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Analysis of Geomagnetic Ap Index on Worldwide Earthquake Occurrence using the 
Principal Component Analysis and Hierarchical Cluster Analysis

(Analisis Geomagnetik Indeks Ap pada Kejadian Gempa Bumi Serata Dunia menggunakan Analisis Prinsip 
Komponen dan Analisis Kelompok Hierarki)
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ABSTRACT

Geoeffective solar events, especially the coronal mass ejection (CME) and the high-speed solar wind (HSSW) will induce 
geomagnetic storm upon its arrival to Earth. The solar events could trigger an earthquake occurred during the arrival. 
In this study, the focus is on the proxy of the geoeffective solar events, which is the geomagnetic Ap index and the data of 
shallow worldwide earthquakes. The main objective was to investigate the impact of geomagnetic storms on the occurrences 
of earthquakes from 1994 to 2017 from a statistical perspective. The geomagnetic Ap index data was obtained from the 
Helmholtz-Centre Postdam - GFZ German Research Centre for Geosciences and the shallow worldwide earthquake data 
were from the United States Geological Survey (USGS) earthquake catalogue. The Principal Component Analysis (PCA) 
and Hierarchical Cluster Analysis (HCA) were used to analyse the data. Two groups were obtained from the PCA biplot: 
Group 1 - before the event (Day-4 to Day-1) and Group 2 - after the event group (Day 0 to Day+4). A two-cluster solution 
was obtained from the HCA, which shows that days before and after geostorm are divided into two main clusters. The 
statistical results show that earthquakes activity might have different behaviour before and after the geostorm occurred. 
In conclusion, the results emphasize that there are differences between days before and after the geostorm occurrence, 
hence, the solar influence upon earthquake occurrences cannot be neglected entirely.
Keywords: Ap index; earthquake; geomagnetic storm; solar activity

ABSTRAK

Aktiviti geokesan suria yang memberi kesan kepada bumi seperti letusan jirim korona dan angin suria berkelajuan 
tinggi akan menyebabkan ribut geomagnetik berlaku di Bumi. Aktiviti yang kuat dan geokesan mungkin boleh mencetuskan 
gempa bumi semasa ketibaannya. Fokus kajian ini adalah pada proksi aktiviti suria yang sampai ke bumi iaitu indeks 
geomagnetik Ap dan data gempa bumi cetek dari seluruh dunia. Objektif utama kajian ini adalah untuk mengkaji dari 
perspektif statistik kesan ribut geomagnetik terhadap kejadian gempa bumi tahun 1994 sehingga 2017. Data indeks 
geomagnetik Ap dimuat turun dari Helmholtz-Centre Postdam - GFZ German Research Centre for Geosciences dan 
data bagi gempa bumi pula diperoleh daripada katalog gempa bumi United States Geological Survey (USGS). Analisis 
komponen utama (PCA) dan analisis kelompok hierarki (HCA) telah digunakan untuk menganalisis data. Dua kumpulan 
diperoleh daripada dwiplot PCA: Kumpulan 1 - sebelum kejadian ribut geomagnetik (Hari-4 hingga Hari-1) dan Kumpulan 
2 - selepas kejadian (Hari 0 hingga Hari+4). Melalui HCA, kelompok yang telah diperoleh menunjukkan bahawa hari 
sebelum dan selepas ribut geomagnetik terbahagi kepada dua kelompok utama. Hasil statistik menunjukkan bahawa 
aktiviti gempa bumi mungkin dipengaruhi oleh ribut geomagnetik. Kesimpulannya, kertas kajian ini menegaskan bahawa 
terdapat perbezaan dalam bilangan gempa bumi, sebelum dan selepas kejadian ribut geomagnetik. Oleh itu, pengaruh 
Matahari terhadap kejadian gempa bumi tidak boleh diabaikan.
Kata kunci: Aktiviti suria; gempa bumi; indeks Ap; ribut geomagnetik

INTRODUCTION

In recent years, many types of research have been 
done on the variation of earthquake activities related to 
solar events and geomagnetic interactions. The advanced 

research in the interaction of Sun and Earth encouraged 
the researchers to investigate this relationship further 
(Anagnostopoulos & Papandreou 2012; Herdiwijaya et 
al. 2015; Jusoh 2013; Jusoh et al. 2015; Love & Thomas 
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2013; Midya & Gole 2014; Nikouravan 2012; Nikouravan 
et al. 2012; Shestopalov & Kharin 2014; Sukma & Abidin 
2016; Urata et al. 2018; Vargas & Kastle 2012). Some 
researchers have found a correlation between solar events 
and earthquakes, while others claimed that the earthquake 
triggered by solar events is irrelevant. Even though extra-
terrestrial force may not be as significant as the internal 
effects such as the movement of tectonic plates or faulting 
system, it should not be neglectable.

