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Understanding the Behaviour of Wind Direction in Malaysia during Monsoon 
Seasons using Replicated Functional Relationship in von Mises Distribution

(Pemahaman Tingkah Laku Arah Angin di Malaysia ketika Musim Tengkujuh menggunakan Hubungan Fungsian 
yang Direplikasi dalam Pengedaran von Mises)

NOR HAFIZAH MOSLIM, NURKHAIRANY AMYRA MOKHTAR, YONG ZULINA ZUBAIRI* & ABDUL GHAPOR HUSSIN

ABSTRACT

In studies of potential wind energy, knowing statistical distribution of wind direction provides useful information in 
making predictions and gives a better understanding of the behavior of the wind direction. Malaysia experiences two 
monsoon seasons per year, namely Southwest Monsoon and Northeast Monsoon and in this paper, our interest is to 
investigate whether the direction of wind data in monsoon seasons can be modelled using replicated LFRM with von Mises 
distribution. The beauty of this model is that it considers the error terms in both x and y variables. This study considers 
the bivariate relationship of directional wind data where errors are present in both. Here, we propose a replicated 
functional relationship model, with the von Mises distribution to describe the relationship of the wind direction data. In 
the parameter estimation, maximum likelihood method is considered with pseudo-replicated group of the replicated form 
of the functional relationship. The novelty of this approach is that assumption on the ratio of concentration parameters 
is no longer deemed necessary. Also, we derive the covariance matrix of the parameters based on Fisher Information. 
From the Monte Carlo simulation study, small bias measures were obtained, suggesting the viability of the model. Based 
on the simulation study, it can be concluded that the wind direction of the two monsoons in Malaysia can be modelled 
using replicated linear functional relationship model.
Keywords: Circular data; Monte Carlo simulation; parameter estimation; von Mises distribution; wind direction data

ABSTRAK

Dalam kajian tentang potensi tenaga angin, mengetahui pengedaran statistik arah angin memberikan maklumat yang 
berguna dalam membuat ramalan dan memberikan pemahaman yang lebih baik mengenai tingkah laku arah angin. 
Malaysia mengalami dua musim tengkujuh setiap tahun, iaitu Monsun Barat Daya dan Monsun Timur Laut dan dalam 
makalah ini, minat kami adalah untuk mengkaji apakah arah data angin pada musim tengkujuh dapat dimodelkan 
menggunakan LFRM yang direplikasi dengan pengedaran von Mises. Keindahan model ini adalah bahawa ia menganggap 
istilah kesalahan dalam kedua-dua pemboleh ubah x dan y. Kajian ini mempertimbangkan hubungan bivariat data 
angin arah dan terdapat kesilapan pada kedua-duanya. Di sini, kami mencadangkan model hubungan fungsian yang 
direplikasi, dengan pengedaran von Mises untuk menggambarkan hubungan data arah angin. Dalam perkiraan parameter, 
kaedah kemungkinan maksimum dipertimbangkan dengan kumpulan pseudo-replikasi bentuk replikasi hubungan 
fungsian. Kebaruan pendekatan ini adalah bahawa anggapan mengenai nisbah parameter kepekatan tidak lagi dianggap 
perlu. Juga, kami memperoleh matriks kovarians parameter berdasarkan Maklumat Fisher. Daripada kajian simulasi 
Monte Carlo, ukuran bias kecil diperoleh, menunjukkan keberlangsungan model. Berdasarkan kajian simulasi, dapat 
disimpulkan bahawa arah angin dua monsun di Malaysia dapat dimodelkan dengan menggunakan model hubungan 
fungsian linear yang direplikasi.
Kata kunci: Anggaran parameter; data arah angin; data berkeliling; pengedaran von Mises; simulasi Monte Carlo

INTRODUCTION

Wind energy is one of the renewable sources of electricity 
and has been used throughout the history of mankind for 
many activities such as moving the ships, grinding grain, 
and pumping water. With the discovery of electricity from 

the early 1900s the wind energy was used for electricity 
generation (Çevik et al. 2019). Understanding wind 
direction is important in studies of potential energy from 
wind. In 2011, Kamisan et al. identified the circular model 
that gives the best fit for maximal wind speed in Malaysia 
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for the year 2005. Sanusi et al. (2017) fitted the wind 
speed and wind direction with Weibull and finite mixture of 
the von Mises (mvM) respectively for Mersing, Malaysia.

The von Mises distribution is said to be the most 
useful distribution for circular data (Kamisan et al. 
2010). The von Mises distribution is analogous to the 
normal distribution for linear data since it has some 
similar characteristics with the normal distribution 

(Caires & Wyatt 2003). The probability distribution 
function of the von Mises distribution is given by 
 𝑔𝑔(𝜃𝜃; 𝜇𝜇, 𝜅𝜅) = 1

2𝜋𝜋𝐼𝐼0(𝜅𝜅)
exp(𝜅𝜅 cos(𝜃𝜃 − 𝜇𝜇))  where )(0 κI  is the 

modified Bessel function of the first kind and order zero, 
which can be defined by 𝐼𝐼0(𝜅𝜅) =

1
2𝜋𝜋 ∫ exp(𝜅𝜅 cos 𝜃𝜃) 𝑑𝑑𝜃𝜃2𝜋𝜋

0    
where μ is the mean direction and κ is the concentration 
parameter for 0 ≤ x < 2π, 0 ≤ π < π and κ > 0.

