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ABSTRACT

It is now evident that some robust methods such as MM-estimator do not address the concept of bounded influence 
function, which means that their estimates still be affected by outliers in the X directions or high leverage points (HLPs), 
even though they have high efficiency and high breakdown point (BDP). The Generalized M(GM) estimator, such as 
the GM6 estimator is put forward with the main aim of making a bound for the influence of HLPs by some weight 
function. The limitation of GM6 is that it gives lower weight to both bad leverage points (BLPs) and good leverage 
points (GLPs) which make its efficiency decreases when more GLPs are present in a data set. Moreover, the GM6 takes 
longer computational time. In this paper, we develop a new version of GM-estimator which is based on simple and fast 
algorithm. The attractive feature of this method is that it only downs weights BLPs and vertical outliers (VOs) and increases 
its efficiency. The merit of our proposed GM estimator is studied by simulation study and well-known aircraft data set. 
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ABSTRAK

Beberapa kaedah teguh seperti penganggar MM telah dibuktikan tidak dapat menanangi konsep fungsi pengaruh terbatas, 
yang membawa maksud bahawa penganggar MM masih terjejas dengan titik terpencil dalam arah X atau dikenali 
sebagai titik tuasan tinggi (HLPs), walaupun ia mempunyai kecekapan dan titik musnah (BDP) yang tinggi. Penganggar 
-M teritlak (GM), seperti penganggar GM6 dicadangkan dengan tujuan utama membuat batasan kepada pengaruh HLPs 
dengan fungsi pemberat. Penganggar GM6 mempunyai kekangan dengan memberi pemberat rendah kepada GLPs, yang 
mengakibatkan kecekapan penganggar ini menurun apabila kehadiran HLPs bertambah banyak dalam suatu set data. 
Tambahan pula, masa pengiraan GM6 terlalu panjang. Dalam kertas ini, kami membangunkan penganggar GM versi 
baru berdasarkan algoritma yang mudah dan pantas. Sifat menarik yang ada bagi kaedah ini ialah ia hanya menurunkan 
pemberat bagi BLPs dan VOs dengan ini kecekapannya meningkat. Merit penganggar GM yang kami cadangkan telah 
dikaji melalui kajian simulasi dan set data kapal terbang yang terkenal.

Kata kunci: DRGP; penganggar GM; set indek kesamaan; titik musnah tinggi

INTRODUCTION

The ordinary least squares (OLS) is the widely used method 
in multiple linear regression due to tradition and its optimal 
properties. However, in the presence of outliers in a data, 
the OLS estimates become inefficient. Several versions of 
outliers are defined in regression problems such as residual 
outliers (ROs), high leverage points (HLPs) and vertical 
outliers (VOs). Any observation that has large residual is 
referred to as residual outlier. Vertical outliers are those 
observations that are extreme or outlying in y-coordinate. 
High leverage points (HLPs) not only fall far from the 

majority of independant variables, but also are deviated 
from a regression line because they actually tilt the OLS 
line and their effect on OLS estimator is very large (Leroy 
& Rousseeuw 1987).  According to Midi et al. (2009), the 
detection of HLPs is very crucial due to its responsibility 
for misleading conclusion about the fitting of regression 
model, causing multicollinearity, and masking/swamping 
of outlier. Hence the effect of HLPs should be minimized 
to get more efficient estimate. Nonetheless not all high 
leverage points (good or bad) have an adverse effect on 
the OLS estimates. It is now evident that the OLS is only 
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affected by bad leverage points. According to Chatterjee 
and Hadi (2006), good leverage points contribute to the 
efficiency of an estimate since they follow the pattern of 
the majority of a data.