The correlation between solar activity and earthquake 
events remained unclear, to predict future earthquakes 
(Love & Thomas 2013). The solar cycle only indicates 
the sunspots number but not necessarily a geo-effective 
solar event; hence, to study the solar-terrestrial relation, 
the solar cycle alone is not enough and must include other 
variables. Therefore, the relationship between solar activity 
and earthquake occurrences should be investigated in a 
more specific manner to understand the phenomenon. 

The natural geomagnetic field of Earth may 
temporarily be disturbed by solar events, which caused a 
geomagnetic storm. These disturbances were triggered by 
the high-speed solar wind (HSSW) and the coronal mass 
ejections (CMEs). The weak-to-moderate geomagnetic 
disturbances were caused by the HSSW, while the CME 
increased the disturbance intensities (Chen et al. 2014; 
Verbanac et al. 2011). In this study, we focused on the Ap 
index, which is used as an indicator of geoeffective solar 
events. The primary purpose of this research was to build 
an understanding of the impact of geoeffective solar events 
on the occurrences of earthquakes from a statistical point 
of view. 

DATA SELECTION AND METHODS

DATA

The geomagnetic index data and the frequencies of the 

earthquakes from 1994 to 2017 were used. The planetary 
Ap index (in nano Tesla, nT unit) is the most crucial index 
for forecasting geomagnetic conditions and is the only 
global magnetic index predicted by the space weather 
forecasting centres (Paouris & Mavromichalaki 2017). This 
geomagnetic Ap index is provided by Helmholtz-Centre 
Postdam - GFZ German Research Centre for Geosciences 
provides a good indicator for the geoeffective solar 
activity. A total of 101 storms were obtained where the 
observation corresponds to the value of the Ap index from 
moderate to an extreme geomagnetic disturbance (Bartels 
1957) with Ap higher than or equal to 57 nT (Ap ≥ 57 
nT). In this paper, we define these as geostorms, and the 
geomagnetic data is obtained from ftp://ftp.gfz-potsdam.
de/pub/home/obs/kp-ap/tab/. There is a huge gap between 
2007 until 2011 due to below the threshold value, which 
indicates minimum solar activity.

The worldwide earthquakes data were selected 
with magnitude, M ≥ 4.5, and depth of foci, d ≤ 70 km from 
the United States Geological Survey (USGS) earthquake 
catalogue. The specific focus here is on shallow crustal 
earthquakes that are closer to the atmosphere, which 
responsible for the vast bulk of earthquake damage; 
subduction-related events will not be discussed in this 
paper. The outermost layer of the Earth, has a maximum 
depth of approximately 70 km, with an assumption that 
the effects of the electromagnetic interaction between 
the Sun and Earth only affect the crust while the deeper 
earthquakes are more reliant on the internal geophysical 
influences (Jusoh et al. 2015). 

The number of earthquakes was counted on the day 
the geostorm happened. In this study, we focused on four 
days before and four days after the event (Figure 1). Day-
0 is defined as the day of the geostorm with Ap ≥ 57 nT. 
Hence, the frequency of nine consecutive days with Ap ≥ 
57 which recorded as Day-4, Day-3, Day-2, Day-1, Day-
0, Day+1, Day+2, Day+3, Day+4.and a total of 10743 
earthquakes occurrences with 101 geostorm observations.