The weather in Malaysia is characterised by two 
monsoon regimes, namely, the southwest monsoon from 
May to September, and the northeast monsoon from 
November to March (Albani & Ibrahim 2013). In this 
paper, we investigate the behaviour of wind direction 
data during northeast monsoon in two stations, namely 
Kuala Terengganu and Alor Setar over two years period. 
In doing so, a functional relationship model is considered 
where we assume that there are unobservable errors. 
Here, the mean of both errors is assumed zero but have 
different concentration parameters κ and v, respectively. 
It is worthwhile to note that concentration parameter is 
unestimable unless assumption on the ratio of the error 
concentration is made (Hussin et al. 2005). If replicates of 
the data are obtained or when groups of pseudo-replicated 
based on the unreplicated data are formed, we then have 
multiples of x and y observations. This model is known 
as the replicated linear functional relationship model; 
one example, the replicated linear functional relationship 
model is applied for linear data where unbiased estimating 
equations for parameters have been developed using the 
Student-t distribution for the measurement errors (Galea 
& de Castro 2017). The motivation of this study is to extend 
this model to data that is in circular form.

In the parameter estimation using maximum 
likelihood of the replicated linear functional relationship 

model for circular variables by using the von Mises 
distribution, we proposed a simple algorithm to create the 
groupings for the pseudo-replicates. In this model, the slope  
β is set to be equal to one to obtain the desired symmetry 
of the functional relationship model. We use the method 
of maximum likelihood estimation for the parameters in 
the model and derive the covariance matrix of the model 
based on the Fisher information matrix. To investigate the 
performance of the model, we carried out the simulation 
study to obtain the bias measure of the parameter estimates. 
The proposed method is used to investigate on the annual 
relationship of wind directions during the two monsoon 
seasons.  

MATERIALS AND METHODS

STUDY AREAS

Malaysia is a country in the Southeast Asia, between 
latitudes 1° and 7° North, and longitudes 100° and 119° 
East, that lies in the equatorial zone which its climate is 
influenced by monsoons. It comprises of two regions, 
Peninsular Malaysia located at the western part of Malaysia 
and the Borneo Island located at the eastern part. These 
regions are separated by 640 km of South China Sea 
(Chalabi et al. 2006).

Kuala Terengganu is a coastal town located in the 
state named Terengganu in Peninsular Malaysia with high 
average wind speed (Albani & Ibrahim 2013; Khatib 
et al. 2012). It has a tropical rainforest climate under 
the Köppen climate classification with constant moist 
throughout the year (Ibrahim et al. 2015).

Another study area is Alor Setar, the state capital 
of Kedah, where it is located at the north region of 
Peninsular Malaysia. Department of Irrigation and 
Drainage Malaysia reported that a total area of 209 km2 of 
Kedah is prone to flood, which may affect about 124,000 
people. Due to tropical monsoon climate, Kedah has a 
long, wet season and known as the ‘rice bowl’ of Malaysia 
for its rice yield (Eli et al. 2012). Figure 1 shows the 
location of Kuala Terengganu and Alor Setar, and Table 
1 shows the reading of the latitude, longitude and the 
elevation of the study areas. 

FIGURE 1. The location of Kuala Terengganu and Alor Setar in Malaysia
(Source: https://simple.wikipedia.org/wiki/Template:Location_map_Malaysia#/media/File:Malaysia_relief_
location_map.jpg)
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TABLE 1. The reading of the latitude, longitude and the elevation of the study areas

Stations Latitude Longitude Elevation

Kuala Terengganu 5° 23’ N 103° 06’ E 5.2 m

Alor Setar 6° 12’ N 100° 24’ E 3.9 m

THE REPLICATED LINEAR FUNCTIONAL RELATIONSHIP 
MODEL

The un-replicated linear functional relationship model 
(LFRM) proposed by Caires and Wyatt (2003) is Y = X + 
α (mod 2 π) with xi = Xi + δi and yi = Yi + εi where i = 1, 2, 
…, n  for some rotation parameter α. The random errors  
δi and εi are assumed to be independently distributed with 
von Mises distribution with δi~VM (0,κ) and εi~VM (0,ν), 
respectively.

In the model as proposed by Caires and Wyatt 
(2003), it is worthwhile to note that one needs the 
ratio of concentration parameter 𝜆𝜆 = 𝜈𝜈

𝜅𝜅 to estimate the 
concentration parameters of δi and εi. The shortcoming of 
this model is that an assumption has to be made on the ratio 
value. In this paper, we extend the un-replicated LFRM 
of Caires and Wyatt to become a replicated LFRM. By 
doing so, the assumption on the ratio of the concentration 
parameters is no longer deemed necessary when estimating 
the concentration parameters of  δij and εik, respectively.

