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ABSTRACT

Flood frequency analysis should consider small and frequent floods. Despite the complexities in partial duration 
series implementation, it can give a better flood estimation in a way that it does not exclude any significant high 
flow events, even if it is not the highest event of the year. This study employs the streamflow data recorded at Kajang 
station, Sungai Langat, Malaysia over a 36-year period spanning from 1978 to 2013. The paper attempts to conduct 
flood frequency analysis using two approaches, annual maximum and partial duration series. The optimal threshold 
value is selected to be 48.7 m3/s, where the dispersion index stabilizes at around 1, DI = 1. The results have shown 
that generalized extreme value (GEV) distribution describes the annual maximum data while the lognormal (LN3) and 
generalized Pareto (GPA) distribution is chosen as the best fit distribution at Kajang station for a partial duration 
series. There is a slight difference between estimated streamflow magnitude when using GPA and LN3 for selected 
return periods, while a considerable difference was observed when using annual maximum at a higher return period. 
As a conclusion, PDS gives more relevant magnitude estimation rather than AMS. Flood frequency plays an important 
role in understanding the nature and magnitude of high flow, which in turn can assist relevant agencies in the design of 
hydrological structures and reduce flood impacts.
Keywords: Flood frequency analysis; generalized extreme value; generalized Pareto; Sungai Langat; three-parameter 
lognormal 

ABSTRAK

Analisis kekerapan banjir harus mempertimbangkan kejadian banjir dengan magnitud kecil dan kerap. Walaupun 
terdapat kerumitan dalam pelaksanaan data siri separa, ia memiliki kemampuan untuk memberikan anggaran banjir yang 
lebih baik, dengan tidak mengecualikan kejadian aliran tinggi yang signifikan, walaupun ia bukan peristiwa tertinggi 
tahun ini. Kajian ini menggunakan data aliran yang direkodkan di stesen Kajang, Sungai Langat, Malaysia dalam 
jangka masa 36 tahun yang merangkumi tahun 1978 hingga 2013. Objektif utama kajian ini adalah Nilai ambang 
optimum dipilih menjadi 48.7 m3/s dengan indeks penyebaran stabil pada sekitar 1, DI = 1. Taburan nilai ekstrim teritlak 
(GEV) menerangkan data maksimum tahunan sementara taburan lognormal dan Pareto teritlak dipilih sebagai taburan 
yang paling sesuai di stesen Kajang untuk data siri separa. Terdapat sedikit perbezaan antara magnitud aliran dengan 
menggunakan taburan Pareto teritlak dan lognormal untuk tempoh pulangan yang dipilih. Manakala, perbezaan yang 
cukup besar dapat dilihat apabila menggunakan data tahunan maksima terutamanya pada tempoh pulangan yang lebih 
tinggi. Secara kesimpulan, PDS memberikan anggaran magnitud yang lebih relevan berbanding AMS. Kekerapan 
banjir memainkan peranan penting dalam memahami sifat dan besarnya aliran tinggi, yang seterusnya dapat membantu 
agensi yang berkaitan dalam merancang struktur hidrologi dan mengurangkan kesan kejadian banjir.
Kata kunci: Analisis kekerapan banjir; lognormal tiga-parameter; nilai ekstrim teritlak; Pareto teritlak; Sungai Langat

INTRODUCTION

Flood frequency analysis is important in various area 
including projects management, areal and water resource 
planning (Engeland et al. 2018) such as in the design 

of important infrastructures and hydrological planning. 
According to hydrological perspective, flood frequency 
analysis is an important tool used to estimate future 
flood events based on the historical data of streamflow 
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events. The short period of time series data available for 
the presents study is the main challenge in making the 
computations for hydrological analysis (Gado & Nguyen 
2016). Result of the analysis is presented in terms of 
frequency and magnitude of flood events (Keast & Ellison 
2013). There are two main methods for computing 
flood frequency analysis, graphical, and analytical. The 
graphical method is represented by Gringorten Plotting 
Position which is essentially a plot magnitude of selected 
return period on a probability paper (Makkonen 2006). 
The analytical method involves the implementation of a 
statistical distribution of the data series which is used to 
compute the average recurrence interval (known as return 
period) of discharge magnitude. The data used to carry out 
frequency analysis must be independent and identically 
distributed (Malamud & Turcotte 2006). Additionally, the 
data must come from the same population and must not 
show any seasonal pattern in the time series (Tallaksen & 
Hewa 2008).

