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ABSTRACT

We model the recursive moments of aggregate discounted claims, assuming the inter-claim arrival time follows a Weibull 
distribution to accommodate overdispersed and underdispersed data set. We use a copula to represent the dependence 
structure between the inter-claim arrival time and its subsequent claim amount. We then use the Laplace inversion via 
the Gaver-Stehfest algorithm to solve numerically the first and second moments, which takes the form of a Volterra 
integral equation (VIE). We compute the average and variance of the aggregate discounted claims under the Farlie-
Gumbel-Morgenstern (FGM) copula and conduct a sensitivity analysis under various Weibull inter-claim parameters and 
claim-size parameters. The comparison between the equidispersed, overdispersed and underdispersed counting processes 
shows that when claims arrive at times that vary more than is expected, insured lives can expect to pay higher premium, 
and vice versa for the case of claims arriving at times that vary less than expected. Upon comparing the Weibull risk 
process with an equivalent Poisson process, we also found that copulas with a wider range of dependency parameter 
such as the Frank and Heavy Right Tail (HRT), have a greater impact on the value of moments as opposed to modeling 
under FGM copula with weak dependence structure. 
Keywords: FGM copula; Gaver-Stehfest algorithm; Laplace transform; Volterra integral equation; Weibull count model  

ABSTRAK

Kajian ini memodelkan momen rekursif tuntutan agregat terdiskaun, dengan andaian bahawa waktu ketibaan antara 
tuntutan mengikut taburan Weibull bagi memenuhi keperluan set data yang terlebih atau terkurang serak. Kajian ini 
menggunakan kopula untuk mewakili struktur kebersandaran antara waktu ketibaan antara tuntutan dan jumlah 
tuntutan berikutnya. Kajian ini menggunakan songsangan Laplace melalui algoritma Gaver-Stehfest untuk menyelesaikan 
secara berangka momen pertama dan kedua dalam bentuk persamaan kamiran Volterra (VIE). Kajian ini menghitung 
purata dan varians tuntutan agregat terdiskaun di bawah kopula Farlie-Gumbel-Morgenstern (FGM) dan analisis 
kepekaan dijalankan dengan mengubah parameter Weibull, waktu ketibaan antara tuntutan dan parameter saiz tuntutan. 
Perbandingan antara proses pengiraan sama serakan, terlebih serakan atau terkurang serakan menunjukkan bahawa 
apabila tuntutan tiba pada waktu yang bervariasi lebih dari yang dijangkakan, pihak yang diinsurans perlu membayar 
premium yang lebih tinggi dan sebaliknya bagi kes tuntutan yang tiba pada waktu yang bervariasi kurang dari yang 
dijangkakan. Selain perbandingan proses risiko Weibull dengan proses Poisson yang setara, kajian ini juga mendapati 
bawah kopula dengan julat parameter kebersandaran yang lebih luas seperti Frank dan Heavy Right Tail (HRT), memberi 
kesan yang lebih besar kepada nilai momen berbanding di bawah kopula FGM dengan struktur kebersandaran yang lemah.
Kata kunci: Algoritma Gaver-Stehfest; kopula FGM; model kira Weibull; persamaan kamiran Volterra; transformasi 
Laplace

INTRODUCTION

As reported in MunichRe (2018), while the amount of 
overall and insured losses seem to max out every 3 years 
(year 2005, 2008 and 2011), the trend did not repeat itself 
during the year 2014. However, the losses spiked up again 

after six years, and 2017 became the year with the second 
highest losses since the year 2005. Hence, the independent 
assumption between claims size and inter-claim arrival time 
in a classical risk model, as heavily covered in Delbaen 
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and Haezendonck (1987), Waters (1983) and Yang and 
Zhang (2001) may no longer be appropriate for insurance 
risk portfolio modeling. Recent studies have employed the 
dependence assumption through the dependent frequency-
severity modeling under automobile insurance (Shi et al. 
2015), while Kularatne et al. (2020) examined the suitable 
bivariate model through Archimedean copula to capture 
the dependence structure in general and life insurance 
modeling.

