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Composite Pareto Distributions for Modelling Household Income Distribution in 
Malaysia

(Taburan Komposit Pareto untuk Pemodelan Taburan Pendapatan Isi Rumah di Malaysia)

MUHAMMAD HILMI ABDUL MAJID* & KAMARULZAMAN IBRAHIM

ABSTRACT

Composite Pareto distributions are flexible as the models allow for data to be described by two distributions: a Pareto 
distribution for the data above a threshold value and another separate distribution for data below the threshold value. 
It is noted in some previous literatures that the Paretian tail behaviour can be observed in the distribution of Malaysian 
household income. In this paper, the composite Pareto models are fitted to the Malaysian household income data of 
several years. These fitted composite Pareto models are then compared to several univariate models for describing 
income distribution using pseudo-likelihood based AIC, BIC and Kolmogorov-Smirnov goodness-of-fit test. It is found 
that the income distributions in Malaysia can be best described by the lognormal-Pareto (II) model as compared to other 
candidate models.
Keywords: Composite model; goodness-of-fit; income distribution; Pareto distribution; pseudo-likelihood

ABSTRAK

Taburan komposit Pareto adalah luwes kerana model ini boleh menerangkan sesuatu data menggunakan dua taburan: 
taburan Pareto untuk data di atas suatu nilai ambang dan taburan yang berasingan untuk data di bawah nilai ambang 
tersebut. Kajian sebelum ini telah menyatakan bahawa ciri-ciri ekor Pareto dapat diperhatikan pada taburan pendapatan 
isi rumah di Malaysia. Dalam kajian ini, model komposit Pareto disuaikan ke atas data pendapatan isi rumah di 
Malaysia. Model komposit Pareto ini akan dibandingkan dengan model univariat lain untuk menerangkan taburan 
pendapatan dengan menggunakan AIC, BIC dan ujian kebagusan penyuaian Kolmogorov-Smirnov berasaskan pseudo-
kebolehjadian. Kajian mendapati taburan pendapatan di Malaysia boleh diterangkan menggunakan model lognormal-
Pareto (II) lebih baik berbanding calon model lain.
Kata kunci: Kebagusan penyuaian; model komposit; pseudo-kebolehjadian; taburan Pareto; taburan pendapatan 

INTRODUCTION

Various parametric models for income distributions have 
been proposed by many authors, including lognormal, 
gamma, Weibull, generalized beta, and Pareto distributions. 
These models are useful for assessing income inequality 
and other economic indicators. Amongst these models, 
Pareto type I distribution is found to be able to fit the 
upper tail of the income distribution very well since it has 
been found that the number of individuals with income 
above a given value  can be approximated by Cx-α for 
some positive values C and α (Arnold 2008). However, 

Pareto type I distribution can only be fitted to the upper 
tail of the income data and cannot be used for the whole 
income data.

Alternatively, composite Pareto distribution model 
can be used to model the whole distribution by combining 
Pareto distribution for the upper tail and a separate 
distribution for the lower tail. The composite Pareto model 
has a probability density function (pdf) of the form

𝑓𝑓(𝑥𝑥|𝜃𝜃) = {𝜌𝜌1𝑓𝑓1(𝑥𝑥|𝜃𝜃), 𝑥𝑥 ≤ 𝜏𝜏
𝜌𝜌2𝑓𝑓2(𝑥𝑥|𝜃𝜃), 𝑥𝑥 > 𝜏𝜏, 
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where the model separates the distribution at the threshold 
value τ. The observation in the lower tail is modelled 
using the pdf f1 (x|θ) while the upper tail observations 
are modelled using f2 (x|θ), which is the pdf of Pareto 
distribution. Composite Pareto distribution was first 
introduced by Cooray and Ananda (2005) using 
lognormal distribution for the lower tail. Then  the  model 
was improved by Scollnik (2007) by freeing the mixing 
weight. However, in the literature, composite Pareto 
distributions have been mainly used to model insurance 
data and limited applications are found for the income 
data (Bakar et al. 2015; Cooray & Ananda 2005; Scollnik 
2007; Scollnik & Sun 2012; Teodorescu & Vernic 2009).

In this paper the composite Pareto models are 
applied to Malaysian income distribution from the 
Malaysia Household Income Survey (HIS) for the year 
2007, 2009, 2012, 2014 and 2016. The composite Pareto 
models are compared to other parametric models used for 
income distribution, namely lognormal, gamma, Weibull, 
Dagum, beta 2 (also called beta prime), Singh-Maddala 
and generalized beta of the second kind distributions. 
The performance of these distributions in model fitting 
are compared using AIC, BIC, and Kolmogorov-Smirnov 
goodness-of-fit test. Since the survey data contains sample 
weights, the weights must be included in the analysis to 
avoid biased parameter estimates (Pfeffermann 1993). For 
that reason, a pseudo-likelihood based approach is used.

This paper is organized as follows. In the next 
section, a brief description on the Malaysia Household 
Income Survey is given. After that, the composite 
Pareto models are described in detail for both models 
with Pareto type I and Pareto type II for the upper tail 
data. The statistical methods used for analysis including 
pseudo-likelihood approach and model selection criteria 
are described in the following section. Subsequently, the 
results of the application of composite Pareto models on 
the data are given and discussed. Last section concludes 
the paper.

MALAYSIA HOUSEHOLD INCOME SURVEY (HIS)

Twice every five years, the Department of Statistics 
Malaysia (DOSM) conducted surveys to collect 
information on the income distribution and identify the 
accessibility of basic amenities for citizens in Malaysia 
in the Household Income and Basic Amenities Survey 
(HIS&BA). To gather the data, personal interviews 
are conducted by trained officers and staffs of the 
department. Then, data quality is checked to detect 
and rectify errors by experienced officers. There are 
several variables and information gathered in the survey 

including household’s annual income, location, size, and 
the head of household’s age, gender, education, marital 
status, and occupation. Each household is given weight 
based on its location (state and urbanity).

Five HIS datasets are considered: HIS year 2007, 
2009, 2012, 2014, and 2016. The data used in our analysis 
is a subset of the total survey data provided by DOSM and 
Bank Data UKM (These datasets are confidential but can 
be requested online from https://www.dosm.gov.my/v1/
index.php). To equivalise the income data, the household 
monthly gross income in Ringgit Malaysia (RM) is 
divided by the square root of the number of household 
size. This square root equivalence scale is used in many 
studies including Congressional Budget Office (2019) 
and OECD (2015) and is used since two households with 
the same monthly gross income may not be in the same 
economic position due to the difference in the number of 
people in the households. Since no comparison is made 
between the different years, inflation adjustment is not 
required.