FIGURE 1. The frequency of earthquake on days with geostorm (Day 0), 
four days before and after the storm (± 4 days). Each line represents one 

geostorm observation



  1159

STATISTICAL METHODS

PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA helps to reduce the dimension, which consists of 
correlated variables, and it creates an uncorrelated variable 
and explains much of the variation (trends and patterns) in 
the original dataset (Lever et al. 2017). It has been applied 
commonly and widely in many fields such as atmospheric 
physics, biology, and geology (Jolliffe & Cadima 2016; 
Mostapha et al. 2018). This method summarizes the 
features into descriptive rather than inferential. There are 
no distributional assumptions needed and can be applied 
to various types of numerical data (Jolliffe 2013). It is a 
projection method, which finds projections of maximal 
variability. It seeks linear combinations of the columns of 
data X, where X  is 101 × 9 matrix. Suppose S denotes the 
covariance matrix of X and 

where

and  �̅�𝒙 =
𝟏𝟏𝑻𝑻𝑿𝑿
𝑛𝑛 , 

 

  is the row vector of means of the variables. Then, 
the sample variance of a linear combination xa of a row 
vector x is aT Σa. 

The sample variance is maximized subject to aT a = 
1. The non-negative and Eigen decomposition gives

Σ = CT ΛC

where Λ is a diagonal matrix of (non-negative) eigenvalues 
in decreasing order. Suppose b is a vector with the same 
length as a since C is orthogonal. Likewise, 

is maximized subject to ∑𝑏𝑏𝑖𝑖2 = 1.  The variance is 
maximized either by taking b to be the first unit 
vector or considering a to be the column eigenvector 
corresponding to the largest eigenvalue of Σ. By taking 
the subsequent eigenvectors will give combinations with 
as large as possible variances that are uncorrelated with 
the previous principal component.

In summary, it is the eigenvectors and eigenvalues 
that are most valuable in PCA. The eigenvectors of the 
covariance matrix are the directions of the axis where 
there is most variance (information) which can be called 
as principal components. And coefficients attached to the 
eigenvectors are the eigenvalues that give the amount of 

variance carried in each component. The initial dataset 
can be reframed in terms of eigenvectors and eigenvalues 
without altering the underpinning information. Reframing 
a dataset does not mean modifying the data itself, it just 
means that it is looked at from a different perspective 
which will reflect the data better. The resulting PCA plot 
will easily identify how many main groups are significant 
and which one the profile will fall into. Moreover, the 
projected data in such plots often appear less noisy, which 
enhances pattern recognition and data summary. Such PCA 
plots are commonly used to find potential clusters (Jolliffe 
& Cadima 2016).

HIERARCHICAL CLUSTER ANALYSIS (HCA)

The cluster analysis is found useful to deal with the task 
of finding a group of interest (Adolfsson et al. 2019; 
Alkarkhi & Alqaraghuli 2019; Kaufman & Rousseeuw 
2009; Larose 2005). Generally, the motivation for 
clustering is the analysis of data and pattern recognition, 
storage, search, and retrieval. Clusters are required to be 
well separated, which means that the objects within the 
same cluster should resemble one another, and separation 
of the objects in different clusters should differentiate one 
from the other (Hansen & Jaumard 1997; Wilks 2011). In 
this study, the aim is to see the clustering of the earthquake 
frequency in nine consecutive days (Day-0 and Day±4) 
that would identify which days are affected significantly 
by the intense geomagnetic disturbance and which days 
are not affected.

Cluster analysis (CA) is a multivariate tool used to 
arrange a set of data (observations, objects) into groups 
called clusters (Alkarkhi & Alqaraghuli 2019). The 
observations within each group are almost similar to 
each other, but the clusters themselves are very different. 
Clustering is one of the vital data mining methods for 
discovering knowledge in multidimensional data. The 
goal of clustering is to identify patterns or groups of 
similar objects within a data set of interest (Kassambara 
2017). The number of clusters is unknown before starting 
the clustering process. CA is valuable for classifying and 
identifying the true groups. The clustering approach used 
in this study is the agglomerative hierarchical clustering. 
In agglomerative clustering, each observation is initially 
considered as a cluster of its own (leaf). Then, the most 
similar clusters are successively merged until there is just 
one single big cluster (root). These methods calculate the 
distances of an individual to all the other individuals to 
form a matrix called the distance matrix. The result of 
hierarchical clustering methods is presented in a diagram 
called a dendrogram.