This new replicated LFRM which considers 
replicated observation has practical implications as 
replicate reduces the chance an observed effect was a fluke 

(Cumming 2006). We consider that there are replicated 
observations of Xi and Yi occurring in p sub-groups. 
All of the data of x and y variables are divided into 
p-subgroups with m elements such that p x m = n, where 
p is the maximum divisor of n and p ≤ m. Then, the data 
are arranged in the form of p x m matrix. Measurements 
xij,(j = 1, ..., mi) are made on Xi and measurements yik (k = 
1, ..., mi) are made on Yi, where 0 ≤ xij, yik < 2π. The model 
is given by Y = α + X (mod2 π), where α is the rotation 
parameter and the variables considered for this model are  
xij = Xi + δij and yik =Yi + εik. 

The error terms of  δi~VM (0,κ) and εi~VM (0,ν), 
are considered for the variables x and y, respectively. In 
this case, the error terms δij and εik are independently 
distributed with the von Mises distribution. The 
concentration parameters for the error terms δij and εik are 
k and v, respectively. Concentration parameter influences 

the von Mises distribution inversely as variance affects the 
normal distribution (Caires & Wyatt 2003).

PARAMETER ESTIMATION OF THE REPLICATED LINEAR 
FUNCTIONAL RELATIONSHIP MODEL FOR CIRCULAR 

VARIABLES

In this section, the parameters of replicated LFRM, Xi, 
the rotation parameter α, the concentration parameters 
k and v, are estimated by using the method of maximum 
likelihood. 

The log likelihood equation of the von Mises 
distribution is given by 

(1)

where N is the total sample size of variable x and M is 
the total sample size of variable y. We may assume that 
the total sample size of x and y variables are equal and 
thus, N = M.
To estimate Xi we find the first derivative of Xi with 
respect to log L and set it equals to 0.

(2)

Xi may be solved iteratively by some ‘initial guess’. 
Suppose �̂�𝑋𝑖𝑖0   is an initial estimate of �̂�𝑋𝑖𝑖0  . Then, 

(3)

We may also have

(4)

Thus, the partial derivative equation above becomes

(5)

𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿 (𝛼𝛼, 𝜅𝜅, 𝜈𝜈, 𝑋𝑋; 𝑥𝑥, 𝑦𝑦) = −𝑁𝑁𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 2𝜋𝜋 − 𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼0 (𝜅𝜅) − 𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙 𝐼𝐼0 (𝜈𝜈) 

+𝜅𝜅∑∑𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
+ 𝜈𝜈∑∑𝑐𝑐𝑙𝑙𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
 

(1) 

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝑋𝑋𝑖𝑖

= 𝜅𝜅∑𝑠𝑠𝑠𝑠𝑠𝑠( 𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖) + 𝜈𝜈∑𝑠𝑠𝑠𝑠𝑠𝑠( 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖) = 0
𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1
  

 

𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0 + �̂�𝑋𝑖𝑖0 − �̂�𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0) + 𝛥𝛥𝑖𝑖  where   Δ𝑖𝑖 = �̂�𝑋𝑖𝑖0 − �̂�𝑋𝑖𝑖.  

 
𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0 + �̂�𝑋𝑖𝑖0 − �̂�𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0) + 𝛥𝛥𝑖𝑖  where   Δ𝑖𝑖 = �̂�𝑋𝑖𝑖0 − �̂�𝑋𝑖𝑖.  

 
𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝛼 − �̂�𝑋𝑖𝑖 = (𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝛼 − �̂�𝑋𝑖𝑖0) + 𝛥𝛥𝑖𝑖   

 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0 + 𝛥𝛥𝑖𝑖) + 𝑠𝑠𝑠𝑠𝑠𝑠( 𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝛼 − �̂�𝑋𝑖𝑖0 + 𝛥𝛥𝑖𝑖) = 0  
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For small ∆, then  and cos Δi ≈ 1 and sin Δi ≈ 1.
Hence the equation is simplified (approximately) to 
become

(6)

To estimate α, we find the first derivative of α with respect 
to log L and set it equals to zero.

(7)

(8)

(9)

Therefore, we obtain

(10)

where 𝑆𝑆 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1  and 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑛𝑛

𝑖𝑖=1 .  and 𝑆𝑆 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑛𝑛
𝑖𝑖=1  and 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑛𝑛

𝑖𝑖=1 . 

To estimate k, we find the first derivative of k with respect 
to log L and set it equals to zero.

(11)

                        Let A (k) =                                           (12)

where I0(κ) and  I1(κ) are the asymptotic power series for 
the Bessel functions.

     Thus, A (k) =                                                           (13)

    Therefore,    =                                                           (14)

where A-1 is the inverse function of the ratio of the first 
and zeroth order Bessel functions of the first kind. This 

function is used to compute the maximum likelihood 
estimate of the concentration parameter of a von Mises 
distribution.

To estimate ν, we find the first derivative of ν with 
respect to log L and set it equals to zero.