Two general approaches proposed in modeling 
the dependency between claims severity and frequency 
are the conditional probability decomposition approach 
and the copula approach (Garrido et al. 2016). The first 
approach decomposes the joint probability distribution 
between the claims severity and frequency into a product 
of conditional probabilities and then predicts average 
claims severity using a regression model with the claims 
frequency as a covariate (Shi et al. 2015). On the other 
hand, the copula approach links the joint distribution of 
the claims severity and claims frequency through a copula. 
Additionally, a copula can also be applied in modeling the 
joint distribution between claims severity and frequency 
margins that follow generalized linear regression models 
so that covariates of the marginals can be taken into 
account when predicting total loss (Hua 2015; Krämer et al. 
2013). Besides insurance portfolio, copula have also been 
applied to capture dependency between macroeconomic 
variables in bond pricing (Mohd Ramli & Jang 2020) and 
several equity markets (Shamiri et al. 2011). Apart from 
that, copula has also been used to characterize the joint 
probability distribution between rainfall duration and 
severity under hydrologic events (Kamaruzaman et al. 
2019; Tosunoglu & Kisi 2016).

Using renewal theory arguments and conditioning 
on the first claim arrival, Léveillé and Garrido (2001) 
derived the m-th recursive aggregate moment, assuming 
independence between claim arrival time and its severity. 
The technique was used in Bargès et al. (2011), to derive 
a closed-form solution of the m-th moment for the Poisson 
counting process using the Laplace transform, with an 
FGM copula capturing the dependency between inter-
claim arrival time and severity. It has also been applied 
to a dependent Sparre-Andersen risk process that relaxes 
the independent assumption between the j-th inter-claim 
arrival time, Wj, and the j-th claim severity, Xj (Woo 
& Cheung 2013). Mohd Ramli and Jang (2014) then 
extended the works of Bargès et al. (2011) and Léveillé 
and Garrido (2001) by explicitly finding the Neumann 

series expressions of the moments, which are expressed 
in the form of a VIE.

The previously mentioned studies illustrated the 
numerical examples using the Poisson process, i.e. an 
equidispersed Weibull count process, which has an equal 
mean and variance. The Poisson counting process is 
commonly used to represent event occurrence due to its 
simple corresponding exponentially distributed inter-
claim arrival time, which can also be seen in studies related 
to ruin measures (Albrecher et al. 2020). However, it is 
only adequate if the data satisfies the restrictive assumption 
of equidispersion; that is, the variance of the data is equal 
to its mean. Shi et al. (2015) illustrated that the Poisson 
process is insufficient to capture the overdispersion present 
in the automobile insurance data and proposed the use of 
Negative Binomial (NB) model. However, the NB model 
is unable to accommodate underdispersed data, and the 
closed-form of hazard function could not be obtained. 
The Weibull count model is a better alternative not only 
because the model can handle both overdispersed and 
underdispersed data sets, but it also nests commonly 
used count models, including the Poisson and the NB 
distributions (McShane et al. 2008). The Weibull count 
process has also been used to predict the number of 
goals scored in a football match (Boshnakov et al. 2017). 
Combined with a copula to capture the dependency 
between the goals scored by the two opposing teams, 
the Weibull count model is found to be a better fit than 
a Poisson count model with independent assumption. 
Additionally, the Weibull count model also allows for non-
constant hazard rates that vary according to the duration 
of the inter-waiting time. This is useful in modeling 
the arrival of unexpected random shocks that lead to the 
breakdown of many engineering systems as seen in Liu 
(2019).