Most research consider extreme flood events instead 
of medium and frequent floods (Cheong & Gabda 2018; 
Jiang & Kang 2019; Keast & Ellison 2013; Madsen et 
al. 1997). This problem can be solved by taking into 
consideration the partial duration series in preference to the 
annual maximum series data (Claps & Laio 2003). There 
are two factors which cause difficulty in implementing 
PDS which are determination of peak independence 
and threshold level. Selecting a higher threshold value 
in a series would results in a smaller number of events 
being included in the series and this leads to a loss of 
valuable information. It often increases the likelihood of 
independence of each peak. On the other hand, selecting 
a low threshold value would result in a bigger number of 
events being selected for this study. This would provide a 
more reliable parameter estimation whilst also increasing 
the likelihood of dependence of the series, is sometimes 
known as peak over threshold value (POT). PDS does 
not exclude any significant high flow events, even if it 
is not the highest event of the year. As such, this method 
ensures a better representation of the sampling procedure 
of extreme values.

Failure to allocate appropriate FFA can lead to rupture 
in hydrological design. Overspill of water could damage 
the engineering properties of the material structure, thus 
affects the structure itself. For example, construction of 
a main road usually needs to last for 50 to 100 years, 
while streamflow magnitude with less than 20 years 
recurrence interval is used for drainage design. Basically, 
the application of FFA is closely related to design life and 
failure probability of the hydrological design (Leščešen 
& Dolinaj 2019). Over-design of a structure incurs more 

cost, while under design hydrological structure increase 
the structure maintenance. Thus, it is important to generate 
an accurate streamflow magnitude for each recurrence 
interval. 

Malaysia being a rapidly growing country, needs 
to have a proper planning to prevent natural disaster 
from repeating to minimize property damage and 
environmental impact (Syed Hussain & Ismail 2013). 
Sungai Langat was chosen for the analysis due to rapid 
growth in Selangor area. There is vast construction 
development, includes housing, shopping complex, and 
commercial building due to increase in the number of 
populations and demand. According to the statistics 
recorded by the Department of Statistics Malaysia, the 
total number of population in Selangor reached from 6.38 
million in 2017 to 6.5 million in 2019, with population 
density of 819/km2 (Department of Statistics Malaysia 
2019). Rapid industrialisation and urbanization have led 
to deforestation and uncontrolled land use and, in many 
areas, this has altered the relationship between rainfall 
and flooding events (Tekolla 2010). Previous research has 
shown that the intensity and frequency of extreme rainfall 
events are on the increase, thus, creating a non-stationary 
component. This is essentially the consequence of climate 
change (Agilan & Umamahesh 2017). There are two 
main factors which leads to the flooding occurrence in 
Selangor area which are improper drainage system along 
with heavy and continuous precipitation (Franchini et al. 
2005). In addition, due to heavy precipitation, the water 
release from dam to prevent cracking on the dam is one 
of the factors causing the flooding in Langat area. This is 
usually called flash flooding, which happen due to lack of 
improper management of the drain and sewer, especially 
during heavy or continuous rainfall, resulted in excess 
runoff which eventually exceeds river capacity. As a result, 
many people were affected by the incidence especially 
those who stay in the lowland area. Hence, this study aims 
to conduct flood frequency analysis near Kajang station 
to determine the magnitude at selected return period by 
implementing appropriate statistical distribution. Next, it 
aims to compare between the usage of annual maximum 
series and partial duration series. This study is important 
to develop an effective planning and management of flood 
mitigation.

STUDY AREA

The present study focuses on Sungai Langat in the State 
of Selangor. The catchment area for Sungai Langat is 
approximately 2350 km2. It is located at latitude 2° 40’M 
152” N to 3° 16’M 15” and longitudes 101° 19’M 20”E to 
102° 1’M 10”E. The main river course of Sungai Langat 
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is about 141 km and is mostly located about 40 km east 
of Kuala Lumpur. The principal rivers of Sungai Langat 
are Sungai Semenyih, Sungai Lui and Sungai Beranang. 
The four streamflow stations along Sungai Langat are 
located in Pekan Dengkil, Kajang, Sungai Semenyih and 

Sungai Lui. This study focuses on the Sungai Langat-
Kajang sub basin, which has an area of approximately 
389.4 km2. Figure 1 shows the streamflow stations along 
Sungai Langat, namely Sg. Lui, Kajang, Rinching and 
Dengkil stations.

FIGURE 1. Streamflow station at Sungai Langat

METHODS

This section comprises several parts, i.e., data collection, 
distribution fitting and parameter estimation, goodness of 
fit testing, and return period. 

DATA COLLECTION

The site chosen for this study is the Kajang station in 
Sungai Langat sub basin. The station’s ID is 2917401 and 

it is located at latitude 02° 59’ 34” and longitude 101° 
47’ 13” (Figure 1). The duration of the streamflow data 
is approximately 36 years of daily data spanning from 
1978 to 2013. The data is measured in cubic meter per 
second (m3/s). There is no missing data in the dataset 
provided by the Department of Irrigation and Drainage 
(DID) Malaysia.
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ANNUAL MAXIMUM SERIES

Annual maximum series can be extracted from highest 
flow each year. Since the period of record is between 
1978 and 2013, hence there are 36 data extracted from 
the daily series. 