To remedy the problem of outliers on the parameter 
estimates, robust methods which are known to be resistant 
to outliers may be employed. Many robust estimation 
methods such as M, MM, LMS and LTS can be found in 
the literatures (Huber 2004; Leroy & Rousseeuw 1987; 
Yohai 1987; Wilcox 2005). Even though some of them 
have high efficiency and possess high breakdown point 
(HBDP), they do not have bounded influence properties 
(Simpson et al 1992). Yohai and Zamar (1988) pointed 
out that one of the aims of robust regression is to achieve 
high efficiency, high breakdown point (close to 50%), 
and bounded influence properties. The breakdown point 
of M estimator is very low which is equals to (1/n). It 
can handle vertical outliers but not successful in handling 
HLPs.  Hekimoğlu and Erenoglu (2013) noted that both 
the S and MM estimators also do not have bounded 
influence property, despite of having high breakdown and 
high efficiency. On the other hand, both LTS and LMS 
have high breakdown point, but they do not have bounded 
influence property and have very low relative efficiency 
which is close to 8 and 37%, respectively (Rousseeuw 
1984; Rousseeuw & Croux 1993; Stromberg et al. 2000). 
Since none of these estimators can handle high leverage 
point, Schweppes as described by Hill and Paul (1977) 
suggested a new robust method called bounded influence 
Generalized M-estimator (GM-estimator) as a remedial 
technique for the sensitivity of M-estimator against high 
leverage points (Andersen 2008; Hill & Paul 1977). 

Many types of GM-estimators were proposed in 
literature (Andersen 2008; Wilcox 2005).  However, 
these methods have achieved a moderate BDP equals to 
1/k, where k is the number of regression coefficients 
including the intercept (Simpson et al. 1992). As a remedial 
measure, multi-stage GM-estimators were developed. The 
most popular types of multi-stage GM-estimator is GM6 
which was introduced by Coakley and Hettmansperger 
(1993). The least trimmed of squares is employed as an 
initial estimator in the algorithm of GM6. The initial d–
weight function of GM6 estimator is expressed in terms 
of robust mahalanobis distance (RMD) which utilized 
robust location and scatter estimators obtained from 
minimum volume ellipsoid (MVE) (Rousseeuw 1985). It 
is noted that MVE suffers from swamping effect and 
long computation running times. Besides, the RMD which 
is based on MVE only attempts to identify HLPs which 

may consist of GLPs and BLPs. Thus, the GM6 efficiency 
inclines to decrease as the number of GLPs increases 
because both GLPs and BLPs are down weighted. Their 
work has motivated us to develop another version of GM 
estimator which is relatively simple, easy to understand 
and fast.

In this paper, we propose another version of GM 
estimator that we call Generalized M estimator based 
on Fast Improvised Generalized MT (FIMGT) estimator 
denoted as GM-FIGMT which is quite fast and satisfy all 
the three properties of good robust method. The Fast GM 
estimator utilizing high breakdown point S-estimator as an 
initial estimate and using more effective weight function 
based on FIMGT. The merit of the FIMGT is that it can 
correctly identify VOs, GLPs and BLPs with relatively less 
computer time. The FIMGT is adapted in the formulation 
of the GM estimator whereby it only downs weight 
BLPs and VOs and assigns weight equals 1 to GLPs. The 
good leverage points are not down weighted because they 
may contribute to the precision of the estimates as their 
presence have no impact or less effect on the OLS estimates 
(Andersen 2008; Rousseeuw & Van Zomeren 1990).  

This paper is organized as follows. The procedure 
for formulating the proposed initial weight function for 
the GM estimator is presented in the next section. The 
proposed procedure highlights the choice of the initial 
weight di. Subsequently, the proposed GM estimator is 
explained in detail. Monte Carlo simulation study and 
real aircraft data are illustrated in the following section. 
The last section summarizes the conclusion of the study.

MATERIALS AND METHODS

THE PROPOSED INITIAL WEIGHT FOR GM-ESTIMATOR

In this section, the existing and the proposed initial weight 
functions used in the GM estimator are discussed. The 
choice of the weight function is based on the detection 
method of HLPs. A good initial weight function is one 
that depends on the detection method that able to correctly 
identify VOs and BLPs.

CHOICE OF di  WEIGHT FUNCTION FOR GM6

Coakley and Hettmansperger (1993) introduced GM6 
estimator which has high efficiency at normal distribution, 
bounded influence property and high breakdown point. 
It can be expressed as a solution of normal equations 
given by
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                (1)

where ψ = ρ’ is an influential function and di = 1, 2, ..., n 
is the initial weight function. 

The GM est imators’ main object ive is  to 
downweight HLPs which have large residuals. Coakley 
and Hettmansperger (1993) employed RMD based on 
MVE or MCD, using χ2 

(0.95,p) as cut-off points.  Those 
detected HLPs will be assigned smaller weight while 
regular observations are given weight equals 1.0.