The HIS datasets have been used extensively in 
studying the income distribution in Malaysia and some 
literatures have discussed and used Pareto tail for the 
upper income data (Masseran et al. 2019; Ragayah 
2008; Razak & Shahabuddin 2018; Safari et al. 2018a, 
2018b). For example, the Paretian tail behaviour of the 
Malaysian household income has been noted by Razak 
and Shahabuddin (2018). Safari et al. (2018b) on the 
other hand, have used a semi-parametric approach to 
measure income inequality by combining nonparametric 
distribution for the lower data distribution and Pareto 
distribution for the upper tail. It is of interest in this paper 
to check if the composite Pareto models can provide a 
better fit as compared to other model when applied to 
income distribution.

COMPOSITE PARETO MODELS

The composite Pareto model is a mixture model in which 
the distribution is spliced at a certain threshold value, τ. 
Any observations above the value τ follows the Pareto 
distribution and observations below the value τ follow 
another model such as lognormal, gamma or Weibull. We 
call this the ‘lower data distribution model’.

In the introduction of composite Pareto model, 
Cooray and Ananda (2005) have used Pareto type I 
distribution for the upper tail data. However, in the model 
proposed by them, the proportion of data coming from the 
Pareto tail is fixed and deemed to be restrictive (Scollnik 
2007). Scollnik then improved the model by removing 
the restriction on the mixing weight in the model and 
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considering the use of generalized Pareto distribution 
(GPD), also known as Pareto type II distribution, for the 
upper tail data. Since then, a variety of composite Pareto 
models have been introduced including Weibull-Pareto 
composite model (Ciumara 2006; Scollnik & Sun 2012), 
exponential-Pareto composite model (Teodorescu & Vernic 
2009),  and inverse gamma-Pareto model (Aminzadeh & 
Deng 2019). In these literatures, composite Pareto models 
were found to be able to fit real life data better compared 
to single distribution models.

Figure 1 illustrates the pdf of the composite Pareto 
models. In this figure, the pdf of three distribution models 
is plotted: lognormal, lognormal-Pareto (I), and lognormal-
Pareto (II). The data follows similar lower data distribution 
model (the lognormal distribution) up to the threshold τ. 
However, data above τ. are modelled using Pareto type 
I and Pareto type II distributions for lognormal-Pareto 
(I) and lognormal-Pareto (II), respectively. Note that the 
properties of the pdfs including heaviness of the upper tail 
may differ based on the parameter values.

FIGURE 1. The pdf of lognormal (μ = 7.8, σ = 0.69), lognormal-Pareto (I) 
(μ = 7.8, σ = 0.69, τ = 4000, ρ = 0.3611, α = 1.0377), and lognormal-Pareto 

(II) (μ = 7.8, σ = 0.69, τ = 4000, ρ = 0.5018, α = 0.4, β = 6870.486)

Various R packages are available to assist statistical 
analysis when using the composite Pareto model. The 
CompLognormal package specializes in composite 
lognormal models with the upper tail can be specified to 
be Pareto distribution (Nadarajah & Bakar 2013). The 
gendist package computes the pdf, cdf, and quantile 
function as well as handles random value generation 
for composite models (Bakar et al. 2016). The mistr 
package provides some computational framework for 
composite models (Sablica & Hornik 2020). Other useful 

packages include evmix (Hu & Scarrott 2018) and ReIns 
(Reynkens et al. 2020).

COMPOSITE PARETO I MODEL

The composite Pareto I model has the following pdf

  
(1)𝑓𝑓(𝑥𝑥|𝜃𝜃) = {(1 − 𝜌𝜌) 𝑓𝑓1(𝑥𝑥|𝜂𝜂)𝐹𝐹1(𝜏𝜏|𝜂𝜂)

, 𝑥𝑥 ≤ 𝜏𝜏
𝜌𝜌𝑓𝑓𝑃𝑃1(𝑥𝑥|𝜏𝜏, 𝛼𝛼), 𝑥𝑥 > 𝜏𝜏

,  



2050 

where θ = (ρ, η, τ, α) is a collection of all the parameters 
in the model, ρ is the weight of the Pareto type I 
distribution,  f1(x|η) is the pdf of lower data distribution 
model with parameter η and cumulative distribution 
function (cdf) F1(x|η), and fP1 (x|τ,α) is the pdf of Pareto 
type I distribution with threshold τ > 0 and tail index α 
> 0. The lower data distribution model is not specified 
to any distribution model as to enable a more general 
distribution model. But for simplicity, it is assumed that 
f1(x|η) is continuous and differentiable.
The pdf of Pareto type I is
 

(1)

To make the pdf (1) continuous and differentiable at τ, 
we let f (τ-|θ) = f (τ+|θ) and f’(τ-|θ) = f’(τ+|θ) by specifying
 

 

condition on τf1’(τ|η) < - f1 (τ|η) so that α > 0. For example, 
if  f1(τ|η) is a lognormal distribution with logmean µ and 
logvariance σ2, let φ(·) and Φ(·) denote the pdf and cdf 
of the standard normal distribution, respectively, and let 
z = (log τ-μ)/σ, then the values of α and ρ are as follows
 

COMPOSITE PARETO II MODEL

The composite Pareto II model is similar to composite 
Pareto I model but with Pareto type II distribution model 
for the upper tail. It has the pdf of the form

(2)

where θ = (ρ, η, τ, α, β) is the collection of all the 
parameters, ρ is the weight of Pareto type II distribution 
in the model, f1(x|η) is the pdf of lower data distribution 
model with parameter η and cdf F1(x|η) , and  fP2(x|τ, α, 
β) is the pdf of Pareto type II distribution with threshold 
τ > 0, tail index α > 0, and scale parameter β > 0. Again, 
the lower data distribution model is not specified but it 
is assumed that f1(x|η) is continuous and differentiable.

The pdf of Pareto type II is
 

To satisfy the continuity and differentiability conditions 
of pdf (2), we must have f (τ-|θ) = f (τ+ |θ) and f’(τ -|θ) = 
f’(τ +|θ) which leads to

subject to f1’(τ|η) < 0 so that β > 0. As an example, if the 
lower data distribution is a lognormal distribution with 
logmean µ and logvariance σ2, let z = (log τ-μ)/σ, then 
the values of β and 𝛽𝛽 = 𝜎𝜎2(𝛼𝛼𝛼𝛼+𝛼𝛼)

𝛼𝛼𝜎𝜎(𝑧𝑧+𝜎𝜎)  and 𝜌𝜌 = 𝛼𝛼𝜎𝜎(𝛼𝛼+1)𝜑𝜑(𝑧𝑧)
𝛼𝛼𝜎𝜎(𝛼𝛼+1)𝜑𝜑(𝑧𝑧)+𝛼𝛼𝜎𝜎(𝑧𝑧+𝜎𝜎)𝛷𝛷(𝑧𝑧).  are as follows

STATISTICAL METHODS

PSEUDO-LIKELIHOOD APPROACH

The survey data contains sampling weights which must 
be considered for unbiased statistical analysis. One 
approach is by using pseudo-likelihood to replace the 
likelihood used in analysis. Other approaches that can 
be used for parameter estimation for data with sampling 
weights include the Bayesian finite population inference 
(Skinner et al. 1989) and using representative samples 
created from the samples and its weight (Gunawan et al. 
2020).