𝑛𝑛𝑺𝑺 = (𝑿𝑿 − 𝑛𝑛𝟏𝟏𝟏𝟏𝑻𝑻𝑿𝑿)𝑇𝑇 (𝑿𝑿 − 𝑛𝑛𝟏𝟏𝟏𝟏𝑻𝑻𝑿𝑿) = (𝑿𝑿𝑻𝑻𝑿𝑿 − 𝑛𝑛𝒙𝒙𝒙𝒙𝑻𝑻), 

 

𝒙𝒙 = 𝟏𝟏𝑻𝑻𝑿𝑿
𝑛𝑛 , 

 

𝒃𝒃𝑻𝑻𝚲𝚲𝒃𝒃 =∑𝝀𝝀𝒊𝒊𝒃𝒃𝒊𝒊𝟐𝟐 
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RESULTS

The summary statistics of earthquake frequency from 
Day-4 until Day+4 is presented in Table 1. The dispersion 
of the observation is calculated along the mean line for 
each of the observations. In Figure 2, the pale grey colour 
lines represent all 101 observations, while the solid black 

line is the mean, and the dashed/dotted black lines 
are the upper and lower bounds for the 95% confidence 
interval. The dashed/dotted black lines show the limit of 
the location that the points of observation should locate 
around the mean line, and all the observations located 
outside the limits are considered outliers. From this plot, 
we found 45 observations were outside the limits.

PRINCIPAL COMPONENT ANALYSIS (PCA)

The PCA is to reduce dimension in the data due to 
correlation in Day variable. Since the data only consists 
of 9 variables (Day -4 to Day 4), we want to explore the 

FIGURE 2. Earthquake frequencies for four days before and after the 101 geostorm 
observations (The grey lines are the 101 observations of geostorm, the solid black line is the 

mean, the dashed and dotted lines are the lower and upper bounds for the 95% confidence

TABLE 1. The Mean, Standard Deviations (SD) and Standard Errors (SE) for Day±4

Day-4 Day-3 Day-2 Day-1 Day 0 Day+1 Day+2 Day+3 Day+4

Mean 11.356 11.238 10.832 11.337 12.525 12.752 12.881 12.228 11.218

Standard 
Deviation 7.939 7.607 6.232 7.361 9.030 11.597 9.423 8.784 7.286

Standard Error 0.790 0.757 0.620 0.732 0.898 1.154 0.938 0.874 0.725

relationship among observed variables. The number of 
principal components in the rotation is equal to the number 
of variables in the dataset. In Table 2, we obtained nine 
principal components (dimensions), known as PC1-9. 
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Each of these explains a percentage of the total variation 
in the dataset. The results show that PC1 has about 
55% of the total variation, meaning almost half of the 
information in the dataset can be explained by just one 
principal component, while PC2 explains around 14% of 
the variance. By combining the two principal components, 
almost 69% of the variation of the data can be explained 
by these two principal components.

Figure 3 displays the proportion of the total variation 
explained by each of the components in the principal 

FIGURE 3. Scree plot showing the percentage of explained variances 
for each principal component (dimensions)

FIGURE 4. PCA biplot for the nine variables (Day-4 until Day+4)

component analysis. It also helps to identify how many of 
the components are needed to summarise the data. From 
Table 2, we found only PC1 and PC2 with more than one 
eigenvalue, and from the scree plot, it shows that PC1 
and PC2 have a higher percentage of explained variance 
compared to other components. Hence, PC1 and PC2 are 
considered enough to explain the data.

Figure 4 shows the variable biplot. Variables with 
similar characteristics/profiles are grouped together. Two 
clusters are obtained: Before the event (Day-4 to Day-1) 
and after the event group (Day 0 to Day+4).
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HIERARCHICAL CLUSTER ANALYSIS (HCA)

We classify the variables into days around the geomagnetic 
storm events (before and after the storm). Clustering 
analysis is a method to identify a set of objects that belong 
to the same group. The objects in a specific cluster share 
the same characteristics but different to object that did not 
belong to the same cluster. Our dataset was divided into 
nine variables. The first variable is defined as the number 
of earthquakes with the most intense geostorm denoted 
as Day-0. The other variables are defined as the frequency 
of earthquakes on days before and after the event of a 
geomagnetic storm (“Day-1 and Day+1, respectively).

