecal pollution

Turbidity 
Organic pollution

Turbidity 
Organic 
pollution

Organic 
pollution

Period_2
Salinity 
Organic pollution 
Heavy metals 

Organic pollution 
Nutrients 
Phosphorous 
Heavy metals 

Turbidity
Oxygen depletion 
Nutrients 
Organic pollution

Oxygen 
depletion 
Organic 
pollution
Nutrients 

Fecal pollution

Meanwhile, at group B sites, the VFs indicated 
were organic pollution, turbidity, nutrients, phosphorous, 
coliform contamination, and heavy metal pollution. 
These can be explained by the effects of treated leachate 
effluents which receive solid waste from various sources 
as well as fertilisers from palm oil plantation along the 
river (Ebrahimi et al. 2017; Hajigholizadeh & Melesse 
2017; Zhang et al. 2018). At the last two monitoring 

sites, Group C, high salinity and oxygen depletion were 
observed in VF1 during the two monitoring periods due 
to the sewage effluents from nearby industrial factories. 
Different types of pollution along the river indicate that 
the river has various physical and chemical characteristics 
based on various natural and anthropogenic factors. The 
spatial differences in dry season suggest that water quality 
problems in Group B and C are worse than Group A. Thus, 
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this region should be given more attention. This enhances 
the applicability of decision-makers to obtain optimal 
solutions for the final decision-making scheme taking into 

account the technical and economic feasibility of the levels 
of pollutant treatment.

TABLE 13. Loading factors of the water quality parameters on the significant VFs in Group A for the two seasons

Parameter
Dry Season Wet Season

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4

pH 0.760 0.106 0.449 -0.212 0.258 0.310 -0.843 -0.095

EC 0.147 0.842 0.416 0.152 -0.132 0.942 -0.242 -0.090
TDS -0.045 0.899 -0.224 0.155 -0.128 0.947 -0.221 -0.102
DO -0.555 0.318 -0.169 -0.158 -0.130 0.279 -0.033 0.139

TUR -0.001 -0.063 0.951 0.034 0.367 -0.368 0.308 -0.145
TSS 0.001 -0.066 0.896 0.052 0.857 -0.143 0.063 -0.061
BOD 0.554 0.002 0.538 0.134 -0.153 -0.299 0.125 -0.216
COD 0.255 0.279 0.323 0.787 0.398 -0.123 0.176 0.065
AN 0.013 -0.025 0.035 0.336 0.766 -0.195 -0.364 -0.013

NO3 0.005 0.687 0.343 0.046 -0.254 0.873 -0.264 0.051
PO4 0.573 -0.240 0.080 -0.025 0.163 0.234 -0.174 -0.636
TC -0.118 0.172 -0.044 -0.134 0.003 -0.390 -0.220 -0.784
Fe 0.006 -0.873 0.237 0.065 0.029 -0.455 0.736 0.152
Al -0.877 -0.117 0.001 -0.333 0.357 -0.338 0.778 0.149
Mn -0.926 0.011 -0.037 -0.174 0.055 0.128 0.406 0.222
Cu 0.509 -0.654 0.020 0.250 0.778 -0.127 0.293 0.164
Cr 0.258 -0.318 0.080 0.810 0.256 -0.093 0.004 0.780
Zn -0.194 0.155 -0.152 0.878 0.766 -0.102 0.214 0.342
Cd 0.863 -0.027 -0.056 -0.150 0.725 -0.096 -0.244 0.364
Pb 0.728 -0.009 -0.160 -0.070 0.240 -0.387 0.139 0.663

Eigenvalue 6.05 3.85 2.92 2.35 6.70 3.59 2.67 2.29
% of Variance 30.27 19.24 14.60 11.75 33.49 17.94 13.34 11.43
Cumulative % 30.27 49.51 64.11 75.86 33.49 51.42 64.77 76.19

TABLE 14. Loading factors of the water quality parameters on the significant VFs in Group C for the two seasons

Parameter
Dry Season Wet Season

VF1 VF2 VF3 VF4 VF1 VF2 VF3 VF4
pH -0.028 0.857 0.267 0.256 -0.824 0.242 -0.294 0.276
EC -0.883 0.332 0.024 0.059 -0.860 0.402 -0.074 -0.116