In this study, we propose to use Weibull inter-
arrival time distribution to handle both overdispersed and 
underdispersed data sets. We then model the dependence 
of inter-claim arrival time and claims size, represented by 
an FGM copula. The moments of aggregate discounted 
claims are then expressed in VIE form using the numerical 
Laplace inversion via the Gaver-Stehfest algorithm 
Stehfest (1970) to allow for numerical solutions. We 
organize the remainder of this article as follows: In the 
next section, we introduce the continuous time renewal 
risk model with the Weibull counting process. We present 
FGM copula to model the dependency between the inter-
claim arrival time and the claims size. Subsequent section 
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describes the recursive moments expressions in VIE form 
and the steps taken to numerically solve the equations 
using Laplace inversion via the Gaver-Stehfest algorithm. 
The following section illustrates the numerical verification 
of the inverted expression, the comparison of moments 
and premium computation under the underdispersed, 
equidispersed and overdispersed scenarios, as well as the 
sensitivity analysis on the moments. We also compare the 
results using Frank and HRT copula under the exponential 
inter-waiting time. We then conclude in the last section.  
  

MATERIALS AND METHODS

CLAIMS MODEL SETUP

We define the aggregate discounted claims, Z = {Z(t)}t ≥ 0, 
with a deterministic instantaneous rate of net interest δ as: 
 

where Xi,i = 1, 2, … is a continuous, nonnegative, 
independent and identically distributed (i.i.d.) random 
variable that represents claims size occurring at time Ti, 
i = 1, 2, …, N(t).

WEIBULL COUNT MODEL

The counting process N = {N(t)}t ≥ 0 suggested in this 
study is a basic Weibull counting process, whereby the 
corresponding continuous random variable of the inter-
claim arrival time, Wj follows a Weibull distribution and 
is defined as:
 

Each pair of the joint variables forms a sequence of i.i.d. 
random vectors {(Xj,Wj)}j∈N.

From (12) and (14) of McShane et al. (2008), the 
mean and variance of a Weibull count model with shape 
parameter , and scale parameter λ > 0, and scale parameter 
β > 0,  as:

(1)

(2)

in which the parameter n denotes the number of events 
that occur in the interval (0, t]. The Weibull count model 
is based upon an assumed Weibull inter-arrival time 
process which could accommodate greater, equal or less 
variability in a data set than predicted through the shape 
parameter being less than, equal to or greater than 1, 
respectively. The Weibull count model nests the Poisson 
or Negative Binomial Count Model as special cases.

COPULA

We allow for dependency between the claim size, Xj and 
the inter-arrival time, Wj, captured by the FGM copula, 
since the independence assumption between the two 
marginals as covered in numerous past literature may no 
longer be appropriate. The probability density functions 
(pdf) of the copula is given by 

(3)

where θ∈[-1,1] represents the dependence parameter 
(Balakrishna & Lai 2009; Nelsen 2006). In relation to 
this study, when the marginals are negatively correlated 
(i.e. when θ∈[-1,0)), a large/small claim amount will 
occur following a short/long inter-arrival claim time. On 
the other hand, a positively correlated marginals (i.e. 
when θ∈(0,1]) imply that a large/small claim amount 
will occur following a long/short inter-arrival claim time. 
Other than for simplicity of illustration, the FGM copula 
was chosen for comparison with previous studies to ensure 
that the equation derived and Gaver-Stehfest algorithms 
used return values as consistent as given by the Neumann 
series and the Laplace transform derived in Mohd Ramli 
and Jang (2014) and Bargès et al. (2011), respectively. 
Nonetheless, its simplicity and analytical tractability make 
the FGM copula a popular choice in extreme value analysis 
and risk management (Mao & Yang 2015).

Additionally, we also use the Frank copula and 
the HRT copula in comparison with the FGM copula 
assuming λ = 1, i.e. the case of exponential inter-waiting 
time. Both FGM and Frank copula allow for both positive 
and negative dependency between the marginals. The 
Frank copula can capture a wider range of dependency as 
opposed to FGM (Tosunoglu & Kisi 2016). HRT copula, on 
the other hand is only able to model positive dependency 
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and therefore is appropriate in modeling upper tail 
dependency, particularly in extreme events (Venter 2002). 
The pdf of the Frank and HRT copula are given as: 

(4)

(5)

RECURSIVE MOMENTS OF AGGREGATE DISCOUNTED 
CLAIMS

We write the general form of the m-th moment of aggregate 
discounted claims Z(t) as:

(6)

Given the conditional moment of claims size and given 
the claim arrival time for m ≥ 1, E(Xm |W = w) = E(𝑋𝑋𝑚𝑚|𝑊𝑊 = 𝑤𝑤) = ∫∞0 𝑥𝑥𝑚𝑚𝑓𝑓𝑋𝑋|𝑊𝑊=𝑤𝑤(𝑥𝑥)𝑑𝑑𝑥𝑥,   xm 
fX | W = w(x)dx, (6) becomes: 

 (7)

The dependence structure between the claims size, Xj, and 
the inter-claim arrival time, Wj is captured by a copula 
which appears in (7) via the joint pdf 

fX,W (x,w) = cθ (FX (x) FW (w)) fX (x) fW (w),

where cθ (FX (x) FW (w)) is the pdf of a copula. This joint 
pdf can be specified using the marginal densities and a 
copula density (see Sklar’s Theorem in (Nelsen 2006)).

Assuming Weibull inter-claim time with pdf 
𝑓𝑓𝑊𝑊(𝑤𝑤) = 𝜆𝜆

𝛽𝛽𝜆𝜆 𝑤𝑤𝜆𝜆−1𝑒𝑒−(𝑤𝑤/𝛽𝛽  )𝜆𝜆,  λ > 0, the expression of the 
first moment becomes 

(8)

Note that the inter-claim time follows exponential 
distribution with mean β when λ = 1, giving us a risk 
portfolio with a Poisson counting process claims 
occurrence. We let g(T) = 𝑔𝑔(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 and 𝑘𝑘(1)(𝑇𝑇 − 𝑤𝑤) = 𝑒𝑒−𝛿𝛿(𝑇𝑇−𝛿𝛿)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(
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the property of the convolution integral, which states∫𝑎𝑎0 𝜂𝜂(𝑎𝑎 − 𝑏𝑏)𝛾𝛾(𝑏𝑏)𝑑𝑑𝑏𝑏 = ∫𝑎𝑎0 𝜂𝜂(𝑏𝑏)𝛾𝛾(𝑎𝑎 − 𝑏𝑏)𝑑𝑑𝑏𝑏, (8) can be written as the following:  
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η (b) γ (a - b)db, (8) can be written 
as the following: 
 
 

(9)

We repeat the previous steps to derive the expression of the 
second moment for the risk portfolio Z under Weibull inter-
claim waiting time. Substituting m = 2 in (7), we obtain 
the integral of the second recursive moment as follows: 

(10)

𝑐𝑐𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑊𝑊(𝑤𝑤)) =
(𝜃𝜃−1)log𝜃𝜃(𝜃𝜃𝐹𝐹𝑋𝑋(𝑥𝑥)+𝐹𝐹𝑊𝑊(𝑤𝑤))

[𝜃𝜃−1+(𝜃𝜃𝐹𝐹𝑋𝑋(𝑥𝑥)−1)(𝜃𝜃𝐹𝐹𝑊𝑊(𝑤𝑤)−1)]2
, 𝜃𝜃 ∈ (0,∞),  

𝑐𝑐𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻(𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑊𝑊(𝑤𝑤)) = (1 + 1
𝜃𝜃) [(1 − 𝐹𝐹𝑋𝑋(𝑥𝑥))

−1𝜃𝜃 + (1 − 𝐹𝐹𝑊𝑊(𝑤𝑤))
−1𝜃𝜃 − 1]

−(𝜃𝜃+2)
  

× [(1 − 𝐹𝐹𝑋𝑋(𝑥𝑥))(1 − 𝐹𝐹𝑊𝑊(𝑤𝑤))]
−(1+1𝜃𝜃), 𝜃𝜃 ∈ (0,∞),  

 

𝑐𝑐𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑊𝑊(𝑤𝑤)) =
(𝜃𝜃−1)log𝜃𝜃(𝜃𝜃𝐹𝐹𝑋𝑋(𝑥𝑥)+𝐹𝐹𝑊𝑊(𝑤𝑤))