PARTIAL DURATION SERIES

Partial duration series (PDS) is extracted from the daily 
streamflow based on certain condition. There are two 
factors affecting the appropriate selection of PDS namely 
threshold selection and independence criteria. Based on 
the traditional approach, 5% of the total maximum value 
represents the extreme maximum of the hydrological 
series. After determining the least optimal threshold value, 
it should satisfy certain statistical rules, the dispersion 
index which stabilize at around 1 and average number 
of occurrences per year to be at least 1.68. Then, the 
independence criteria should satisfy the following (Bezak 
et al. 2014):

     θ < 5 + log (A)  (1)

where θ represents number consecutive days which 
considered as independent series and A represent the 
total area of the basin.

DISTRIBUTION FITTING AND PARAMETER ESTIMATES

After obtaining the data series, it is important to 
determine the proper statistical distribution function that 
is able to describe the time series data. There may be 
several distributions that fit the data well and it would 
be difficult to determine the best model amongst these 
distributions. Some of the statistical distributions which 
can be implemented are Gumbel, generalized extreme 
value (GEV), generalized logistics (GLO), generalized 
Pareto (GPD), and lognormal (LN) distributions. GEV 
distribution is frequently used for AMS data (Jiang & Kang 
2019). Generalized Pareto distribution, also known as 
GPD, was introduced by Pikands in 1975 (Mierlus-Mazilu 
2010). It is often implemented in peak over threshold data 
set (Gharib et al. 2017; Mierlus-Mazilu 2010). Table 1 
shows the probability density function and cumulative 
distribution functions.

TABLE 1. Probability density function and cumulative distribution function for each distribution

Distribution Probability density 
function (pdf)

Cumulative distribution 
function (cdf)

Quantile function

Gumbel

 

Generalized extreme 
value

Lognormal (3P)

Generalized logistics

Generalized Pareto

ϕ-1 (F) is the inverse of probability distribution function for normal distribution.

Distribution Probability density 
function (pdf) 

Cumulative distribution 
function (cdf) 

Quantile function 

Gumbel 𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎 𝑒𝑒

(−𝑧𝑧−𝑒𝑒−𝑧𝑧) 

where 𝑧𝑧 = 𝑥𝑥−µ
𝜎𝜎  

𝐹𝐹(𝑥𝑥) = 1 − 𝑒𝑒−(
𝑥𝑥−𝜁𝜁
𝛽𝛽 )

𝛿𝛿

 𝑥𝑥(𝐹𝐹) = 𝜁𝜁 + 𝛽𝛽(− log(1 − 𝐹𝐹))
1
𝛿𝛿  

Generalized 
extreme value 

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎 𝑒𝑒

(−(1+𝑘𝑘𝑧𝑧)−
1
𝑘𝑘)(1+𝑘𝑘𝑧𝑧)1−

1
𝑘𝑘 𝐹𝐹(𝑥𝑥) = 𝑒𝑒(−(1+𝑘𝑘𝑧𝑧)−

1
𝑘𝑘) 

where 

𝑦𝑦 = −𝑘𝑘−1𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑘𝑘(𝑥𝑥 − 𝜉𝜉)
𝛼𝛼 ) 

𝑥𝑥(𝐹𝐹) = 𝜉𝜉 + 𝛼𝛼
𝑘𝑘 {1 − (− log(𝐹𝐹))𝑘𝑘} 

Lognormal 
(3P) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒(−

1
2(
ln(𝑥𝑥−𝛾𝛾)−µ

𝜎𝜎 )2)

(𝑥𝑥 − 𝛾𝛾)𝜎𝜎√2𝜋𝜋
 

𝐹𝐹(𝑥𝑥) = 𝜙𝜙(𝑦𝑦) 
where 

𝑦𝑦 = (log(𝑥𝑥 − 𝜁𝜁) − µ)
𝜎𝜎  

𝑥𝑥(𝐹𝐹) = 𝑒𝑒𝜎𝜎𝜙𝜙−1(𝐹𝐹)+µ + 𝛾𝛾 

Generalized 
logistics 𝑓𝑓(𝑥𝑥) = (1 + 𝑘𝑘𝑧𝑧)−1−1/𝑘𝑘

𝜎𝜎(1 + (1 + 𝑘𝑘𝑧𝑧)−
1
𝑘𝑘)2

 𝐹𝐹(𝑥𝑥) = 1
1 + (1 + 𝑘𝑘𝑧𝑧)−1/𝑘𝑘 𝑥𝑥(𝐹𝐹) = µ + 𝜎𝜎

𝑘𝑘 ((𝑦𝑦
−1 − 1)−𝑘𝑘 − 1) 