Suppose we observe the households income x = 
(x1, ..., xn) and the households’ weight  w = (w1, ..., wn) 
where n is the sample size. The weights are assumed to be 
scaled such that ∑wi = n. This can be done by dividing 
the original (unscaled) weights by its empirical mean. 
The pseudo-pdf for a household i is the pdf raised to the 
power of its weight wi. The pseudo-likelihood can then 
be written as
 

If the weights are uninformative, then wi = 1 for all  
i and the pseudo-likelihood will be the regular likelihood. 
The pseudo-maximum likelihood estimate is defined as the 
parameter that maximises the pseudo-likelihood:

𝑓𝑓𝑃𝑃1(𝑥𝑥|𝜏𝜏, 𝛼𝛼) =
𝛼𝛼𝜏𝜏𝛼𝛼
𝑥𝑥𝛼𝛼+1 ,    𝑥𝑥 > 𝜏𝜏. 

 

𝛼𝛼 = −1 − 𝜏𝜏𝑓𝑓1′(𝜏𝜏|𝜂𝜂)
𝑓𝑓1(𝜏𝜏|𝜂𝜂)

 and 𝜌𝜌 = 𝜏𝜏𝑓𝑓1(𝜏𝜏|𝜂𝜂)2
𝜏𝜏𝑓𝑓1(𝜏𝜏|𝜂𝜂)2−𝐹𝐹1(𝜏𝜏|𝜂𝜂)[𝑓𝑓1(𝜏𝜏|𝜂𝜂)+𝜏𝜏𝑓𝑓1′(𝜏𝜏|𝜂𝜂)], 

𝛼𝛼 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝜏𝜏−𝜇𝜇
𝜎𝜎2  and 𝜌𝜌 = 𝜑𝜑(𝑧𝑧)

𝜑𝜑(𝑧𝑧)+𝑧𝑧𝑧𝑧(𝑧𝑧). 

𝑓𝑓(𝑥𝑥|𝜃𝜃) = {(1 − 𝜌𝜌) 𝑓𝑓1(𝑥𝑥|𝜂𝜂)𝐹𝐹1(𝜏𝜏|𝜂𝜂)
, 𝑥𝑥 ≤ 𝜏𝜏

𝜌𝜌𝑓𝑓𝑃𝑃2(𝑥𝑥|𝜏𝜏, 𝛼𝛼, 𝛽𝛽), 𝑥𝑥 > 𝜏𝜏
,  

𝑓𝑓𝑃𝑃2(𝑥𝑥|𝜏𝜏, 𝛼𝛼, 𝛽𝛽) =
1
𝛽𝛽 (1 +

𝑥𝑥−𝜏𝜏
𝛼𝛼𝛽𝛽 )

−𝛼𝛼−1
,     𝑥𝑥 > 𝜏𝜏. 

𝛽𝛽 = −(𝛼𝛼+1)𝑓𝑓1(𝜏𝜏|𝜂𝜂)
𝛼𝛼𝑓𝑓1′(𝜏𝜏|𝜂𝜂)  and 𝜌𝜌 = (𝛼𝛼+1)𝑓𝑓1(𝜏𝜏|𝜂𝜂)2

(𝛼𝛼+1)𝑓𝑓1(𝜏𝜏|𝜂𝜂)2−𝛼𝛼𝑓𝑓1′(𝜏𝜏|𝜂𝜂)𝐹𝐹1(𝜏𝜏|𝜂𝜂)
, 

 

𝛽𝛽 = 𝜎𝜎2(𝛼𝛼𝛼𝛼+𝛼𝛼)
𝛼𝛼𝜎𝜎(𝑧𝑧+𝜎𝜎)  and 𝜌𝜌 = 𝛼𝛼𝜎𝜎(𝛼𝛼+1)𝜑𝜑(𝑧𝑧)

𝛼𝛼𝜎𝜎(𝛼𝛼+1)𝜑𝜑(𝑧𝑧)+𝛼𝛼𝜎𝜎(𝑧𝑧+𝜎𝜎)𝛷𝛷(𝑧𝑧). 

�̃�𝐿 = ∏ [𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃)]𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 

and

and

and
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Computing maximum likelihood estimates for 
composite Pareto models can be difficult. There are some 
algorithms discussed in the literature, but in general, the 
algorithms are computationally costly when sample size 
is large (Cooray & Ananda 2005; Teodorescu & Vernic 
2013, 2009). In our implementation, the maximum pseudo-
likelihood estimates are computed numerically using 
nlminb function in R. It requires us to only specify the 
likelihood function for the composite Pareto models and 
the boundary of the parameters.

MODEL SELECTION CRITERIA

To select the best distribution model for the income data, 
the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC) are used. The AIC and BIC 
values measure the trade-off between the fit of the model 
and its complexity. Model with the lowest AIC or BIC 
values are said to be the best model to represent the data 
out of the candidate models. In cases where the model 
with the lowest AIC value differs with the model with 
the lowest BIC value, the simpler model is preferred. 
However, since sample weights are used in the analysis, 
the formulae for AIC and BIC must reflect on that as well.
Let k be the number of parameters in the distribution 
model and �̃�𝐿 = ∏ [𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃)]𝑤𝑤𝑖𝑖𝑛𝑛

𝑖𝑖=1 .  be the pseudo-likelihood under the pseudo-
maximum likelihood estimates. The AIC and BIC values 
are modified such that
 

While AIC and BIC values are useful when 
comparing different distribution models, they do not 
measure the goodness-of-fit of the distribution model. It 
is possible that the model with the lowest AIC or BIC 
values may not have a good fit with the data. To test 
whether the observed data follows a distribution model, 
Kolmogorov-Smirnov goodness-of-fit test can be used. 
However, similar to AIC and BIC formulae, the goodness-
of-fit test must be modified to allow for sample weights 
in the analysis. To do this, we use a theorem proven by 
Janczura and Weron (2010) below.
Theorem 1. If  X1, X2, ..., Xn are independent,Var (Xi)<∞, 
0 ≤ wi ≤  M for some positive value M for all i =1, ..., n, 

limn→∞ ∑wi = ∞, and the theoretical distribution F(t) is 
continuous, then

 

converges weakly to Kolmogorov-Smirnov distribution as 
n → ∞ where

 

is the weighted empirical cumulative distribution function 
and is the indicator function.