A dendrogram plot is easier to interpret, where it 
shows the distance level at which there was a combination 
of objects and clusters, as shown in Figure 5. The vertical 
axis is labelled height which refers to the ‘Euclidean 
distance’ or dissimilarity,  dij between the variables i and  

j which we defined as in (1) (Unal et al. 2003) with N 
is the number of data points in full data period, M is the 
available data points, and x is the location of each point. 

The dendrogram in Figure 5 was obtained by 
applying the ‘complete’ linkage method, which has the 
advantage of avoiding the chaining problem. Based on 
the dendrogram, we can see that four days before the 
geostorm (Cluster 2) and four days after the geostorm 
(Cluster 1) are nicely separated into two clusters if we 
set the distance of 15.9 to cluster the variables that have 
similar behaviour. The two different clusters mean that the 
earthquakes activity might have different behaviour before 
and after the geostorm occurred.

TABLE 2. Dimensions, eigenvalues, percentage of total variation and percentage of cumulative variance

Dimension Eigenvalue Total variation (%) Cumulative variance (%)

Dim.1 4.978 55.309 55.309

Dim.2 1.219 13.545 68.854

Dim.3 0.698 7.760 76.614

Dim.4 0.543 6.037 82.651

Dim.5 0.422 4.693 87.343

Dim.6 0.348 3.872 91.215

Dim.7 0.322 3.583 94.798

Dim.8 0.254 2.823 97.621

Dim.9 0.214 2.379 100.000

𝑑𝑑𝑖𝑖𝑖𝑖 =
𝑁𝑁
𝑀𝑀∑(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖)2

𝑀𝑀

𝑖𝑖=1
 

 

FIGURE 5. The Dendrogram of the earthquake frequency on days before 
and after the event of geostorm
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DISCUSSION

The solar-terrestrial relation involves many complicated 
processes and systems. Therefore, the results obtained 
must be interpreted with caution. The results of this study 
do not explain the behaviour of the earthquake with the 
occurrence of geostorm. Nevertheless, the present findings 
are significant in at least a couple of substantial aspects: 
The pattern of earthquake occurrences is different before 
and after the geostorm: PCA - two clusters are obtained: 
before the event (Day-4 to Day-1) and after the event 
group (Day 0 to Day+4). HCA - clearly shows differences 
between the days before and after the geostorm (producing 
two major clusters). Based on Table 3, the number of 
earthquakes before and after the geostorm differ. The 
active seismic region (faults and plate boundaries) is not as 
many as in the lower or mid-latitude, for higher latitude, the 
occurrences increased after the geostorm compared to the 
days before. Note that geostorm is not the leading cause 

but only one of many possible triggers of an earthquake. 
For an earthquake to be induced, we need to consider the 
possible mechanisms, types of rocks of the region, what 
type of boundaries, and faults. However, it is a fascinating 
idea to further this study by focusing on the higher latitude 
region as the effect of geostorm is more prominent at the 
poles.

The limitation of this study is that it only provides 
qualitative results (the groups and clusters). Interpretation 
of such information can be judgemental and biased. 
Hence it would be difficult to interpret the results for a 
generalized population of data accurately. Despite the 
limitations, this study is critical because the findings can 
provide further evidence that there are differences between 
days before and after the geostorm occurrence, hence, 
we cannot neglect the solar-terrestrial influence upon 
earthquake occurrences. 

TABLE 3. Frequency of earthquake with latitudes before and after geostorm

Latitude
Earthquake frequency

Day minus (Before) Day 0 and plus (After)

-90° < Latitude < 90° 4521 6222

High Latitude ≥ 50° 358 376

Low Latitude ≤ -50° 184 193

-50° < Mid Latitude < 50° 3979 5653

CONCLUSION

The 101 geostorm cases and the frequency of earthquakes 
were taken from 1994-2017 and statistically analysed. The 
differences in data structure between days before and after 
the geostorm events are shown in the PCA biplot (Figure 
4) and HCA dendrogram (Figure 5). It is demonstrated that 
the day with the geostorm and the days after the event were 
grouped into two different clusters. From the findings, we 
cannot neglect the effects of solar events and geomagnetic 
storms on the occurrences of earthquakes. This research 
is still far from using the geomagnetic disturbance as an 
earthquake prediction mechanism. However, one can 
expect a variation of seismic activities when the Earth’s 
magnetic field experience major disturbance from the 
Sun itself.  
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