Afterwards, they defined the initial weight of the 
GM6 estimator as follows:

Bagheri and Midi (2015) noted that this initial 
weight function inclines to swamp some low leverage 
points.  Another limitation of this weight function is that, 
the RMD only identify HLPs (good and bad). This implies 
that the detected HLPs will be assigned low weight 
irrespective of whether they are GLPs or BLPs.  Thus, 
as the number of GLPs increases, the GM6 efficiency 
tends to decrease because the precision of the parameter 
estimates may be contributed by GLPs as noted by 
Rousseeuw and Van Zomeren (1990). This is the reason 
why the GM6 - estimate is less efficient because both GLPs 
and BLPs are downweighted. The computation of GM6 
estimator is very long since it uses MVE or MCD. This 
contributes to another weakness of GM6 estimator. 

THE PROPOSED INITIAL WEIGHT FOR THE NEW 
PROPOSED GM ESTIMATOR

Our propose GM estimator begins by establishing an 
algorithm of detecting VOs, GLPs and BLPs at the 
outset. Thereafter, only assign smaller weights to the 
detected VOs and BLPs and weights equal 1 to GLPs, to 
increase the efficiency of the GM estimator. A simple and 
fast method is incorporated in the establishment of the 
algorithm of classification of observations into VOs, 
GLPs and BLPs. To make our method fast, we employ 
Index Set Equality (ISE) to compute the location and 
scale estimators instead of using the MVE or MCD. The 
computation time of ISE is shown to be quicker than the 
MVE or even quicker than the fast MCD (Lim & Midi 
2016). Hence, our aim is to formulate an initial weight 
whereby only minimize the detected VOs and BLPs. The 
proposed algorithm of classification of observations is 

described according to the following steps:

Step I Identify suspected VOs denoted by V set by 
employing the robust Reweighted Least Squares (RLS) 
based on Least Median of Squares (LMS). Step II 
Detect the suspected HLPs denoted as S set by using the 
Diagnostic Robust Generalized Potential based on Index 
Set Equality (DRGP (ISE)). Step III Form a deletion 
group/set D based on the union of V set and S set and label 
the remaining data as R set. Step IV Following the idea of 
Rahmatullah Imon (2005), the FIMGT is defined as in (2): 

(2)

where  (β̂R),  (ε̂i.R),  (wii.R
∗ ),  (σ̂R) ( σ̂R−i)  the parameter estimates, residuals  (β̂R),  (ε̂i.R),  (wii.R

∗ ),  (σ̂R) ( σ̂R−i)   
hat values  (β̂R),  (ε̂i.R),  (wii.R

∗ ),  (σ̂R) ( σ̂R−i)  standard deviation  (β̂R),  (ε̂i.R),  (wii.R
∗ ),  (σ̂R) ( σ̂R−i)  and standard 

deviation with the ith case deleted  (β̂R),  (ε̂i.R),  (wii.R
∗ ),  (σ̂R) ( σ̂R−i)  are computed 

using the OLS to the remaining data, i.e. R set.
Any observation which corresponds to FIMGT 

which is larger than its cutoff point (CPFIMGT) is considered 
as vertical outlier. The cutoff point,  is defined as follows: 

         CPFIMGT = Median(FIMGTi) + 3 MAD(FIMGTi)       (3)

The following guideline depicts the classification of 
observations into four categories taking the idea of 
Alguraibawi et al. (2015) and Bagheri and Midi (2016) 
with slide modifications:
 
An Observation is defined as Regular Observation 
(RO) if
|FIMGTi | ≤ CPFIMGT and   pii ≤ Median (pii) + cMAD (pii)

An Observation is defined as Vertical Outlier (VO) if 
|FIMGTi | > CPFIMGT and   pii ≤ Median (pii) + cMAD (pii)

An Observation is defined as a GLP if
|FIMGTi | ≤ CPFIMGT and   pii > Median (pii) + cMAD (pii)

An Observation is declared as a BLP if
|FIMGTi | > CPFIMGT and   pii > Median (pii) + cMAD (pii)

where c is a selected constant such as 2 or 3. The resultant 
categories are presented in Figure 1 whereby observations 
are separated into regular observations (ROs), VOs, GLPs, 
and BLPs.