Under Theorem 1, suppose F(t) is the target distribution 
from the model, then
  

(3)

can be used as a test statistic for the goodness-of-fit test to 
compare the empirical cdf with the target distribution. The 
p-value in this case is the probability P(κ > Dn) where   
k follows the Kolmogorov distribution. Note that in the 
case of uninformative sampling weights where wi = 1 for 
i = 1, 2, ..., n, the test statistic (3) becomes the test statistic 
for a regular Kolmogorov-Smirnov goodness-of-fit test.

RESULTS AND DISCUSSION

MODEL PERFORMANCE FOR EACH DATASET

The composite Pareto models are applied to the HIS 
datasets and the model fits are measured using AIC, 
BIC, and Kolmogorov-Smirnov goodness-of-fit test. 
We consider 20 candidate models, seven of which are 
composite Pareto I models, and six are composite Pareto 
II models. The details of the candidate models are shown 
in Table 1. The lower data distribution models considered 
here are commonly used to model income distribution 
and comparison will be made when Pareto distribution 
is added to the upper tail. Table 2 shows the AIC, BIC and 
p-values for all the candidate models when applied to the 
dataset. The bolded values are the lowest AIC or BIC 
values, respectively, for each dataset.

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚
𝜃𝜃

{∏ [𝑓𝑓(𝑚𝑚𝑖𝑖|𝜃𝜃)]𝑤𝑤𝑖𝑖𝑛𝑛
𝑖𝑖=1 }. 

)

AIC 2 2log(

BIC log( ) 2

ˆ

lo ˆg(

)L

n L

k

k

= −

= −

𝐹𝐹𝑛𝑛(𝑡𝑡) =
∑𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑖𝑖𝕀𝕀(𝑋𝑋𝑖𝑖 < 𝑡𝑡)

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 

𝐷𝐷𝑛𝑛 =
∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

√∑ 𝑤𝑤𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

𝑚𝑚𝑚𝑚𝑚𝑚 | 𝐹𝐹𝑛𝑛(𝑡𝑡) − 𝐹𝐹(𝑡𝑡)| 

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1

√∑ 𝑤𝑤𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

𝑠𝑠𝑠𝑠𝑠𝑠 | 𝐹𝐹𝑛𝑛(𝑡𝑡) − 𝐹𝐹(𝑡𝑡)| 

𝐹𝐹𝑛𝑛(𝑡𝑡) =
∑𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑖𝑖𝕀𝕀(𝑋𝑋𝑖𝑖 < 𝑡𝑡)

∑ 𝑤𝑤𝑖𝑖
𝑛𝑛
𝑖𝑖=1
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TABLE 1. Description of all the candidate models considered in analysis

Code Lower data distribution 
model

Upper data distribution 
model

No. of 
parameters

LN Lognormal None 2
G Gamma None 2
W Weibull None 2
LN-P1 Lognormal Pareto type I 3
G-P1 Gamma Pareto type I 3
W-P1 Weibull Pareto type I 3
D Dagum None 3
B2 Beta 2 None 3
SM Singh–Maddala None 3
LN-P2 Lognormal Pareto type II 4
G-P2 Gamma Pareto type II 4
W-P2 Weibull Pareto type II 4
D-P1 Dagum Pareto type I 4
B2-P1 Beta 2 Pareto type I 4
SM-P1 Singh–Maddala Pareto type I 4

GB2 Generalized beta of the 
second kind None 4

D-P2 Dagum Pareto type II 5
B2-P2 Beta 2 Pareto type II 5
SM-P2 Singh–Maddala Pareto type II 5

GB2-P1 Generalized beta of the 
second kind Pareto type I 5

 

TABLE 1. AIC, BIC, and p-values for the candidate models. The bolded figures indicate the best fitted models based on AIC or BIC values. 

Dataset  2-parameter  3-parameter   

  LN G W  LN-P1 G-P1 W-P1 D B2 SM   

MY07 AIC 202863.0 205090.0 206052.2  202775.6 203130.7 203395.2 202853.2 202733.0 202967.5   

 BIC 202877.8 205104.8 206067.0  202797.8 203152.9 203417.4 202875.4 202755.2 202989.7   

 p-value 0.0001 < 0.0001 < 0.0001  0.0032 < 0.0001 < 0.0001 0.0011 0.1848 0.0001   

MY09 AIC 219069.1 221067.9 222026.3  219037.3 219506.6 219843.2 219225.8 219019.7 219353.6   

 BIC 219084.1 221082.8 222041.2  219059.7 219529.0 219865.6 219248.2 219042.1 219376.0   

 p-value 0.0061 < 0.0001 < 0.0001  0.0036 < 0.0001 < 0.0001 0.0001 0.0115 < 0.0001   

MY12 AIC 229973.0 231974.8 233097.7  229923.8 230373.9 230721.5 230146.3 229929.3 230246.5   

 BIC 229988.0 231989.7 233112.7  229946.2 230396.4 230744.0 230168.8 229951.8 230269.0   

 p-value 0.0728 < 0.0001 < 0.0001  0.0295 < 0.0001 < 0.0001 0.0001 0.0208 < 0.0001   

MY14 AIC 433311.5 437617.7 440307.2  432932.2 433294.2 433793.5 433047.6 432921.0 433186.5   

 BIC 433327.7 437633.9 440323.4  432956.5 433318.5 433817.8 433071.9 432945.3 433210.9   

 p-value < 0.0001 < 0.0001 < 0.0001  0.1717 < 0.0001 < 0.0001 0.0111 0.1061 0.0006   

MY16 AIC 422919.5 426853.4 429774.8  422667.7 423163.2 423733.1 422890.5 422665.7 423032.0   

 BIC 422935.6 426869.5 429790.9  422691.9 423187.4 423757.3 422914.7 422689.9 423056.2   

 p-value 0.0008 < 0.0001 < 0.0001  0.1582 < 0.0001 < 0.0001 0.0003 0.5289 < 0.0001   

              

Dataset  4-parameter  5-parameter 

  LN-P2 G-P2 W-P2 D-P1 B2-P1 SM-P1 GB2  D-P2 B2-P2 SM-P2 GB2-P1 

MY07 AIC 202724.0 202728.1 202757.8 202855.2 202735.0 202969.5 202727.6  202719.8 202724.9 202729.1 202767.8 

 BIC 202753.6 202757.7 202787.4 202884.8 202764.6 202999.1 202757.2  202756.9 202761.9 202766.1 202804.8 

 p-value 0.7994 0.7370 0.0630 0.0011 0.1847 0.0001 0.4770  0.7299 0.7128 0.6318 0.0119 