[𝜃𝜃−1+(𝜃𝜃𝐹𝐹𝑋𝑋(𝑥𝑥)−1)(𝜃𝜃𝐹𝐹𝑊𝑊(𝑤𝑤)−1)]2
, 𝜃𝜃 ∈ (0,∞),  

𝑐𝑐𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻(𝐹𝐹𝑋𝑋(𝑥𝑥), 𝐹𝐹𝑊𝑊(𝑤𝑤)) = (1 + 1
𝜃𝜃) [(1 − 𝐹𝐹𝑋𝑋(𝑥𝑥))

−1𝜃𝜃 + (1 − 𝐹𝐹𝑊𝑊(𝑤𝑤))
−1𝜃𝜃 − 1]

−(𝜃𝜃+2)
  

× [(1 − 𝐹𝐹𝑋𝑋(𝑥𝑥))(1 − 𝐹𝐹𝑊𝑊(𝑤𝑤))]
−(1+1𝜃𝜃), 𝜃𝜃 ∈ (0,∞),  

 

 𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇) = E[𝑍𝑍𝑚𝑚(𝑇𝑇)] = ∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚E(𝑋𝑋𝑚𝑚|𝑊𝑊 = 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∑𝑚𝑚−1
𝑗𝑗=1 (𝑚𝑚𝑗𝑗 )∫

𝑇𝑇
0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚E(𝑋𝑋𝑗𝑗|𝑊𝑊 = 𝑤𝑤)𝜇𝜇𝑧𝑧

(𝑚𝑚−𝑗𝑗)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

 𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑓𝑓𝑊𝑊(𝑤𝑤)𝑓𝑓𝑋𝑋|𝑊𝑊=𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 

 +∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∑𝑚𝑚−1
𝑗𝑗=1 (𝑚𝑚𝑗𝑗 ) ∫

𝑇𝑇
0 ∫∞0 𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗𝑓𝑓𝑊𝑊(𝑤𝑤)𝑓𝑓𝑋𝑋|𝑊𝑊=𝑚𝑚(𝑥𝑥)𝜇𝜇𝑧𝑧

(𝑚𝑚−𝑗𝑗)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 

 = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∑𝑚𝑚−1
𝑗𝑗=1 (𝑚𝑚𝑗𝑗 ) ∫

𝑇𝑇
0 ∫∞0 𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥𝑗𝑗𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(𝑚𝑚−𝑗𝑗)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

 = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

 = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

 = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

 = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

 𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = 𝑔𝑔(𝑇𝑇) + 𝜆𝜆

𝛽𝛽𝜆𝜆 ∫
𝑇𝑇
0 𝑒𝑒−𝛿𝛿(𝑇𝑇−𝑤𝑤)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(

𝑇𝑇−𝑤𝑤
𝛽𝛽 )

𝜆𝜆

𝜇𝜇𝑧𝑧
(1)(𝑤𝑤)𝑑𝑑𝑤𝑤 

 = 𝑔𝑔(𝑇𝑇) + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑘𝑘(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑤𝑤.  

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

-

𝑔𝑔(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 and 𝑘𝑘(1)(𝑇𝑇 − 𝑤𝑤) = 𝑒𝑒−𝛿𝛿(𝑇𝑇−𝛿𝛿)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(
𝑇𝑇−𝛿𝛿
𝛽𝛽 )

𝜆𝜆

 

-

𝑔𝑔(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 and 𝑘𝑘(1)(𝑇𝑇 − 𝑤𝑤) = 𝑒𝑒−𝛿𝛿(𝑇𝑇−𝛿𝛿)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(
𝑇𝑇−𝛿𝛿
𝛽𝛽 )

𝜆𝜆

 



  2113

Let k(2) (T-w) = e-2δ(T-w) (T-w) λ-1, g(2) (T) = 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

 e-2δw x2 fX,W 
(x,w)dxdw and c (T-w) = 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

 2e-2δ(T-w) fX,W (x,T - w)dx. By 
the property of convolution integral,    

(11)