Generalized 
Pareto 

 

𝑓𝑓(𝑥𝑥) = 1
𝜎𝜎 (1 + 𝑘𝑘(𝑥𝑥 − µ

𝜎𝜎 )−1−
1
𝑘𝑘 

𝐹𝐹(𝑥𝑥) = 1 − (1 + 𝑘𝑘(𝑥𝑥 − µ
𝜎𝜎 )−

1
𝑘𝑘) 

 

𝑥𝑥(𝐹𝐹) = 𝜉𝜉 + 𝛼𝛼
𝑘𝑘 {1 − (1 − 𝐹𝐹)𝑘𝑘} 
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where f(x) is probability density function; F(x) is 
cumulative distribution function; x is the data series; z 
represents standard value of normal distribution and k, σ, 
µ represent shape, scale and location parameters of the 
distribution (Chang et al. 2016).

Several methods, including method of moments 
(MOM), maximum likelihood function (MLE), and 
L-moment method (ML), can be used to estimate 
parameters. Evaluation method performance is dependent 
on sample size and skewness of the data. MLE can give 
the best parameter value compared to other methods. 
It maximizes the likelihood or joint probability of 
occurrence of the observed sample. However, MLE is 
not suitable for implementation in a small sample size. In 
MOM, the estimators of the population moments must be 
equal to the sample moments. MOM is best implemented 
when moments are available. ML is a particular linear 
combination of probability weighted moments (PWMs) 
which gives simple interpretations of the location, shape 
and dispersion of a sample data. Unlike other product 
moment estimators, ML is not affected by sample 
variability. MLE estimator does not exist for a shape 
parameter of −1. L-moment has theoretical advantages over 
conventional moments in that it is able to characterize a 
broader range of distribution and is less affected by bias 
(Bílková 2014; Schlögl & Laaha 2017). Hydrological 
parameters usually contain outliers. ML is said to be robust 
and is not significantly affected by sampling variability 
(Srinivasa Murthy et al. 2017). Unlike other methods of 
parameter estimation, the L-moment method is not biased 
(Alahmadi et al. 2014; Ummi Nadiah et al. 2013).

Among all the distributions, only Gumbel is 
represented by two parameters. The location parameter 
of a distribution indicates where the distribution lies 
along the x-axis (horizontal axis). The scale parameter 
of a distribution determines the degree of spread in a 
distribution. The shape parameter of a distribution allows 
the distribution to take different shapes. The threshold 
parameter of a distribution represents the minimum value 
of the distribution along the x-axis (Scarrott & Macdonald 
2012).

MOM and ML have the same moments, which can be 
defined as follows (Khan et al. 2017):

(2)

(3)

(4)

(5)

where βr (r = 0,1,2,3) represents probability weighted 
moments such that:

  (6)

Each moment represents location, dispersion, symmetry, 
and peakedness of a data series. Based on the calculated 
moments, ML ratios can be established using the 
following calculation for coefficient of variation (CoV), 
skewness, and kurtosis.

   (7)
      

(8)
      

(9)

GOODNESS FOR FIT TESTING

The Kolmogorov-Smirnov and Anderson-Darling 
statistical tests were implemented to evaluate the 
performance of the distribution. The test statistics used to 
assess the goodness of fit are as follow:

 H0: The data follows specific distribution
 HA: The data does not follow a specific distribution

Evaluation of the tests is based on the calculated p-value. 
H0 is rejected if the calculated p-value is less than 0.05 
(p<0.05). Rejection of H0 means the data is not explained 
by the specific distribution. The Kolmogorov Smirnov 
and Anderson Darling tests can be used only for continuous 
data. AD is essentially an updated version of the KS test 
which considers the tail of the tested distribution; this is 
in contrast to KS which is known to be distribution free. 
It involves the computation of a critical value of the test 
at which AD will give more accurate judgement than KS 
since the mathematical computation involves a cumulative 
distribution function of the tested distribution. In general, 
goodness of fit testing compares the difference between 
theoretical and empirical distribution functions (Singla 
et al. 2016).

KS test is computed based on an empirical distribution 
function (ECDF) and theoretical distribution function 
(Ghasemi & Zahediasl 2012). The critical value is 
computed as follow:

𝑙𝑙1 = 𝛽𝛽0      (2) 

𝑙𝑙2 = 2𝛽𝛽1 − 𝛽𝛽0      (3) 

𝑙𝑙3 = 6𝛽𝛽2 − 6𝛽𝛽1 + 𝛽𝛽0     (4) 

𝑙𝑙4 = 20𝛽𝛽3 − 30𝛽𝛽2 + 12𝛽𝛽1 − 𝛽𝛽0   (5) 

 