∑ 𝑑𝑑𝑖𝑖𝜓𝜓 (𝑦𝑦𝑖𝑖 − 𝑥𝑥𝑖𝑖
𝑡𝑡�̂�𝛽)

�̂�𝜎𝑑𝑑𝑖𝑖
) 𝑥𝑥𝑖𝑖 = 0

𝑛𝑛

𝑖𝑖=1
                                        

𝑑𝑑𝑖𝑖 = min [1, (
𝜒𝜒(0.95,𝑝𝑝)2

𝑅𝑅𝑅𝑅𝑅𝑅2 )] , 𝑖𝑖 = 1,2, … , 𝑛𝑛 

 

FIMGTi =

{ 
 
  

 ε̂i.R
 σ̂R−i√1 − wii.R∗

             for  i ∈ R

 ε̂i.R
       σ̂R√1 +wii.R∗

             for i ∉ R    
                (2) 
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Hence, our proposed initial weight only considers 
those observations that fall into classes of VOs and BLPs 
but not in the class of ROs and GLPs. Thus, our propose 
initial weight is given by

(4)

where CPFIMGT is defined as in Equation (3).

THE ALGORITHM OF INDEX SET EQUALITY

The Index Set Equality (ISE) which is another new 
technique from fast MCD (Salleh 2013) is used as 
an alternative to MVE or MCD. ISEs’ running time 
is very fast because the algorithm of ISE only takes 
into account a comparison of two index set. Let 
𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 = {𝜋𝜋(1)

𝑜𝑜𝑜𝑜𝑜𝑜, 𝜋𝜋(2)
𝑜𝑜𝑜𝑜𝑜𝑜, . . . , 𝜋𝜋(ℎ)

𝑜𝑜𝑜𝑜𝑜𝑜}  be the index set consisting 
of observations in a sample, denoted as Hold. Let 
𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 = {𝜋𝜋(1)

𝑛𝑛𝑛𝑛𝑛𝑛, 𝜋𝜋(2)
𝑛𝑛𝑛𝑛𝑛𝑛, . . . , 𝜋𝜋(ℎ)

𝑛𝑛𝑛𝑛𝑛𝑛} be the index set comprising 
of observations in another sample, denoted as Hnew.  The 
algorithm of ISE is given as follows:

Step 1  An arbitrary  subset, Hold comprises of h different 
observations are chosen where h is smallest integer 
greater than or equal to 𝑛𝑛+𝑝𝑝+1

2 ,  , p is the number of 

predictor variables (Rouseeuw & Driessen 1999). Step 
2 Compute the average vector �̄�𝑇Hold and covariance 
matrix CHold of all observations that belong to Hold. Step 3 
Compute the Mahalanobis Distance Squares, denoted 
as: 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 (𝑖𝑖) = (𝑡𝑡𝑖𝑖 − 𝑇𝑇Hold)′𝐶𝐶Hold

−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇Hold)      for i = 1,2,...,n. 
Step 4 Arrange 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 (𝑖𝑖) = (𝑡𝑡𝑖𝑖 − 𝑇𝑇Hold)′𝐶𝐶Hold

−1 (𝑡𝑡𝑖𝑖 − 𝑇𝑇Hold)       for i = 1,2,...,n  in ascending 
o rde r  𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 (𝜋𝜋(1)) ≤ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 (𝜋𝜋(2)) ≤. . . . ≤ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜2 (𝜋𝜋(𝑛𝑛))  where 
π is permutation equal to {1,2,…,n}. Step 5 Create 
𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 = {𝑡𝑡𝜋𝜋(1), 𝑡𝑡𝜋𝜋(2), . . . , 𝑡𝑡𝜋𝜋(ℎ)}  such that its’ elements  
comprises of the first smallest  h observations acquired 

from Step 4. Then list the new Index Set, . Step 6 Compare 
Inew = Iold. If Inew = Iold , stop the process. Afterwards, 
equate �̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛, if 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜  
then recompute  �̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛, if 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜   and  �̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛, if 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜  , let 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛,�̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛   and 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 . 

𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛,�̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛   and 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 . Repeat Steps  3-6, until Inew = Iold 
where at this point, �̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛, if 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜   is the robust estimator of location 
and  �̄�𝑇𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = �̄�𝑇𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 , 𝐶𝐶𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜: = 𝐶𝐶𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛, if 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛 ≠ 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜   is the robust estimator of scatter.  

THE PROPOSED GM-FIGMT ESTIMATOR

The algorithm of GM-FIGMT is summarized below:
Step 1 Calculate the residuals (ri) based on S estimator 
developed by Rousseeuw (1984). Step 2 Calculate the 
estimated scale (σ) of the residuals s = (1.4826)(the median 
of the largest (n-p) of the |ri |), where ri is obtained from 
Step 1.
Step 3 Compute the standardized residuals (ei), where, ei 
= ri /s. Step 4 Calculate the initial weight, denoted as di, 
where di = 𝑚𝑚𝑚𝑚𝑚𝑚[1, CPFIMGT

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ].  Step 5 Compute the bounded 
influence function for bad leverage points, ti = ei /di. Step 
6 Employ the weighted least squares (WLS) to estimate 
the parameters of the regression,  �̂�𝛽 = (𝑋𝑋𝛵𝛵𝑊𝑊 𝑋𝑋)−1𝑋𝑋𝛵𝛵𝑊𝑊 𝑌𝑌,  
where the weight wi is reduced for large residuals to get 
good efficiency (In this paper, Tukey weight function is 
employed). Step 7 Calculate the new residuals (ri) from 
WLS and repeat steps (2-6) until convergence. 

SIMULATION STUDY

A simulation study is conducted to investigate the 
performances of our proposed GM-FIMGT at various 
contamination scenarios. Linear regression model with 
three explanatory variables (p=3) are generated according 
to the following relation:

yi = β0+ β1 xi1+ β2 xi2+ β3 xi3+ ri

FIGURE 1. Classification of observations into 4 categories

𝑑𝑑𝑖𝑖 = min [1, (CPFIMGT
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 )] , 𝑖𝑖 = 1,2, … , 𝑛𝑛                               (4) 
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where ri is the error term distributed as N (0, 1), x1, x2 and  
x3 are generated from N(0,1). In this simulation study, we 
consider three contamination scenarios namely, BLPs, 
combination of GLPs and VOs, combinations of GLPs, 
BLPs and VOs. The contamination are created by randomly 
replaced some good observations in variables x1 and with 
arbitrarily large number equal to 100. For each scenario, 
we consider five samples of sizes 30, 50, 100, 150, 200, 
and two percentage of contaminations (α = 0.05, 0.10).  
The four methods, namely the OLS, MM. GM6 and GM-
FIMGT were then applied to the data. Some summary 
statistics over 1000 replicates were computed, such as the 
mean estimated values.  

Following Riazoshams and Midi (2016), the 
performance of each technique is evaluated based on the 
percentage of robustness measures or efficiency using the 
ratio of the MSEs of the estimators compared with the 
MSEs of the OLS estimator of the good data. To simplify 

presentation, we report the efficiency based on overall 
MSE as follow:

The biases are also used as another criterion for 
evaluating the performances of the estimators. The overall 
bias is defined as 

All computations were done using R Programming 
Language. The results are exhibited in Tables 1-3. The 
biases are shown in parenthesis. A good method is the one 
that has the highest value of efficiency and the least value 
of bias. Highest efficiency value implies that the MSE of 
the proposed method is closest to the MSE of the OLS for 
clean data, compared to other estimators considered in this 
study.  Due to space limitations, we only present the results 
for p equals 3. However, other results were consistent.  
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TABLE 1. Overall Efficiency and biases for bad leverage points

N OLS MM GM6 GM-
FIMGT

5% (BLP)

30 22.1022
(2.2206)

90.0375
(0.0044)

91.7436
(0.0116)

90.6562
(0.00311)

50 24.8685
 (1.1018)

87.0163
(0.0120)

94.5888 
(0.0033)

93.7204
(0.0159)

100 16.92737
 (1.0316)

90.1319
(0.0074)

93.5777 
(0.0124)

91.4400
(0.0068)

150 14.4951
 (1.0267)

93.85369
(0.00573)

94.49078
 (0.0135)

95.1060
(0.0080)

200 12.2301  
(1.1177)

94.7470
(0.0026)