TDS -0.899 0.248 -0.253 0.020 -0.858 0.407 -0.080 -0.106
DO -0.826 0.175 0.069 0.189 0.217 -0.074 0.009 0.835

TUR 0.001 0.254 0.029 0.898 0.174 0.025 0.971 0.008
TSS -0.207 0.004 0.268 0.888 0.023 0.170 0.951 -0.102
BOD 0.082 0.337 0.672 0.530 -0.892 0.368 0.003 -0.127
COD -0.185 0.315 -0.017 -0.103 -0.206 0.552 -0.010 0.675
AN 0.276 -0.233 0.522 0.556 0.407 -0.693 0.206 -0.438
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NO3 -0.112 -0.178 0.927 0.140 -0.055 0.063 -0.181 0.883
PO4 -0.157 0.059 0.786 0.469 -0.614 0.699 0.064 0.318
TC -0.289 0.127 0.801 -0.091 0.208 0.056 0.106 0.055
Fe 0.924 0.075 -0.334 -0.055 0.649 -0.099 0.567 -0.314

Al 0.564 -0.669 -0.318 0.121 0.753 -0.112 0.442 -0.262

Mn 0.213 -0.915 -0.008 -0.259 0.910 -0.347 0.184 0.007

Cu 0.900 0.220 -0.340 -0.013 0.573 0.033 0.558 -0.306

Cr 0.932 0.284 -0.047 0.162 -0.193 0.895 0.111 0.063

Zn -0.269 -0.795 0.395 -0.104 0.687 0.257 -0.282 0.211

Cd 0.699 0.669 -0.069 -0.192 -0.311 0.810 0.258 -0.244

Pb 0.682 0.657 -0.138 -0.230 0.901 -0.077 0.114 -0.112
Eigenvalue 7.19 4.65 3.74 1.70 9.73 3.80 2.66 1.46

% of Variance 35.95 23.23 18.72 8.48 48.65 19.01 13.30 7.31

Cumulative % 35.95 59.18 77.90 86.38 48.65 67.67 80.97 88.27

CONCLUSION

In this research, multivariable statistical approaches have 
been applied to assess the spatial-seasonal differences 
and identify the pollution sources of Sungai Sembilang in 
terms of water quality. This river continuously receives 
effluents from the sanitary landfill, factories, industrial, 
and residential areas as well as sewage from land 
activities along the river. Using CA analysis, this study 
has categorized Sungai Sembilang into three different 
categories namely; lower, moderately and highly pollution 
level. The water quality parameters with high loading 
factors that cause the variations were exactly identified as 
a percent of the total variation. Thus, the study answers 
the question, as percent how much each pollution loading 
is responsible and causes the variation in the rivers’ water 
quality.  In the stepwise DA analysis shows 6 parameters 
(pH, EC, COD, NO3, TC, and Fe) and correctly assigned 
about 75% of the total variance between the 3 groups. 

While, for the temporal variations analysis, the 
forward and backward stepwise DA modes selected twelve 
and five parameters, and with 92% and 89% correct percent 
in each, respectively. These parameters included EC, TUR, 
BOD, COD, AN and NO3, and heavy metals such as Fe, 
Al, and Cu. PCA/FA analysis yielded eight latent factors 
loadings for each period that significantly identified the 
pollution sources and types along the river. The results 
also showed that, based on NWQS, the water quality 
upstream of the river is acceptable, becomes polluted 
near the landfill, improves slightly along the remaining 
length of the river before decreasing again as the river 

meets the industrial and residential areas. This shows 
that different sources of pollution contribute to the water 
quality degradation which can be analyzed using principle 
component analysis and factor analysis. The results can be 
used by authorities and decision makers in planning and 
managing the pollution sources, locating the pollution 
sources and wastewater treatment, and employing the 
best management practices to improve river water quality 
to ensure a healthy river ecosystem and sustainable river 
management. The study results could help as a feedback for 
re-shaping the monitoring process by focusing on dominant 
parameters, reducing the monitoring costs by eliminating 
the un-necessary sampling location where there were no 
variations and conducting less water tests (especially in 
heavy metals tests as they are expensive). In addition, 
this study can be used as a guide to new studies and water 
quality management studies such as water management for 
aquafarming, water security, ecological impact assessment, 
and sustainable water quality management.  Furthermore, 
the results of this study can also serve as a preliminary 
guide and knowledge for assessment and evaluation of 
other tropical rivers having the similar characteristics and 
perhaps some variation in pollutant sources.  
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