𝛽𝛽𝑟𝑟 = 𝑛𝑛−1 ∑ (𝑗𝑗 − 1
𝑟𝑟 ) (𝑛𝑛 − 1

𝑟𝑟 )
−1

∗ 𝑋𝑋(𝑗𝑗, 𝑛𝑛)𝑛𝑛
𝑖𝑖=𝑟𝑟+1 , 𝑟𝑟 = 0, 𝑛𝑛 − 1   

 

𝜏𝜏2 =
𝑙𝑙2
𝑙𝑙1

       

𝜏𝜏3 =
𝑙𝑙3
𝑙𝑙2

       

𝜏𝜏4 =
𝑙𝑙4
𝑙𝑙2

       

 

𝜏𝜏2 =
𝑙𝑙2
𝑙𝑙1

       

𝜏𝜏3 =
𝑙𝑙3
𝑙𝑙2

       

𝜏𝜏4 =
𝑙𝑙4
𝑙𝑙2

       

 

𝜏𝜏2 =
𝑙𝑙2
𝑙𝑙1

       

𝜏𝜏3 =
𝑙𝑙3
𝑙𝑙2

       

𝜏𝜏4 =
𝑙𝑙4
𝑙𝑙2
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      (10)
    

(11)
    

(12)

where N(i) is the number of points that is less than 
Xi and  f (y,θ) is the probability density function. The test 
statistic, Dn, is rejected if it exceeds the tabulated critical 
value or when the p-value is lower than the significance 
level. KS test is also suitable for a small sample size. 
However, to utilize this test, the location, shape, and 
scale parameters have to be specified since they cannot 
be estimated directly from the data.

AD test is an upgraded version of the KS test 
which considers the tail of a distribution. This test can 
overcome the limitation of KS although it can only 
be used for certain distributions. AD is more sensitive 
towards the tail of the distribution. The test statistics can 
be mathematically written as follow:

  (13)

where n is sample size; F(x) is the cumulative distribution 
function for the tested distribution; and the ith sample is 
calculated after sorting the data in ascending order. The 
p-value is the probability that the data in a sample is 
random, and the p-value is dependent on the statistical 
value obtained from the above equation. The value of 
maximum difference between the two is a measure of 
the difference between the calculated and the observed 
data (Garba et al. 2013). AD test is a better version of 
goodness of fit test than the K-S test (Özonur et al. 2013). 

RETURN PERIOD

Return period, also known as recurrence interval, is an 
estimation of the likelihood of the occurrence of an event. 
Mathematically, the magnitude at selected return period 
can be calculated using the inverse of the cumulative 
distribution function (also known as quantile function). 
The formula for each distribution is presented in Table 1.

RESULTS

This section presents the descriptive analysis, distribution 
fitting and parameter estimates, goodness of fit testing 
and computation of magnitude for a selected return period. 
All topics comprise two parts, namely the computed results 
for the annual maximum and the partial duration series.

DESCRIPTIVE ANALYSIS

Hydrological data such as rainfall and streamflow are 
always skewed to the right. There is no negative value in 
the data structure. It is either zero, which indicates that 
there is no event, or greater than zero, which indicates any 
possible hydrologic event. The duration of the recorded 
data is crucial in determining the skewness of data 
distribution. The larger the number of recorded data, the 
higher probability of observing infrequent events of high 
magnitude; therefore, the data will be more skewed and 
the analysis more accurate (Schlögl & Laaha 2017; van 
Westen & Jetten 2015).

DAILY STREAMFLOW DATA

Figure 2 presents the daily plot for Kajang station for the 
period from 1978 to 2013. There is a total of 13149 data 
for the 36-year period. The descriptive statistics of the daily 
data is shown in Table 2.

 

     𝐹𝐹𝑛𝑛(𝑋𝑋𝑖𝑖) =
𝑁𝑁(𝑖𝑖)
𝑛𝑛        

                        𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑦𝑦, 𝜃𝜃)𝑑𝑑𝑦𝑦𝑥𝑥
𝑎𝑎      

𝐷𝐷𝑛𝑛 = |𝐹𝐹(𝑥𝑥𝑖𝑖) − 𝐹𝐹𝑛𝑛(𝑥𝑥𝑖𝑖)|1≤𝑖𝑖≤𝑛𝑛
𝑠𝑠𝑠𝑠𝑠𝑠      

 

𝐴𝐴 = −𝑛𝑛 − 1
𝑛𝑛∑ (2𝑖𝑖 − 1)(𝑙𝑙𝑛𝑛𝑙𝑙(𝑋𝑋𝑖𝑖) + ln(1 − 𝑙𝑙(𝑋𝑋𝑛𝑛−𝑖𝑖+1)))𝑛𝑛

𝑖𝑖=1    

 

FIGURE 2. Daily plot at Kajang station between 1978-2013
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ANNUAL MAXIMUM MODEL

Annual maximum series consist of the highest maximum 
data for each year between 1978 and 2013. The descriptive 

statistics of AMS is summarized in Table 2. Figure 4 is a 
histogram and density plot for the annual maximum data 
at Kajang station. Only one maximum event of 360.8 m3/s 
was recorded during this period, as can be seen in Figure 3.