94.0099
 (0.0035)

94.3328
(0.0017)

10% (BLP)

30 30.9373
(1.3677)

54.8025
(0.2555)

87.4720 
(0.0201)

87.3420
(0.1089)

50 25.4902
 (1.092445)

65.0690
(0.07121)

92.4413
(0.0182)

92.2498
(0.0214)

100 17.0289
(1.0297)

67.5062
(0.02778)

91.1059
 (0.0170)

89.7283
(0.0069)

150 10.2627
(2.10774)

89.8039
(0.0053)

91.8940
(0.0151)

94.1150
(0.0064)

200 12.1874
(1.1071)

87.7782
(0.0070)

90.83337
(0.0117)

91.8532
(0.0011)
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TABLE 2. Overall Efficiency and biases for combination GLPs and VOs

N OLS MM GM6 GM-
FIMGT

5% (GLP&VO)

30 30.4603 
(1.4095)

79.2962
(0.041908)

92.7848
(0.0128)

97.461
(0.0166)

50 12.9200
 (2.7561)

103.6379
(0.0156)

89.5681
(0.1290)

102.1948
(0.0229)

100 4.8933
(3.7537)

100.1236
(0.0376)

86.6705 
(0.0938)

100.9936
(0.0381)

150 9.2348
(2.1467)

104.081
(0.0417)

92.3589 
(0.0525)

105.8981
(0.0372)

200 9.2512    
(1.8624)

111.4084
(0.0180)

92.3589 
(0.0525)

113.9356
(0.0235)

10% (GLP&VO)

30 7.1508
 (6.4014)

106.4538
(0.0134)

79.7749
 (0.1996)

107.4581
(0.0101)

50 19.7272
(1.8028)

100.8558
(0.0553)

91.6703
(0.0749)

100.8836
(0.0522)

100 18.8543 
(1.2766)

103.8755
(0.0794)

91.6330 
(0.0562)

103.8818
(0.0770)

150 7.4398
(2.6678)

103.3687
(0.0869)

91.8135 
(0.0583)

105.5938
(0.0847)

200 12.6561
(1.2346)

105.1071
(0.0471)

92.1644
(0.0408)

109.1424
(0.0490)

TABLE 3. Overall Efficiency and biases for combination of GLPs, BLPs and VOs

N OLS MM GM6 GM-
FIMGT

5% (GLP, BLP&VO)

30 5.4755
 (8.4502)

105.5742
(0.012418)

87.9806 
(0.115971)

106.7969
(0.0088)

50 10.4628
(3.2763)

96.8607
(0.024607)

89.8900
(0.1299)

100.7797
(0.0274)

100 8.4375
(2.7972)

102.0166
(0.0242)

91.2501
(0.0576)

102.6391
(0.0178)

150 14.5939
(1.0895)

98.3847
(0.0557)

95.4568
(0.0268)

100.8252
(0.0482)

200 7.7701
(2.2262)

105.8062
(0.0282) 93.2330 (0.0282) 106.6786

(0.0286)

10% (GLP, BLP&VO)
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30 23.3419
(1.8701)

119.0781
(0.0466)

84.0534
(0.1634)

120.6089
(0.0348)

50 7.5782
 (5.5210)

88.6558
(0.2103) 81.5265 (0.0086) 94.6960

(0.0392)

100 16.0229 (1.2988) 103.8066
(0.0359) 92.3925 (0.0321) 107.0608

(0.0259)

150 13.6582 (1.2988) 102.5125
(0.0527) 94.1327 (0.0268) 102.9573

(0.0397)

200 11.8793 (1.1824) 110.6358
(0.0246) 92.3377 (0.0270) 112.2312

(0.0228)

Tables 1 to 3 present very interesting results. In all 
contamination scenarios, the GM-FIMGT consistently 
shows the best performance compared to other methods. 
It can be seen that the efficiencies and biases of the GM-
FIMGT are consistently the highest and the smallest, 
respectively compared to other estimators.  This is due 
to the fact that GM-FIMGT is based on FIMGT which 
successfully detect VOs and BLPs and subsequently they 
are down weighted. On the contrary, the GM6 which is 
based on RMD-MVE not only suffers from swamping effect, 
but also, only able to detect high leverage points which 
includes both GLPs and BLPs. Thus, some GLPs are given 
smaller weight. It is interesting to observe that when only 
BLPs are present in the data (Table 1), as expected the 
GM6 is fairly close to GM-FIMGT.  