(15)

(16)

         Thus,                                                                  (17)

 Therefore,                                                                    (18)

THE COVARIANCE MATRIX OF THE REPLICATED LFRM

Using the first and second derivative of the parameters, 
we derived the covariance matrix of the model based on 
Fisher Information matrix F = [

𝐵𝐵 0 𝐸𝐸
0 𝐶𝐶 𝑂𝑂
𝐸𝐸𝑇𝑇 0 𝐷𝐷

] 

 

(19)

(20)

(21)

(22)

The variance of the parameters may be solved by

(23)

(24)

(25)

�̂�𝑋𝑖𝑖1 ≈ �̂�𝑋10 +
∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0)𝑚𝑚
𝑖𝑖=1 + �̂�𝜈

�̂�𝜅 ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝛼 − �̂�𝑋𝑖𝑖0)𝑚𝑚
𝑖𝑖=1

∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖0)𝑚𝑚
𝑖𝑖=1 + �̂�𝜈

�̂�𝜅 ∑ 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝛼 − �̂�𝑋𝑖𝑖0)𝑚𝑚
𝑖𝑖=1

 

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝜈𝜈 ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜕𝜕 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0 

(7) 

 

𝑐𝑐𝑙𝑙𝑠𝑠�̂�𝜕
𝑠𝑠𝑠𝑠𝑠𝑠 �̂�𝜕 =

∑ ∑ 𝑐𝑐𝑙𝑙𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

 
(8) 

  

�̂�𝜕 = 𝑡𝑡𝑡𝑡𝑠𝑠−1 {
∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1

∑ ∑ 𝑐𝑐𝑙𝑙𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

} (9) 

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝜈𝜈 ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜕𝜕 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0 

(7) 

 

𝑐𝑐𝑙𝑙𝑠𝑠�̂�𝜕
𝑠𝑠𝑠𝑠𝑠𝑠 �̂�𝜕 =

∑ ∑ 𝑐𝑐𝑙𝑙𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

 
(8) 

  

�̂�𝜕 = 𝑡𝑡𝑡𝑡𝑠𝑠−1 {
∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1

∑ ∑ 𝑐𝑐𝑙𝑙𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

} (9) 

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = 𝜈𝜈 ∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝜕𝜕 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0 

(7) 

 

𝑐𝑐𝑙𝑙𝑠𝑠�̂�𝜕
𝑠𝑠𝑠𝑠𝑠𝑠 �̂�𝜕 =

∑ ∑ 𝑐𝑐𝑙𝑙𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

 
(8) 

  

�̂�𝜕 = 𝑡𝑡𝑡𝑡𝑠𝑠−1 {
∑ ∑ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1

∑ ∑ 𝑐𝑐𝑙𝑙𝑠𝑠(𝑦𝑦𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1

} (9) 

 

�̂�𝛼 =

{
 
 

 
 𝑡𝑡𝑡𝑡𝑡𝑡−1 {

𝑆𝑆
𝐶𝐶}              when 𝑆𝑆 > 0, 𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 {𝑆𝑆𝐶𝐶}  + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 {𝑆𝑆𝐶𝐶}  + 2𝜋𝜋    when S < 0, 𝐶𝐶 > 0

  

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = −𝑁𝑁 𝐼𝐼01(𝜕𝜕)

𝐼𝐼0(𝜕𝜕)
+∑∑𝑐𝑐𝑙𝑙𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0. 

 

Let 𝐴𝐴(𝜅𝜅) = 𝐼𝐼0
1(𝜅𝜅)

𝐼𝐼0(𝜅𝜅) = 𝐼𝐼1(𝜅𝜅)
𝐼𝐼0(𝜅𝜅)  

 

Thus,  𝐴𝐴(𝜅𝜅) = 1
𝑁𝑁 {∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 }. 

 
 

Therefore, �̂�𝜅 = 𝐴𝐴−1 (1𝑁𝑁 {∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1 })  

 

Thus,  𝐴𝐴(𝜅𝜅) = 1
𝑁𝑁 {∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 }. 

 
 

Therefore, �̂�𝜅 = 𝐴𝐴−1 (1𝑁𝑁 {∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1 })  

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = −𝑀𝑀 𝐼𝐼0

1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕) + ∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0  

Let 𝐴𝐴(𝜕𝜕) = 𝐼𝐼0
1(𝜕𝜕)

𝐼𝐼0(𝜕𝜕) = 𝐼𝐼1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕)  

Thus, 𝐴𝐴(𝜕𝜕) = 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 }  

Therefore, �̂�𝜕 = 𝐴𝐴−1 ( 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 })  

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = −𝑀𝑀 𝐼𝐼0

1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕) + ∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0  

Let 𝐴𝐴(𝜕𝜕) = 𝐼𝐼0
1(𝜕𝜕)

𝐼𝐼0(𝜕𝜕) = 𝐼𝐼1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕)  

Thus, 𝐴𝐴(𝜕𝜕) = 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 }  

Therefore, �̂�𝜕 = 𝐴𝐴−1 ( 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 })  

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = −𝑀𝑀 𝐼𝐼0

1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕) + ∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0  

Let 𝐴𝐴(𝜕𝜕) = 𝐼𝐼0
1(𝜕𝜕)

𝐼𝐼0(𝜕𝜕) = 𝐼𝐼1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕)  

Thus, 𝐴𝐴(𝜕𝜕) = 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 }  

Therefore, �̂�𝜕 = 𝐴𝐴−1 ( 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 })  

 