The recursive aggregate moments in (9) and (11) take the 
form of a non-homogeneous VIE of the second kind, 
whose general form is given by: 

(12)

where Φ(T) ≠ 0 is a continuous function in the region 
a ≤ T and χ (T, w) is the kernel function in the region 
a ≤ w ≤ T. When both Φ(T) and χ(T, w) are continuous, 
ϕ(T) will be unique and continuous. In mapping (9) and 
(11) to the general form of the VIE, we can see that Φ(T) 
corresponds to g(T) while the kernel function χ(T,w) 
corresponds to k(T,w) in (9). Similarly, the continuous 
function Φ(T) corresponds to the component g(2) (T) + 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

 c(T-w) μz
(1) (w)dw in (11), whereas the kernel function 

χ(T,w) corresponds to the k(2) (T-w). Often found in the 
study of electromagnetic field and viscoelasticity, the 
VIE has also been applied in operational risk modeling, 
demographic study, and insurance mathematics.    

LAPLACE INVERSION OF THE RECURSIVE MOMENTS

The VIE form of the recursive moments of aggregate 
discounted claims in (9) and (11) with Weibull inter-claim 
arrival time proposed in this study allows the recursive 
equations to be solved numerically using the Laplace 
transform and the Gaver-Stehfest(G-S) algorithm. The 
steps to numerically solve the equations are as follows:

Let G(ρ), C(ρ), K(ρ), and Ψ(ρ) denote the Laplace 
transform of g(T), c(T), k(T), and ψ(T), respectively. The 
convolution integral of two functions k(T) and ψ(T) is 
given by 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+∫𝑇𝑇0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑓𝑓𝑊𝑊(𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤  

= ∫𝑇𝑇0 ∫∞0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥2𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤 + ∫𝑇𝑇0 ∫∞0 2𝑒𝑒−2𝛿𝛿𝛿𝛿𝑥𝑥𝑓𝑓𝑋𝑋,𝑊𝑊(𝑥𝑥, 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑥𝑥𝑑𝑑𝑤𝑤  

+ 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫

𝑇𝑇
0 𝑒𝑒−2𝛿𝛿𝛿𝛿𝑤𝑤𝜆𝜆−1𝑒𝑒−(

𝛿𝛿
𝛽𝛽)

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

 k(T - w) ψ (w)dw and its Laplace transform 
L{(k*ψ)(T)} = K(ρ)Ψ(ρ).
Taking the Laplace transform of (9), we obtain 
 
 

(13)

and its inverse Laplace transform: 
 

(14)

Equation (14) is also the first moment function of the risk 
portfolio. Similarly, we obtain the second moment function 
by taking the inverse of the Laplace transform of (11). 

 (15)

When λ = 1, the inter-claim time is exponentially 
distributed with mean β. The kernel function k(m) (T - w) 
is given by: 

 (16)

and the Laplace transform of k(m) (T) with respect to T  is: 
  

(17)

Therefore, the first and second moments can be simplified 
into: 
 

(18)

and
 

(19)

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = 𝑔𝑔(2)(𝑇𝑇) + ∫𝑇𝑇

0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤  

 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫𝑇𝑇

0 𝑒𝑒−2𝛿𝛿(𝑇𝑇−𝑤𝑤)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(𝑇𝑇−𝑤𝑤
𝛽𝛽 )

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑤𝑤)𝑑𝑑𝑤𝑤 

 = 𝑔𝑔(2)(𝑇𝑇) + ∫𝑇𝑇
0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫𝑇𝑇

0 𝑘𝑘(2)(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = 𝑔𝑔(2)(𝑇𝑇) + ∫𝑇𝑇

0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤  

 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫𝑇𝑇

0 𝑒𝑒−2𝛿𝛿(𝑇𝑇−𝑤𝑤)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(𝑇𝑇−𝑤𝑤
𝛽𝛽 )