FIGURE 3. Annual maximum flow at Kajang station

FIGURE 4. Histogram and density plot of annual maximum at 
Kajang station
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The sample size in Table 3 represents the number 
of events which exceeds the selected threshold after 
considering the independence of the events. The rejected 
peaks are the number of events excluded from the study 
based on independence criteria stated in the methods 
section. As the threshold value gets larger, the number 
of samples being considered decreases. The number of 

extreme maxima is smaller at higher threshold level. The 
magnitude of discharge selected is the highest peak in 
each cluster. Based on the dispersion index plot, the optimal 
threshold should be selected when the plot stabilizes at 
around 1. Figure 5 shows the threshold value against the 
dispersion index based on the assumption of the Poisson 
process. The dispersion index plot in Figure 5 shows that 

TABLE 3. Characteristics of PDS samples at Kajang station

Percentile (%) 90.0 91.5 93.0 94.5 96.0 97.5 98.0 98.5

Threshold 
(m3/s) 18.6 20.2 22.6 25.6 30.6 39.2 43.6 48.7

Sample size 380 337 291 249 187 116 91 66

Rejected Peaks 935 781 629 474 339 213 172 131

λ 10.56 9.36 8.08 6.92 5.19 3.22 2.53 1.83

Mean (m3/s) 36.2 38.93 42.02 45.94 52.27 63.79 70.03 79.12

Standard 
Deviation 
(m3/s)

28.55 29.72 30.97 32.35 35.18 40.84 44.14 48.91

Skewness 5.87 5.65 5.51 5.33 5.02 4.37 4.03 3.58

Kurtosis 51.13 46.90 43.73 40.2 34.28 24.65 20.4 15.53

Note: λ = Average number of peaks per year

PARTIAL DURATION SERIES MODEL

The threshold value selected in this study is based on 
percentile, where data above 90% in flow duration curves 

(FDC) is selected for the analysis. The values exceeding 
several percentages were tested and shown in the first 
row of Table 3 which presents the characteristics of PDS 
samples for the period from 1978 and 2013.

TABLE 2. Descriptive analysis of annual maximum streamflow at Kajang station

Description Daily streamflow data Annual maximum series

Minimum streamflow (m3/s) 0.1 16.55

Maximum streamflow (m3/s) 360.8 360.8

Average streamflow (m3/s) 9.81 73.53

Standard deviation (m3/s) 11.61 69.48

Skewness 7.15 2.4

Kurtosis 114.33 6.15
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the index begins to stabilize as the threshold approaches 
50 m3/s. Hence, a threshold of 48.7 m3/s is selected for 

FIGURE 5. Dispersion Index plot 

this study. The density plot for each tested threshold is 
shown in Figure 6.

FIGURE 6. Histogram and density plot for partial duration series
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DISTRIBUTION FITTING AND PARAMETER ESTIMATES
ML is suitable for estimating the parameters for a 
hydrological data series. Table 4 presents the estimation 

of parameters for the annual maximum series and partial 
duration series at 48.7 m3/s.

TABLE 4. Parameter estimate for annual maximum series using L-moment method

Distribution Parameters

Lognormal (3 parameter) AMS ζ= 20.08 µ= 3.33 σ= 1.14

PDS ζ= 47.81 µ= 2.68 σ= 1.23

Generalized Logistics AMS ξ = 50.46 α= 18.99 κ = -0.52

PDS ξ = 63.97 α= 10.92 κ = -0.55

Generalized extreme value AMS ξ= 41.11 α= 22.09 κ= -0.48

PDS ξ= 58.71 α= 12.41 κ= -0.52

Generalized Pareto AMS ξ= 22.94 α= 32.15 κ= -0.36

PDS ξ= 48.73 α= 17.39 κ= -0.48

Gumbel AMS ξ= 47.77 α=44.63 -

PDS ξ= 63.03 α=27.88 -

GOODNESS OF FIT TESTING

Anderson Darling test considers the performance of each 
tested distribution in contrast to the Kolmogorov Smirnov 
test which is known to be distribution free. 

ANNUAL MAXIMUM SERIES

The result presented in Table 5 shows that lognormal (3 
Parameters) and generalized Pareto gives small p-value, 
showing that the annual maximum data are not from 
these distributions. The calculated p-value shows that 
generalized extreme value is most likely able to explain 

the data set. Therefore, the quantile function of GEV 
distribution will be used to calculate the magnitude of 
streamflow at selected return period. 