𝜕𝜕 𝑙𝑙𝑙𝑙𝑙𝑙 𝐿𝐿
𝜕𝜕𝜕𝜕 = −𝑀𝑀 𝐼𝐼0

1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕) + ∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)

𝑚𝑚

𝑖𝑖=1

𝑝𝑝

𝑖𝑖=1
= 0  

Let 𝐴𝐴(𝜕𝜕) = 𝐼𝐼0
1(𝜕𝜕)

𝐼𝐼0(𝜕𝜕) = 𝐼𝐼1(𝜕𝜕)
𝐼𝐼0(𝜕𝜕)  

Thus, 𝐴𝐴(𝜕𝜕) = 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐(𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 }  

Therefore, �̂�𝜕 = 𝐴𝐴−1 ( 1
𝑀𝑀 {∑ ∑ 𝑐𝑐𝑙𝑙𝑐𝑐  (𝑦𝑦𝑖𝑖𝑖𝑖 − 𝛼𝛼 − 𝑋𝑋𝑖𝑖)𝑚𝑚

𝑖𝑖=1
𝑝𝑝
𝑖𝑖=1 })  

 

where B is a p ×p matrix; 𝐵𝐵 =
[
 
 
 
�̂�𝜅𝑁𝑁𝑁𝑁(�̂�𝜅)+�̂�𝜈𝑀𝑀𝑁𝑁(�̂�𝜈)

𝑝𝑝 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ �̂�𝜅𝑁𝑁𝑁𝑁(�̂�𝜅)+�̂�𝜈𝑀𝑀𝑁𝑁(�̂�𝜈)

𝑝𝑝 ]
 
 
 
 (19) 

C is a 2 ×2 matrix; 𝐶𝐶 = [𝑁𝑁𝑁𝑁′(�̂�𝜅) 0
0 𝑀𝑀𝑁𝑁′(�̂�𝜈)] (20) 

D is an 1 × 1 matrix; 𝐷𝐷 = [�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)] (21) 

E is a p × 1 matrix; 𝐸𝐸 =
[
 
 
 
�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)

𝑝𝑝
⋮

�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)
𝑝𝑝 ]

 
 
 
 (22) 

 

covariance [
�̂�𝜅
�̂�𝜈
�̂�𝛼
] = [𝐶𝐶

−1 0
0 (𝐷𝐷 − 𝐸𝐸𝑇𝑇𝐵𝐵−1𝐸𝐸)−1] 

 

(23) 

where 𝐶𝐶−1 = [[𝑁𝑁𝑁𝑁′(�̂�𝜅)]
−1 0

0 [𝑀𝑀𝑁𝑁′(�̂�𝜈)]−1] = [
1

𝑁𝑁𝑁𝑁′(�̂�𝜅) 0

0 1
𝑀𝑀𝑁𝑁′(�̂�𝜈)

] (24) 

(𝐷𝐷 − 𝐸𝐸𝑇𝑇𝐵𝐵−1𝐸𝐸)−1 = 𝑝𝑝[�̂�𝜅𝑁𝑁𝑁𝑁′(�̂�𝜅) + �̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)]
�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)𝑝𝑝[�̂�𝜅𝑁𝑁𝑁𝑁′(�̂�𝜅) + �̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)] − 𝑝𝑝[�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)]2 (25) 

 

Therefore, �̂�𝜅 = 𝐴𝐴−1 (1𝑁𝑁 {∑ ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖𝑖𝑖 − �̂�𝑋𝑖𝑖)𝑚𝑚
𝑖𝑖=1

𝑝𝑝
𝑖𝑖=1 }) (14) 
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Therefore, the covariance matrix of the parameters 
becomes 

(26)

SIMULATION STUDY

To assess the accuracy and the biasness of the parameters 
of the proposed model, a Monte Carlo simulation study 
is carried out. The number of simulations is set to be s, 
meanwhile the values of n, k and ν for the error terms have 
been generated. In this model, the value of α is circular 
meanwhile k and ν values are continuous. The number 
of simulations, s is set to be 5000 for each simulation. 
The values of X have been generated from the von Mises 
distribution of VM (2, 3) and the true value of  𝛼𝛼 = 𝜋𝜋

4 =  0.7854 
0.7854. Without loss of generality, the values of the 
concentration parameters of the error terms, k and ν are set 
to be 3, 5, 10 and 15, respectively. For each value of k and 
v, the sample size n = 50, 78, 132, and 150 are considered 
for the simulation. For this simulation, assume that k = v.

As mentioned earlier, we simulate the pseudo-
replicates of the data. All the data of x and y variables are 
divided into p-subgroups with m elements such that p x m 
= n, where p is the maximum divisor of n and p ≤ m. The 
data are then arranged in the form of p x m matrix. Next, 
the parameter estimation is done for based on the proposed 
method in the previous section. The steps are repeated 
for 5000 simulations where the biasness of the proposed 
parameter estimation for 5000 simulations is measured.
 In the pseudo-replicate, for n = 50, the subgroup is set 
at 5 with 10 elements in each subgroup. For n = 78, the 
subgroup is set to be 6 with 13 elements in each group. 
For n = 132, there are 11 subgroups with 12 elements in 
each group and for n = 150, the subgroup is set to be 10 
with 15 elements in each sub-groups.