MY09 AIC 218967.9 218981.7 219014.7 219227.8 219021.8 219355.6 218970.2  218958.6 218959.2 218978.8 218971.8 

 BIC 218997.8 219011.6 219044.6 219257.7 219051.6 219385.5 219000.1  218995.9 218996.5 219016.1 219009.2 

 p-value 0.1343 0.0371 0.0055 0.0001 0.0114 < 0.0001 0.1169  0.3419 0.4845 0.0628 0.1143 

MY12 AIC 229906.7 229951.4 230003.8 230148.3 229931.4 230248.5 229886.2  229897.7 229891.5 229951.0 229894.1 

TABLE 2. AIC, BIC, and p-values for the candidate models. The bolded figures indicate the best fitted models based on AIC or 
BIC values
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From Table 2, none of the 2-parameter candidate 
models fit the data based on the low p-values. Therefore, 
lognormal, gamma or Weibull distributions alone are 
not enough to model the data and should not be used to 
model the income distribution. Some improvements can be 
seen when Pareto distribution is added to the 2-parameter 
models and the p-values increase. For example, LN-P1 
model has p-values greater than 0.1 for the year 2014 and 
2016 and LN-P2 model has p-values greater than 0.1 for 
all the datasets. Hence, using Pareto distributions to model 
the upper income data improves the model fit.

Table 2 also shows that D-P2, GB2, and LN-P2 are 
the models which have both the lowest AIC and BIC values 
for the year 2009, 2012, and 2014, respectively. These 
models are then considered as the best models to describe 
the income distribution for the respective year, out of all 
the candidate models. For the year 2007, D-P2 gives the 
lowest AIC value but LN-P2 gives the lowest BIC value. 
Since LN-P2 is a simpler model compared to D-P2 due 
to lower number of parameters, LN-P2 is considered as 
the best model for the year 2007. Similarly, B2 model is 
considered as the best model for the year 2016 when B2-P1 

gives the lowest AIC value and B2 gives the lowest BIC 
value. Therefore, the best models to describe the Malaysian 
household income data for the year 2007, 2009, 2012, 
2014, and 2016 are LN-P2, D-P2, GB2, LN-P2 and B2 
models, respectively. Additionally, all the best models 
have high p-values indicating that they have good fit for 
the data.

OVERALL MODEL PERFORMANCE

To identify the overall performance for the models, the 
models are ranked based on the BIC values as shown in 
Table 3. In the table, lower ranking of BIC values indicates 
a better model, and the average rank over the five datasets 
is given for all the candidate models. The model with the 
lowest average rank is LN-P2 (2.8), followed by GB2 (3.6) 
and B2-P2 (3.8). This indicates that LN-P2 is the best 
model out of all the candidate models for describing the 
household income distribution in Malaysia. The p-values 
for LN-P2 for each dataset are also found to be high 
indicating a good fit for all the datasets.

 

 

Dataset  4-parameter  5-parameter 

  LN-P2 G-P2 W-P2 D-P1 B2-P1 SM-P1 GB2  D-P2 B2-P2 SM-P2 GB2-P1 

MY07 AIC 202724.0 202728.1 202757.8 202855.2 202735.0 202969.5 202727.6  202719.8 202724.9 202729.1 202767.8 

 BIC 202753.6 202757.7 202787.4 202884.8 202764.6 202999.1 202757.2  202756.9 202761.9 202766.1 202804.8 

 p-value 0.7994 0.7370 0.0630 0.0011 0.1847 0.0001 0.4770  0.7299 0.7128 0.6318 0.0119 

MY09 AIC 218967.9 218981.7 219014.7 219227.8 219021.8 219355.6 218970.2  218958.6 218959.2 218978.8 218971.8 

 BIC 218997.8 219011.6 219044.6 219257.7 219051.6 219385.5 219000.1  218995.9 218996.5 219016.1 219009.2 

 p-value 0.1343 0.0371 0.0055 0.0001 0.0114 < 0.0001 0.1169  0.3419 0.4845 0.0628 0.1143 

MY12 AIC 229906.7 229951.4 230003.8 230148.3 229931.4 230248.5 229886.2  229897.7 229891.5 229951.0 229894.1 

 BIC 229936.6 229981.3 230033.7 230178.3 229961.3 230278.5 229916.2  229935.1 229928.9 229988.4 229931.6 

 p-value 0.4129 0.0021 0.0002 0.0001 0.0208 < 0.0001 0.2441  0.1256 0.3073 0.0033 0.1040 

MY14 AIC 432901.0 433014.2 433182.0 433049.6 432923.3 433188.5 432921.1  432972.0 432912.2 433063.1 432923.6 

 BIC 432933.4 433046.6 433214.4 433082.0 432955.7 433221.0 432953.5  433012.5 432952.7 433103.6 432964.1 

 p-value 0.5248 0.0140 0.0015 0.0111 0.1764 0.0006 0.2132  0.0985 0.4793 0.0397 0.2402 

MY16 AIC 422665.5 422802.2 422950.8 422892.5 422659.0 423034.0 422666.2  422740.5 422659.6 422833.5 422664.3 

 BIC 422697.8 422834.4 422983.1 422924.8 422691.3 423066.3 422698.4  422780.9 422700.0 422873.8 422704.6 

 p-value 0.3603 0.0009 0.0001 0.0003 0.4043 < 0.0001 0.6218  0.0329 0.4119 0.0019 0.2550 
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TABLE 3. Ranks for each distribution models based on BIC values

Dataset LN G W LN-P1 G-P1 W-P1 D B2 SM LN-P2

MY07 13 19 20 10 17 18 12 2 15 1

MY09 12 19 20 11 17 18 13 8 15 3

MY12 10 19 20 6 17 18 13 7 15 5

MY14 17 19 20 6 16 18 10 2 13 1

MY16 13 19 20 3 17 18 11 1 15 4

Average 13 19 20 7.2 16.8 18 11.8 4 14.6 2.8

Dataset G-P2 W-P2 D-P1 B2-P1 SM-P1 GB2 D-P2 B2-P2 SM-P2 GB2-P1

MY07 5 9 14 7 16 4 3 6 8 11

MY09 6 9 14 10 16 4 1 2 7 5

MY12 9 12 14 8 16 1 4 2 11 3

MY14 9 14 11 5 15 4 8 3 12 7

MY16 9 14 12 2 16 5 8 6 10 7

Average 7.6 11.6 13 6.4 15.8 3.6 4.8 3.8 9.6 6.6

APPLICATION TO OTHER COUNTRIES

The same analyses are performed to the income data 
from Italy and United Kingdom to study the performance 
of composite Pareto models for datasets from these two 
countries. For Italy, the net disposable income divided 
by the square root of number of household members for 

the year 2014 and 2016 are used. For United Kingdom, 
the equivalised disposable income using OECD scale for 
the year 2016 and 2018 are used. Since the distribution 
models considered can only be fitted to positive incomes, 
households with zero or negative income are removed. 
Table 4 shows the AIC, BIC and p-values of the candidate 
models when applied to Italy and UK datasets.