PARTIAL DURATION SERIES

Two distributions at the 48.7 m3/s threshold value are 
suitable for representing the data set. The two distributions 
are lognormal (3 parameters) and generalized Pareto 
distribution, and both distributions have a p-value greater 
than 0.05. Thus, the quantile function of these two 
distributions will be used to calculate the magnitude of 
streamflow at selected return period.

TABLE 5. Goodness of fit testing for annual maximum series

Tests
Annual 

maximum Partial duration series Annual 
maximum Partial duration series

Kolmogorov-Smirnov Anderson Darling

Lognormal (3 parameter) 0.6724 0.0086 <0.05 0.3371
Generalized logistics <0.05 0.0002 <0.05 <0.05
Generalized extreme 
value 0.4549 0.0003 0.5027 0.0205

Generalized Pareto 0.6136 0.0060 <0.05 0.2444
Gumbel 0.0385 0.0095 0.0076 <0.05
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RETURN PERIOD

A flood frequency analysis is carried out to evaluate 
future occurrence of flood with certain magnitude at return 
period of 5, 10, 20, 50 and 100 years. The magnitude value 

for each return period is given in Table 6. The calculation 
of magnitude at selected return period for AMS employs 
the quantile function of GEV while, PDS utilises the LN 
(3) and GP distributions.

TABLE 6. Streamflow magnitude at selected return period

Return period 
(years)

Streamflow magnitude (m3/s)

Annual maximum series
Partial duration series

Lognormal
(3 Parameters)

Generalized Pareto

5 136.1 89.0 89.0

10 197.1 115.9 116.9

20 280.4 150.6 154.5

50 441.1 212.2 224.7

100 618.4 274.5 299.5

The calculated return period which considers annual 
maximum series gives a higher estimated magnitude 
compared to that of partial duration series. There is slight 
difference between the estimated streamflow value 
for the 5- and 10-year return period, and the difference 
increases as longer periods of between 20 and 100 years 
return period are used. However, the estimated flow 
determined using the partial duration series for both 
distributions shows a small difference for a short period 
although the difference is rather significant at about 25 
m3/s for a 100-year return period.

DISCUSSION

The utilisation of PDS data in preference to AMS allows 
for much more data to be included in the analysis. For 
instance, for the data from a 36-year period, 66 data are 
considered at a threshold value of 48.7 m3/s instead of 
only 36 data. All peaks above the threshold value are 
selected and filtered to ensure that only peaks which 
satisfies the independence criteria are used in this study. 
To fulfil the independence criteria of a data series, the 
occurrence of two consecutive discharge peaks must 
exceed an interval of 8 days. The average number of 

peaks used to select optimum threshold cannot be easily 
determined (Pham et al. 2014). Additionally, the average 
number of occurrences must satisfy λ > 1.65 where λ 
= 1.83. The number of occurrence per year follows a 
Poisson distribution such that threshold values of less 
than 30.6 m3/s are rejected. This is due to the fact that the 
distribution is almost symmetrical if λ > 5 and becomes 
normally distributed, thus, violating the assumption of the 
Poisson process (Cunnane 1979).

The selection of a proper threshold value for 
extracting PDS is crucial. According to Beguería 
(2005), the selected threshold value will determine the 
lower part of the distribution where any small change 
in the threshold value will modify the lower tail. Thus, 
minor changes on the left tail of the distribution leads 
to a significant difference in the estimated parameters. 
Moreover, compared to AMS, PDS is more suitable when 
estimating the high frequency of a small magnitude flood. 
The estimation of small magnitude flood is suitable for a 
return period of less than 10 years (Keast & Ellison 2013). 
PDS series is the better option when the chosen value is 
close to the actual flood discharge (Karim et al. 2017).

Skewness is a measure of symmetry of a distribution, 
while kurtosis measures the combined probability in the 
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two tails (tail-heaviness). Generally, normal distribution 
has a skewness of 0 and a kurtosis of 3. It describes the 
relative size of the left and right tails. A kurtosis greater 
than 3 indicates that the data set have heavier tails and 
that there are more data in the tail part of the distribution. 
Hydrological data such as rainfall and streamflow are 
always skewed to the right. There is no negative value in 
the data structure. It is either zero, indicating that there 
is no event, or greater than zero, indicating that there 
is a possible hydrologic event. The skewness of data 
distribution is also influenced by the duration of recorded 
data. A large amount of recorded data means a higher 
probability of observing infrequent events with high 
magnitude; as a result, the data will be more skewed and 
the analysis will be more accurate (Schlögl & Laaha 2017; 
van Westen & Jetten 2015).

Based on the descriptive analysis presented in the 
results section, all kurtosis has a value greater than 3, which 
implies that all data set have heavier tails and that the 
tail of the distribution contains more data. A skewness 
greater than one (>1) also implies that the models are highly 
skewed. The result of the partial duration series shows a 
lower kurtosis value, indicating that the tail of the data set 
becomes lighter with higher threshold value. The shape 
parameter is explained by the skewness and kurtosis of 
the data series. Location parameter is known to shift the 
distribution while the scale parameter determines whether 
the distribution shrinks or stretches.