REAL EXAMPLE: AIR CRAFT DATA SET

The merit of the proposed GM-FIMGT estimator is illustrated 
using Air-Craft Data set which is taken from Gray (1985). 
This data set consists of 23 observations where cost is the 
response variable and four predictor variables namely 
aspect ratio, life to drag ratio, weight of the plane and 

maximal thrust. The evaluation is based on the standard 
deviation of the estimates (SE). Since the distribution of 
the GM-FIMGT is intractable, bootstrap method is used to 
find the standard deviation of its estimates. One thousands 
bootstrapped samples are utilised in this regards. Firstly, 
we want to apply the classification algorithm to the data.

The number of GLPs and BLPs detected by RMD 
(MVE) and FIMGT is presented in Figure 2.  It can be seen 
from Figure 2 that the RMD (MVE) detects 2 GLPs (cases 
14 and 20), one BLP (case 22) and one VOs (case 16). On 
the other hand, the FIMGT detects two observations (case 
21 and case 19) as GLPs, one BLP (case 22) and one VO 
(case 16). The number of detected BLPs and VOs will 
be utilised to determine the initial weights for GM-FIMGT 
while the GM6s’ initial weight only depends on the 
number of detected HLPs irrespective whether they are 
GLPs or BLPs. The parameter estimates and biases (in 
parenthesis) of the four methods are exhibited in Table 
4. We anticipated that the results of GM6 will be affected 
since GM6 not only gives smaller weight to BLPs, but it 
also incorrectly gives smaller weight to GLPs as well.  
However, the GM-FIMGT correctly give smaller weight 
only to BLPs, VOs and weight equals one to the GLPs. 

FIGURE 2. Classification of observations using RMD and FIMGT for aircraft data

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 2. Classification of observations using RMD and FIMGT for aircraft data 
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TABLE 4. The parameter estimates, and bootstrap sd for aircraft data

Methods Intercept Aspect
 Ratio

Life to Drag 
Ratio

Weight
Of Plane

Maximal 
Thrust

OLS -3.79138 
(8.61181)

-3.85292 
(1.55736)

2.48827 
(1.04388)

0.00350 
(0.00042)

-0.00195 
(0.00065)

M   6.14170 
(5.70053)

-3.23057 
(1.02219)

1.67112 
(1.09407)

0.00192 
(0.00030)

-0.00093 
(0.00029)

GM6 9.92720 
(6.67298)

-3.36519 
(1.07516)

2.42709 
(2.13377)

0.001432 
(0.00044)

-0.00077 
(0.00036)

GM-FIGMT 9.73986
(4.72351)

3.10215
(0.80041)

1.23737 
(0.92506)

0.00140 
(0.00033)

0.00058 
(0.00028)

Table 4 clearly indicates that the OLS performs 
poorly. It can be observed that the OLS estimates have 
the largest standard errors. On the other hand, as can be 
expected, the GM-FIMGT is superior compared to GM6, 
MM and OLS estimators, evident by having the smallest 
standard error of the estimates. The results suggest that 
the GM-FIMGT did remarkably well when compared to 
other methods and it is consistent with the results of the 
simulation study. 

CONCLUSION

The OLS is inefficient when outliers are present in a 
data. As an alternative, robust methods are put forward 
to remedy this problem. However, most robust methods 
such as the MM estimator have high breakdown point, high 
efficiency but are not robust against HLPs. The GM6 is 
the commonly used GM estimator which is robust against 
HLPs. Nonetheless its efficiency is affected when GLPs 
are present in a data set because the GM6 is based on RMD-
MVE which is not capable of classifying observations 
into GLPs and BLPs.  As such GLPs are given low weight. 

We developed a new GM estimator in this regard to 
increase its efficiency. Our newly developed GM-FIMGT 
is based on FIMGT method which correctly identify VOs 
and BLPs. Hence, it is very successful in reducing only 
the effect of VOs and BLPs. The results of real data and 
simulation studies signify that our proposed GM-FIMGT 
method is more efficient than the existing methods in this 
study.   
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