Bias measures are used to investigate the performance 
of the proposed model. For the bias measures of 

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

, the 
mean, circular distance and mean resultant length are used. 
The mean of circular parameter 

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

is given by

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

=

where where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 .  It is 
analogous to the mean of a sample of linear data (Lee 
2010).

The circular  distance,  d  is  given by d =
𝑑𝑑 = 𝜋𝜋 − |𝜋𝜋|�̄̂�𝛼 − 𝛼𝛼||.    Circular distance between two points 

is to take the smaller of two arc lengths between 
the points along the circumference (Jammalamadaka 
& Sengupta 2001). Meanwhile, the mean resultant 
length of the parameter estimate of 

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

 is given by R = 

1 
 

𝑅𝑅 = 1
𝑠𝑠
√(∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 )2 + (∑ 𝑐𝑐𝑠𝑠𝑠𝑠(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 )2.  

 

 The mean resultant 

is used to measure the concentration of unimodal 
circular distributions and is used to test if there is a 
strong preferred direction in measured data (Kutil 2012). 
If the directions are tightly clustered, then, mean resultant 
length is close to 1. However, if the directions are widely 
dispersed, then mean resultant length will be close to 0 
(Mardia & Jupp 2000).

To investigate the biasness of

1 
 

 �̂�𝜅 

 

, the mean of

1 
 

 �̂�𝜅 

 

, 
estimated bias and estimated root mean square errors are 
used. Mean of 

1 
 

 �̂�𝜅 

 

 is given by 

1 
 

by �̄̂�𝜅 = 1
𝑠𝑠 ∑ �̂�𝜅𝑗𝑗

𝑠𝑠
𝑗𝑗=1 .  

by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜅𝑗𝑗 − 𝜅𝜅)2𝑠𝑠

𝑗𝑗=1 .  

 

 

The estimated 
bias is given by 

1 
 

by �̄̂�𝜅 = 1
𝑠𝑠 ∑ �̂�𝜅𝑗𝑗

𝑠𝑠
𝑗𝑗=1 .  

by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜅𝑗𝑗 − 𝜅𝜅)2𝑠𝑠

𝑗𝑗=1 .  

 

 

 - k and the estimated root mean square 
error is given by ERMSE = 

1 
 

by �̄̂�𝜅 = 1
𝑠𝑠 ∑ �̂�𝜅𝑗𝑗

𝑠𝑠
𝑗𝑗=1 .  

by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜅𝑗𝑗 − 𝜅𝜅)2𝑠𝑠

𝑗𝑗=1 .  

 

 

 ERMSE is 

used as a standard statistical metric to measure model 
performance. It measures the difference between the 
actual values observed from the environment that is being 
modelled and the values predicted by the proposed model 
(Chai & Draxler 2014).

For the bias measure of 
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�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

, the mean, estimated bias 
and estimated root mean square errors are used. The mean 
of 
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�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

 is given by 
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�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

The estimated bias of 
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�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

 is 
given by 
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�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

 and the estimated root mean square errors 
is given by ERMSE = 

1 
 

�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

  

RESULTS AND DISCUSSION

Simulation study was carried out to assess the biasness 
of the parameter estimates of this model proposed in the 
previous section. Table 2 shows that the circular mean of 
the parameter estimate 

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

 in the simulation study are near to 
the real value of  
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parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

 which is 0.7854. The circular distance 
values are small and near to zero. These suggest that the 
biasness is very small. Additionally, the mean resultant 
length values are very near to 1 thus, indicating that the 
estimation has a good accuracy.

cov [
�̂�𝜅
�̂�𝜈
�̂�𝛼
] =

[
 
 
 
 
 
 1
𝑁𝑁𝑁𝑁′(�̂�𝜅) 0 0

0 1
𝑀𝑀𝑁𝑁′(�̂�𝜈) 0

0 0 𝑝𝑝[�̂�𝜅𝑁𝑁𝑁𝑁′(�̂�𝜅) + �̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)]
�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)𝑝𝑝[�̂�𝜅𝑁𝑁𝑁𝑁′(�̂�𝜅) + �̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)] − 𝑝𝑝[�̂�𝜈𝑀𝑀𝑁𝑁′(�̂�𝜈)]2]

 
 
 
 
 
 

 (26) 
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parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  
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TABLE 2. Biasness of 

n Circular mean Circular distance Mean resultant length

k = 3
v = 3

50 0.7857 0.0003 0.9917

78 0.7853 0.0001 0.9947

132 0.7867 0.0013 0.9968

150 0.7840 0.0014 0.9973

k = 5
v = 5

50 0.7839 0.0015 0.9955

78 0.7856 0.0002 0.9971

132 0.7845 0.0009 0.9983

150 0.7843 0.0011 0.9984

k = 10
v = 10

50 0.7857 0.0003 0.9979

78 0.7855 0.0001 0.9987

132 0.7857 0.0003 0.9992

150 0.7858 0.0004 0.9993

k = 15
v = 15

50 0.7859 0.0005 0.9986

78 0.7853 0.0001 0.9991

132 0.7854 0.0000 0.9995

150 0.7854 0.0000 0.9995
 

Tables 3 and 4 show that as the value of n increases, 
the mean of  �̂�𝜅 and �̂�𝜈   and  �̂�𝜅 and �̂�𝜈   gets closer to real values of k and v, 
respectively. Looking at the values of estimate bias of  �̂�𝜅 and �̂�𝜈   

and  �̂�𝜅 and �̂�𝜈  , they decrease as n increases. The values of ERMSE 
for both  �̂�𝜅 and �̂�𝜈   and  �̂�𝜅 and �̂�𝜈  decrease as the value of n increases. 
These suggest that the parameter estimates are adequate 
and have small bias.