The Anderson-Darling (A-D) test is an improvement 
of Cramer-von Mises statistics. It gives more weight to 
the tail distribution in contrast to Kolmogorov-Smirnov 
test. Hence, it is very useful for detecting outliers in a 
data series (Anderson & Darling 1954). A small value of 
the A-D test implies the suitability of the distribution for 
the available data set. Previous research shows that the 
distribution tested with AD statistics value above 1.038 will 
not be considered while distributions with AD statistics 
value between 0.474 and 1.038 may be considered for the 
analysis (Pettitt & Stephens 1977). AD test can be used 
for a small sample size and in most hydrologic conditions 
where the data is highly asymmetric.

Based on the technical information obtain from 
DID, the danger water level recorded at Kajang station 
is at 26.3 m, where the streamflow reading is around 
157 m3/s. According to flood frequency analysis (FFA), 
at return period of 20-years, there are 5% chance of 
flooding occurring in any year. Seven flooding occurrences 
throughout 36 years of data record, where the extreme 
flood happens on 2009 with magnitude of 360.8 m3/s, 
followed by 225.9 m3/s which is recorded on the next day. 

Sungai Langat around Kajang station has experienced 
change in river profile for the past year. Based on the rating 
curve obtained, there is difference between water level 
against streamflow during 1978 to 2002, and from 2003 
onwards. This is probably due to expansion of river area 
or increase in river sedimentation from active construction 
around Kajang station.

Malaysia has tropical and equatorial climate, 
which explains high temperature, humidity, and heavy 
rainfall throughout the year. Malaysia is among country 
experiencing no severe natural disasters like typhoons 
and earthquake, however, this country often faced with 
floods issue. It is caused by several factors such as high 
intensity or duration of precipitation, seasonal monsoon 
and improper drainage system is some places. The rainfall 
distribution is affected by the increase in temperature, 
which directly affect the evapotranspiration and air 
moisture. Seasonal monsoon in Malaysia is divided 
into two which are Northeast monsoon and Southwest 
monsoon. The first brings more precipitation intensity 
in east coast of Malaysia, Sabah and Sarawak, while 
usually less rainfall at other location in Malaysia, known 
as wet season in Malaysia. The latter is known as dry 
season, but higher precipitation amount at Kuala Lumpur, 
Penang, and Langkawi.

Rapid industrialization and urbanization have led 
to change in land use in most areas in Malaysia. For 
example, in Kajang, new area such as Kajang 2 and 
Kajang Utama has been upgraded to residential area. 
Population growth in Kajang in line with the increase in 
the amount of infrastructure and facilities that need to 
be provided. Many new infrastructures have been built 
around the area. Other than that, public transportation, 
such as MRT has been added as accommodation for 
Kajang citizen. However, due to improper maintenance 
on the drainage system, flash floods in certain area had 
become severe problem. For example, flash flood in front 
of the new MRT stations, Jalan Reko had caused traffic 
problem since vehicles cannot passed through the road. 
This incident happens frequently especially during heavy 
rainfall in short period or sometimes during continuous 
light precipitation. Therefore, in line with the increase 
in facilities and population, effective management in 
terms of flood management and proper infrastructure 
development can help reduce the impact of disasters in 
Kajang area. 

CONCLUSION

This article presents the analysis of maximum streamflow 
by considering peak over threshold series instead of 
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annual maximum. The proper threshold value must be 
established in order to extract partial duration series data. 
This study selected a threshold value of 49.5 m3/s since it 
satisfies the average number of event per year suggested 
by previous research with a lambda of approximately 1.8. 
The number of events taken into consideration by using 
the proposed threshold is 63 data instead of 35 data if the 
annual maximum was considered in the computation. In 
order to ensure that the independence criteria is satisfied, 
the recurrence interval between each peak should be 
more than 8 days between one event and the next. The 
distribution with the best fit for the data is lognormal with 
three parameter distributions. The L-moment method 
is the most suitable for estimating the parameter of the 
distribution since it is able to deal with outliers. According 
to the analysis, it can be discovered that population 
growth along with climate change could leads to more 
flood events in the future. Among the approach that 
can be taken is to update the flood frequency analysis 
from time to time in order to reduce the impact caused 
by flooding. The analysis is important especially for 
hydrological planning, construction of infrastructure and 
urban planning. It is recommended to consider multivariate 
distribution for the computation of flood frequency 
analysis, where each different characteristic of overflow or 
flood can be captured. Flood frequency analysis can help 
relevant government agencies prepare for flooding events 
which may occur in the near future.
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