Dataset  2-parameter  3-parameter   

  LN G W  LN-P1 G-P1 W-P1 D B2 SM   

IT14 AIC 134801.5 133308.4 133903.4  134802.9 133003.9 132745.8 132720.2 133208.1 132826.1   

 BIC 134815.5 133322.4 133917.4  134823.9 133024.9 132766.8 132741.2 133229.1 132847.1   

 p-value < 0.0001 < 0.0001 < 0.0001  < 0.0001 0.0007 0.1266 0.1758 < 0.0001 0.1840   

IT16 AIC 123511.6 121538.9 122015.2  123513.7 121300.6 121015.5 120991.4 121471.0 121100.1   

 BIC 123525.4 121552.8 122029.0  123534.5 121321.3 121036.2 121012.1 121491.7 121120.8   

 p-value < 0.0001 < 0.0001 < 0.0001  < 0.0001 0.0009 0.1847 0.2115 < 0.0001 0.0888   

UK16 AIC 66494.0 66270.5 66688.0  66497.8 66095.2 66107.9 66066.1 66150.9 66060.5   

 BIC 66507.0 66283.5 66700.9  66517.3 66114.6 66127.4 66085.6 66170.4 66080.0   

 p-value 0.0001 0.0001 < 0.0001  0.0001 0.1858 0.0063 0.4382 0.0980 0.5056   

UK18 AIC 74287.8 73983.1 74461.2  74292.1 73766.9 73762.1 73717.7 73826.8 73715.6   

 BIC 74301.0 73996.3 74474.4  74311.8 73786.7 73781.9 73737.4 73846.6 73735.4   

 p-value < 0.0001 < 0.0001 < 0.0001  < 0.0001 0.1794 0.0585 0.4151 0.0352 0.4451   

              

Dataset  4-parameter  5-parameter 

  LN-P2 G-P2 W-P2 D-P1 B2-P1 SM-P1 GB2  D-P2 B2-P2 SM-P2 GB2-P1 

IT14 AIC 134677.1 133002.8 132747.6 132715.8 133020.7 132747.8 132716.0  132717.8 133005.7 132749.6 132717.4 

 BIC 134705.1 133030.8 132775.6 132743.8 133048.7 132775.8 132744.0  132752.8 133040.7 132784.6 132752.4 

 p-value < 0.0001 0.0007 0.1312 0.1654 0.0087 0.1267 0.1780  0.1654 0.0004 0.1312 0.1721 

IT16 AIC 123303.2 121300.0 121015.3 120984.9 121309.4 121017.5 120983.6  120982.9 121302.0 121017.3 120986.6 

 BIC 123330.8 121327.6 121042.9 121012.5 121337.0 121045.2 121011.2  121017.5 121336.5 121051.9 121021.1 

 p-value < 0.0001 0.0008 0.1877 0.2244 0.0045 0.1840 0.2442  0.2267 0.0009 0.1873 0.2143 

UK16 AIC 66495.1 66094.4 66076.4 66068.2 66097.2 66062.7 66062.0  66063.6 66096.7 66063.2 66064.2 

 BIC 66521.0 66120.7 66102.4 66094.2 66123.2 66088.7 66088.0  66096.0 66129.2 66095.7 66096.7 

 p-value 0.0001 0.1976 0.3549 0.4380 0.2154 0.5069 0.4694  0.4986 0.1913 0.4915 0.4691 

UK18 AIC 74276.1 73759.5 73722.7 73719.8 73768.9 73717.8 73716.6  73714.3 73762.6 73716.3 73718.8 

 BIC 74302.5 73785.8 73749.1 73746.2 73795.3 73744.2 73743.0  73747.3 73795.6 73749.26 73751.7 

TABLE 4. AIC, BIC, and p-values for the candidate models using Italy and UK datasets. The bolded figures indicate the best fitted 
models based on AIC or BIC values
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From Table 4, it is clear that none of the 2-parameter 
models have a good fit for any of the datasets since the 
p-values are found to be very small. When the Pareto 
distributions are added to the 2-parameter models, the 
models improve significantly and some of them achieve 
good fit. For example, W-P1 model has good fit with both 
Italy datasets and G-P1 model has good fit with both UK 
datasets. However, the performance of the composite 
Pareto models are still worse when compared to some 
of the non-composite Pareto models based on the AIC 
and BIC values. The best models to describe the income 
distributions for Italian data for the year 2014 and 2016, 
UK’s data for the year 2016 and 2018, are D, GB2, SM 
and SM models, respectively. In this case, for these two 
countries, none of the composite Pareto models provide 
the best fit, unlike in the case of Malaysian income 
distribution.

This example shows that composite Pareto models 
are not always better than other models in fitting income 
data. While the composite models are useful in describing 
income distribution in Malaysia, they are not as useful 
for the income distribution in Italy and UK, even though 
some of the composite Pareto models have good fit with 
the datasets. There is no known absolute rule on when or 
where the composite Pareto models would be better for the 
data. In practice, all candidate models must be applied to 
the data and comparisons between the models can be made 

using AIC and BIC values, as well as goodness-of-fit tests, 
as what have been done in this paper.

LORENZ CURVE AND GINI COEFFICIENT

The Lorenz curve and Gini coefficient are useful for 
assessing the income inequality of a population. The 
Lorenz curve LC(u) is a graphical representation of the 
proportion of wealth accumulated by the bottom 100u% 
of the population. When the income distribution is given 
as a continuous probability distribution with pdf f (x|θ) 
and quantile function F-1 (u|θ), the Lorenz curve can be 
defined as
 

where μX is the mean of income. For LN-P2 model with 
the lower data distributed by a lognormal distribution with 
logmean µ and logvariance σ2, the overall mean is
 

where z = (log τ-μ)/σ and α > 1. Let
 

Dataset  4-parameter  5-parameter 

  LN-P2 G-P2 W-P2 D-P1 B2-P1 SM-P1 GB2  D-P2 B2-P2 SM-P2 GB2-P1 

IT14 AIC 134677.1 133002.8 132747.6 132715.8 133020.7 132747.8 132716.0  132717.8 133005.7 132749.6 132717.4 

 BIC 134705.1 133030.8 132775.6 132743.8 133048.7 132775.8 132744.0  132752.8 133040.7 132784.6 132752.4 

 p-value < 0.0001 0.0007 0.1312 0.1654 0.0087 0.1267 0.1780  0.1654 0.0004 0.1312 0.1721 