TABLE 3. Biasness of 

n Mean Estimate bias ERMSE

k = 3
v = 3

50 3.2296 0.2296 0.6871

78 3.1529 0.1529 0.5156

132 3.1081 0.1081 0.3764

150 3.0761 0.0761 0.3427

k = 5
v = 5

50 5.4938 0.4938 1.2843

78 5.3093 0.3093 0.9199

132 5.2703 0.2703 0.7017

150 5.2258 0.2258 0.6521

k = 10
v = 10

50 11.1062 1.1062 2.7114

78 10.7507 0.7507 1.9711

132 10.6146 0.6146 1.4949

150 10.4869 0.4869 1.3244

k = 15
v = 15

50 16.7188 1.7188 4.0835

78 16.1580 1.1580 3.0059

132 15.9730 0.9730 2.3130

150 15.7758 0.7758 2.0390

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

1 
 

 �̂�𝜅 
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TABLE 4. Biasness of 

n Mean Estimate bias ERMSE

k = 3
v = 3

50 3.2255 0.2255 0.6888

78 3.1307 0.1307 0.5054

132 3.1033 0.1033 0.3752

150 3.0790 0.0790 0.3392

k = 5
v = 5

50 5.4991 0.4991 1.2580

78 5.3105 0.3105 0.9455

132 5.2758 0.2758 0.7171

150 5.2304 0.2304 0.6494

k = 10
v = 10

50 11.1437 1.1437 2.6946

78 10.7690 0.7690 1.9327

132 10.6334 0.6334 1.4890

150 10.5040 0.5040 1.3525

k =15
v = 15

50 16.6189 1.6189 3.9705

78 16.0663 1.0663 2.8838

132 15.9451 0.9451 2.2668

150 15.7851 0.7851 2.0723
 

1 
 

�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

From the simulation results, we may say that the 
proposed model is sufficient to model circular data with 
very small bias. To highlight, the novelty of this proposed 
replicated model is we are able to estimate the parameters 
without having to assume the ratio of the concentration 
parameter, in contrast to the previous study of un-
replicated functional model by Caires and Wyatt (2003).

MODELLING WIND DIRECTION DATA IN MALAYSIA 
COASTAL STATIONS

Before investigating the bivariate relationship of the wind 
direction over two consecutive years, we obtained the 

summary statistics and distribution of the univariate data. 
For the Kuala Terengganu coastal station, we consider the 
wind direction during northeast monsoon season from 
January to February for two different years, namely 2016 
and 2017. 

Figures 2 and 3 show the rose diagrams of wind 
direction data in Kuala Terengganu in 2016 and 2017, 
respectively. The rose diagram is a histogram presented 
in a circle, almost identical to the pie chart for linear data. 
However, each sector represents the frequency or number 
of observations which falls in the range of angles (Hassan 
et al. 2009). 

FIGURE 2. Rose diagram of wind direction data of Kuala 
Terengganu in northeast monsoon 2016
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Table 5 shows the summary statistics for wind direction 
data of Kuala Terengganu in 2016 and 2017. The wind 
direction has bigger error concentration parameter as 

FIGURE 3. Rose diagram of wind direction data of Kuala 
Terengganu in northeast monsoon 2017
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compared to the 2017. The wind direction data for 2016 
and 2017 both have the median of 60° or in radian is 
1.0472 rad with mean resultant length are 0.922 and 
0.853, respectively.

TABLE 5. Summary statistics of wind direction data of Kuala Terengganu

Year 2016 2017

Data type Angles Angles

Mean vector 56.779° 50.066°

Length of mean vector 0.922 0.853

Median 60° 60°

Concentration 6.691 3.722

As mentioned earlier, our aim is to investigate the 
relationship of the wind direction. In this case, we let x be 
the wind direction of Kuala Terengganu in 2016 and y be 
the wind direction in 2017. The estimate of the rotation 
parameter, 

1 
 

parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =

{ 
 
  
𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶)             when  𝑆𝑆 > 0,  𝐶𝐶 > 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 𝜋𝜋      when 𝐶𝐶 < 0

𝑡𝑡𝑡𝑡𝑡𝑡−1 (𝑆𝑆𝐶𝐶) + 2𝜋𝜋     when  𝑆𝑆 < 0, 𝐶𝐶 > 0 

 
where 𝐶𝐶 = ∑ 𝑐𝑐𝑐𝑐𝑐𝑐(�̂�𝛼𝑗𝑗)𝑠𝑠

𝑗𝑗=1 and  𝑆𝑆 = ∑ 𝑐𝑐𝑠𝑠𝑡𝑡(�̂�𝛼𝑗𝑗)𝑠𝑠
𝑗𝑗=1 . It is analogous to the mean of a sample of linear  