IT16 AIC 123303.2 121300.0 121015.3 120984.9 121309.4 121017.5 120983.6  120982.9 121302.0 121017.3 120986.6 

 BIC 123330.8 121327.6 121042.9 121012.5 121337.0 121045.2 121011.2  121017.5 121336.5 121051.9 121021.1 

 p-value < 0.0001 0.0008 0.1877 0.2244 0.0045 0.1840 0.2442  0.2267 0.0009 0.1873 0.2143 

UK16 AIC 66495.1 66094.4 66076.4 66068.2 66097.2 66062.7 66062.0  66063.6 66096.7 66063.2 66064.2 

 BIC 66521.0 66120.7 66102.4 66094.2 66123.2 66088.7 66088.0  66096.0 66129.2 66095.7 66096.7 

 p-value 0.0001 0.1976 0.3549 0.4380 0.2154 0.5069 0.4694  0.4986 0.1913 0.4915 0.4691 

UK18 AIC 74276.1 73759.5 73722.7 73719.8 73768.9 73717.8 73716.6  73714.3 73762.6 73716.3 73718.8 

 BIC 74302.5 73785.8 73749.1 73746.2 73795.3 73744.2 73743.0  73747.3 73795.6 73749.26 73751.7 

 p-value < 0.0001 0.2114 0.2957 0.4150 0.1761 0.4466 0.4012  0.4411 0.3440 0.4336 0.4015 

 

𝐿𝐿𝐿𝐿(𝑢𝑢) = 1
𝜇𝜇𝑋𝑋
∫ 𝑥𝑥𝐹𝐹−1(𝑢𝑢)
0 𝑓𝑓(𝑥𝑥|𝜃𝜃)𝑑𝑑𝑥𝑥, 

𝜇𝜇𝑋𝑋 = (1 − 𝜌𝜌)𝑒𝑒𝜇𝜇+
𝜎𝜎2
2
𝛷𝛷(𝑧𝑧−𝜎𝜎)
𝛷𝛷(𝑧𝑧) + 𝜌𝜌 (𝜏𝜏 + 𝛼𝛼𝛼𝛼

𝛼𝛼−1), 

𝐴𝐴(𝑢𝑢) = (1−𝜌𝜌)𝑒𝑒𝜇𝜇+
𝜎𝜎2
2

𝜇𝜇𝑋𝑋𝛷𝛷(𝑧𝑧)
𝛷𝛷 [𝛷𝛷−1 (𝑢𝑢𝛷𝛷(𝑧𝑧)1−𝜌𝜌 ) − 𝜎𝜎], 
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where Φ(·) and Φ-1(·) are the cdf and quantile function of 
the standard normal distribution, respectively. Then the 
Lorenz curve under LN-P2 model can be written as follows
 

and the corresponding Gini coefficient is
 

Unfortunately, the integral in this equation cannot be 
solved analytically and numerical method, for example the 
trapezoidal rule, is required to approximate ∫ 𝐴𝐴1−𝜌𝜌

0 (𝑢𝑢)𝑑𝑑𝑢𝑢   
and the Gini coefficient.

The Lorenz curves for all five datasets of the 
Malaysian income are shown in Figure 2. From the figure, 
the Lorenz curve approaches the line of equality from 2007 
to 2016. Additionally, the Gini coefficients for the year 
2007, 2009, 2012, 2014, and 2016 are 0.438, 0.433, 0.421, 
0.404, and 0.390, respectively, which shows a decreasing 
trend. These indicate that the income inequality is reduced 
over the period of study and wealth is shared more evenly 
in the population.

 𝐿𝐿𝐿𝐿(𝑢𝑢) = {
𝐴𝐴(𝑢𝑢), 𝑢𝑢 ≤ 1 − 𝜌𝜌

𝐴𝐴(1 − 𝜌𝜌) + 𝜌𝜌𝛼𝛼2𝛽𝛽
𝜇𝜇𝑋𝑋(𝛼𝛼−1)

[1 − (1−𝑢𝑢𝜌𝜌 )
1−1

𝛼𝛼] + (𝜏𝜏−𝛼𝛼𝛽𝛽)(𝑢𝑢+𝜌𝜌−1)
𝜇𝜇𝑋𝑋

, 𝑢𝑢 > 1 − 𝜌𝜌, 

 

FIGURE 2. Lorenz curves for the Malaysian income data

CONCERNS AND LIMITATIONS

While composite Pareto models may be useful in 
describing income distribution in Malaysia, there are 
some concerns that arise from the application and should 
be discussed. Firstly, the pseudo-maximum likelihood 
estimates are computed numerically, not analytically. Our 
application requires initial values for the parameters to 
compute the pseudo-maximum likelihood estimates. In 
our application, for some models and initial estimates, the 

method has failed to converge to a solution and forced us 
to use several other initial estimates. There is no guarantee 
that the estimates given by the method are the values that 
maximise the pseudo-maximum likelihood.

There have been other methods or algorithms 
proposed in literature. Cooray and Ananda (2005) and 
Teodorescu and Vernic (2009) have proposed algorithm 
to find the maximum likelihood by finding the interval 
at which the threshold parameter τ lies. Suppose the 
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0
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0
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1
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observed data are ordered such that x1 ≤ x2 ≤ ... ≤ xn . 
The proposed algorithm attempts to find the value of 
m such that xm ≤ τ ≤ xm+1 by maximising the likelihood 
for every m = 1, 2, …, n.. As one would expect, this is 
very costly for large n as every n -1 intervals have to be 
checked. Alternatively, Teodorescu and Vernic (2013) 
and Bee (2015) have proposed to use the method of 
moments, instead of maximum likelihood estimator, for 
parameter estimation. Another possible workaround is 
by estimating the threshold and the tail index first, for 
example by using Kolmogorov-Smirnov statistic as done 
by Safari et al. (2018a). Then, using the estimated threshold 
and tail index values, the rest of the parameters can be 
estimated easily by using maximum likelihood estimator. 
The proposed algorithms and methods are not used in 
our application due to the large number of sample size and 
the variety of lower data distributions considered.

Another concern is regarding the interpretation of 
the composite Pareto models. In extreme value theory for 
example, the threshold for the Pareto type II distribution 
is often regarded as the cut-off for extreme values. 
However, when the composite Pareto models are applied 
to the datasets in the study, in many cases, the estimated 
thresholds are found to be too low and the proportions 
of data coming from Pareto distribution are found to be 
too high to be interpreted as the high income earners. For 
example, under LN-P2 model for the Malaysian household 
income year 2007, the pseudo-maximum likelihood 
estimate for the proportion of data under Pareto distribution 
is  �̂�𝜌 .= 0.4926. It is not sensible to conclude that 49.26% 
of households are high income earners as this proportion 
is deemed too high. Clearly in this case the parameters 
cannot be used as the cut-off points for the upper income 
earners. Nevertheless, since the composite Pareto model 
provide a better fit for some of the datasets, to some extent, 
the underlying features of the income distribution can be 
reliably explained based on this model.

CONCLUSION

In this paper, the composite Pareto models are applied to 
the Malaysian household income data for the year 2007, 
2009, 2012, 2014, and 2016. Using pseudo-likelihood 
based AIC, BIC, and Kolmogorov-Smirnov goodness-of-
fit test, the LN-P2 model, which consists of lognormal 
distribution for lower data distribution and Pareto type II 
distribution model for the upper data distribution, is found 
to have the best overall performance when compared 
to other candidate models. Therefore, LN-P2 model 
can describe the income distribution in Malaysia better 
compared to other candidate models.

However, composite Pareto models are found to 
be less useful to describe the income distribution for 
Italy and UK, as it is found that models without Pareto 
distribution have better fit compared to the composite 
Pareto models. This indicates that the composite Pareto 
models may not be suitable for every dataset. There is no 
known rule to indicate when composite Pareto models 
would work better. Thus, practitioners may have to 
test every possible candidate model and compare their 
performance for example by using AIC and BIC values.

Some concerns are found in the application of 
composite Pareto models to these income datasets. 
Particularly, the numerical method used to compute 
the pseudo-maximum likelihood estimates may be 
problematic even though it is the easiest method to find the 
estimates. The composite Pareto model interpretation on 
the income data is also unclear. More works are required 
for these parts.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of 
Statistics Malaysia (DOSM), Bank Data UKM, UK Office 
for National Statistics and Bank of Italy for providing 
datasets for this study.

REFERENCES

Aminzadeh, M.S. & Deng, M. 2019. Bayesian predictive 
modeling for Inverse Gamma-Pareto composite distribution. 
Communications in Statistics-Theory and Methods 48(8): 
1938-1954.

Arnold, B.C. 2008. Pareto and generalized Pareto distributions. 
In Modeling Income Distributions and Lorenz Curves, 
edited by Chotikapanich, D. New York: Springer Science & 
Business Media. pp. 119-145.

Bakar, S.A.A., Nadarajah, S., Adzhar, Z.A.A.K. & Mohamed, 
I. 2016. Gendist: An R package for generated probability 
distribution models. PLoS ONE 11(6): e0156537.

Bakar, S.A.A., Hamzah, N.A., Maghsoudi, M. & Nadarajah, 
S. 2015. Modeling loss data using composite models. 
Insurance: Mathematics and Economics 61: 146-154.

Bee, M. 2015. Estimation of the lognormal-Pareto distribution 
using probability weighted moments and maximum 
likelihood. Communications in Statistics-Simulation and 
Computation 44(8): 2040-2060.

Ciumara, R. 2006. An actuarial model based on the composite 
Weibull-Pareto distribution. Mathematical Reports 8(4): 
401-414.

Congressional Budget Office. 2019. Projected changes in the 
distribution of household income, 2016 to 2021.

Cooray, K. & Ananda, M. 2005. Modeling actuarial data with a 
composite lognormal-Pareto model. Scandinavian Actuarial 
Journal 2005(5): 321-334.



2058 

Gunawan, D., Panagiotelis, A., Griffiths, W. & Chotikapanich, 
D. 2020. Bayesian weighted inference from surveys. 
Australian & New Zealand Journal of Statistics 62(1): 
71-94.

Hu, Y. & Scarrott, C. 2018. evmix: An R package for extreme 
value mixture modeling, threshold estimation and boundary 
corrected kernel density estimation. Journal of Statistical 
Software 84(5): 1-18.

Janczura, J. & Weron, R. 2010. Goodness-of-fit testing for 
regime-switching models. MPRA Paper. https://mpra.ub.uni-
muenchen.de/id/eprint/22871.

Masseran, N., Yee, L.H., Safari, M.A.M. & Ibrahim, K. 2019. 
Power law behavior and tail modeling on low income 
distribution. Mathematics and Statistics 7(3): 70-77.

Nadarajah, S. & Bakar, S.A.A. 2013. CompLognormal: An R 
package for composite lognormal distributions. The R Journal 
5(2): 97-103.

OECD. 2015. In it Together: Why Less Inequality Benefits All. 
Paris: OECD Publishing. pp. 19-58.

Pfeffermann, D. 1993. The role of sampling weights when 
modeling survey data. International Statistical Review/
Revue Internationale de Statistique 61(2): 317-337.

Ragayah, H.M.Z. 2008. Income inequality in Malaysia. Asian 
Economic Policy Review 3(1): 114-132.

Razak, F.A. & Shahabuddin, F.A. 2018. Malaysian household 
income distribution: A fractal point of view. Sains Malaysiana 
47(9): 2187-2194.

Reynkens, T., Verbelen, R., Bardoutsos, A., Cornilly, D., 
Geogebeur, Y. & Herrmann, K. 2020. ReIns: Functions 
from “reinsurance: actuarial and statistical aspects.” https://
CRAN.R-project.org/package=ReIns.

Sablica, L. & Hornik, K. 2020. mistr: A Computational 
framework for mixture and composite distributions. The R 
Journal 12(1): 283-299.

Safari, M.A.M., Masseran, N. & Ibrahim, K. 2018a. Optimal 
threshold for Pareto tail modelling in the presence of outliers. 
Physica A: Statistical Mechanics and its Applications 509: 
169-180.

Safari, M.A.M., Masseran, N. & Ibrahim, K. 2018b. A robust 
semi-parametric approach for measuring income inequality 
in Malaysia. Physica A: Statistical Mechanics and its 
Applications 512: 1-13.

Scollnik, D.P.M. 2007. On composite lognormal-Pareto 
models. Scandinavian Actuarial Journal 2007(1): 20-33.

Scollnik, D.P.M. & Sun, C. 2012. Modeling with Weibull-
Pareto models. North American Actuarial Journal 16(2): 
260-272.

Skinner, C.J., Holt, D. & Smith, T.M.F. 1989. Analysis of Complex 
Surveys. Chichester, New York: Wiley.

Teodorescu, S. & Vernic, R. 2013. On composite Pareto models. 
Mathematical Reports 15(65): 11-29.

Teodorescu, S. & Vernic, R. 2009. Some composite exponential-
Pareto models for actuarial prediction. Journal for 
Economic Forecasting 12(4): 82-100.

Department of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor Darul Ehsan 
Malaysia

*Corresponding author; email: hilmi.majid@ukm.edu.my

Received: 19 June 2020
Accepted: 19 November 2020