 

 is 6.1618 radian which is close to zero. 
This means that the relationship of the wind direction 
of Kuala Terengganu in 2016 and 2017 are almost the 
same. Meanwhile, the value of estimation of the error 

concentration of wind direction data of Kuala Terengganu 
in 2016 and 2017 are quite high, which are 6.0341 and 
4.4766, respectively. High concentration indicates that 
the random error is concentrated and less dispersed. 
This is not surprising as the univariate analysis suggests 
that the concentration is higher in 2016 as compared to 
2017. Small variance of parameter estimates indicate that 
the parameter estimates are very close to their means. 
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The concentration parameter is important as the values 
influence the mathematical formulation of the model. 
By applying the proposed model with the von Mises 

distribution, the relationship between the variables x and 
y can be described by  �̂�𝑌 = 6.1618 + �̂�𝑋 (mod 2𝜋𝜋)  where the 
values of the parameter estimates, and their variance are 
given in Table 6.

FIGURE 4. Rose diagram of wind direction data of Alor Setar in 
southwest monsoon 2016

FIGURE 5. Rose diagram of wind direction data of Alor Setar in 
southwest monsoon 2017

TABLE 6. The parameter estimates of the replicated LFRM for wind direction data in 
Kuala Terengganu in 2016 and 2017 during northeast monsoon

(variance) (variance) (variance)

6.1618 
(0.00726)

 6.0341
(1.0857)

4.4766
(0.7470)

  

We also investigate if the bivariate relationship can 
fit well during the other monsoon namely the southwest 
monsoon season, which is from August to September. 
Here we consider the Alor Setar coastal station where 
the relationship of the wind direction for two consecutive 
years are investigated. In this case, variable x is the wind 

direction data in 2016 and the variable y is the wind 
direction data in 2017. Similar to the earlier analysis, we 
plot the distribution using rose diagrams and obtained the 
summary statistics of the wind direction for each year. 
Figures 4 and 5 show the rose diagrams of wind direction 
data of Alor Setar in 2016 and 2017, respectively. 
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parameter �̂�𝛼, �̄̂�𝛼 is given by �̄̂�𝛼 =
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𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
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TABLE 7. Summary statistics of wind direction data of Alor Setar

Year 2016 2017

Data type Angles Angles

Mean vector 262.606o 255.429o

Length of mean vector 0.87 0.785

Median 260o 250o

Concentration 4.159 2.696

From Table 7, it can be seen that the mean vector 
and the length of mean vector are almost similar at both 
years. However, 2016 has a higher error concentration as 
compared to 2017. Then, we fit the data into the proposed 
replicated linear functional relationship model. The 
values of the parameter estimation and their variance are 
given in Table 8. The estimate of the rotation parameter,  
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is 6.15384 radian which is close to zero too. This means 
that the relationship of the wind direction of Alor Setar 

in 2016 and 2017 are almost the similar. The value of 
estimation of the error concentration of x and y are 4.68439 
and 2.69337, respectively. It shows that the random error 
of the wind direction data of Alor Setar in 2016 is more 
concentrated to be compared to the year 2017 and is more 
consistent with the earlier univariate analysis. In order 
to investigate the relationship between the two years, we 
found that the data fit replicated linear functional model 
and the model is given by �̂�𝑌 = 6.15384 + �̂�𝑋 (mod 2𝜋𝜋).  
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TABLE 8. The parameter estimates of the replicated LFRM for wind direction data in 
Alor Star in 2016 and 2017 during southwest monsoon

(variance) (variance) (variance)

6.15384 
(0.01191)

 4.68439
(0.62100)

2.69337 
(0.29868)
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�̂�𝜈 is given by �̄̂�𝜈 = 1
𝑠𝑠 ∑ �̂�𝜈𝑗𝑗𝑠𝑠

𝑗𝑗=1 . The estimated bias of �̂�𝜈 is given by �̄̂�𝜈 − 𝜈𝜈 and the estimated 

root mean square errors is given by 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √1
𝑠𝑠 ∑ (�̂�𝜈𝑗𝑗 − 𝜈𝜈)2𝑠𝑠

𝑗𝑗=1  .  

 

 

CONCLUSION

To conclude, in this paper, we have proposed a replicated 
functional relationship model to investigate the 
relationship of wind direction two coastal stations in 
Malaysia for two different monsoon seasons, in Kuala 
Terengganu station during northeast monsoon and in 
Alor Setar during southwest monsoon. With the von 
Mises distribution, we derived the maximum likelihood 
estimation of the model with pseudo-replicated group 
of the replicated form of the functional relationship. The 
novelty of this approach is that assumption on the ratio 

of concentration parameters is no longer necessary. Also, 
we derive the covariance matrix of the parameters based 
on Fisher Information. From the Monte Carlo simulation 
study, small bias measures were obtained, suggesting the 
viability of the model. The empirical evidence is used in 
the evaluation of the proposed model.
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