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑤𝑤)𝑑𝑑𝑤𝑤 

 = 𝑔𝑔(2)(𝑇𝑇) + ∫𝑇𝑇
0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫𝑇𝑇

0 𝑘𝑘(2)(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

𝜙𝜙(𝑇𝑇) = Φ(𝑇𝑇) + ∫𝑇𝑇𝑎𝑎 𝜒𝜒(𝑇𝑇,𝑤𝑤)𝜙𝜙(𝑤𝑤)𝑑𝑑𝑤𝑤,   

 

ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) = ℒ(𝑔𝑔(𝑇𝑇)) + 𝜆𝜆

𝛽𝛽𝜆𝜆 ℒ (∫
𝑇𝑇

0
𝑘𝑘(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑤𝑤) 

 = 𝐺𝐺(𝜌𝜌) + 𝜆𝜆
𝛽𝛽𝜆𝜆 𝐾𝐾(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧

(1)(𝑇𝑇)) = 𝐺𝐺(𝜌𝜌)
1− 𝜆𝜆

𝛽𝛽𝜆𝜆
𝐾𝐾(𝜌𝜌)

,  

 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ℒ−1 ( 𝐺𝐺(𝜌𝜌)

1 − 𝜆𝜆
𝛽𝛽𝜆𝜆 𝐾𝐾(𝜌𝜌)

). 𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ℒ−1 ( 𝐺𝐺(𝜌𝜌)

1 − 𝜆𝜆
𝛽𝛽𝜆𝜆 𝐾𝐾(𝜌𝜌)

). 

ℒ (𝜇𝜇𝑧𝑧
(2)(𝑇𝑇)) = ℒ(𝑔𝑔(2)(𝑇𝑇)) + ℒ (∫𝑇𝑇0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤)  

 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ℒ (∫

𝑇𝑇
0 𝑘𝑘(2)(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(2)(𝑤𝑤)𝑑𝑑𝑤𝑤) 

 = 𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) + 𝜆𝜆

𝛽𝛽𝜆𝜆 𝐾𝐾
(2)(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧

(2)(𝑇𝑇)) =
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))

1− 𝜆𝜆
𝛽𝛽𝜆𝜆
𝐾𝐾(2)(𝜌𝜌)

  

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1− 𝜆𝜆
𝛽𝛽𝜆𝜆
𝐾𝐾(2)(𝜌𝜌)

).  

ℒ (𝜇𝜇𝑧𝑧
(2)(𝑇𝑇)) = ℒ(𝑔𝑔(2)(𝑇𝑇)) + ℒ (∫𝑇𝑇0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤)  

 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ℒ (∫

𝑇𝑇
0 𝑘𝑘(2)(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(2)(𝑤𝑤)𝑑𝑑𝑤𝑤) 

 = 𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) + 𝜆𝜆

𝛽𝛽𝜆𝜆 𝐾𝐾
(2)(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧

(2)(𝑇𝑇)) =
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))

1− 𝜆𝜆
𝛽𝛽𝜆𝜆
𝐾𝐾(2)(𝜌𝜌)

  

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1− 𝜆𝜆
𝛽𝛽𝜆𝜆
𝐾𝐾(2)(𝜌𝜌)

).  

ℒ (𝜇𝜇𝑧𝑧
(2)(𝑇𝑇)) = ℒ(𝑔𝑔(2)(𝑇𝑇)) + ℒ (∫𝑇𝑇0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤)  

 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ℒ (∫

𝑇𝑇
0 𝑘𝑘(2)(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(2)(𝑤𝑤)𝑑𝑑𝑤𝑤) 

 = 𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) + 𝜆𝜆

𝛽𝛽𝜆𝜆 𝐾𝐾
(2)(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧

(2)(𝑇𝑇)) =
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))

1− 𝜆𝜆
𝛽𝛽𝜆𝜆
𝐾𝐾(2)(𝜌𝜌)

  

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1− 𝜆𝜆
𝛽𝛽𝜆𝜆
𝐾𝐾(2)(𝜌𝜌)

).  

𝑘𝑘(𝑚𝑚)(𝑇𝑇 − 𝑤𝑤) = 𝑒𝑒−(𝑚𝑚𝑚𝑚+1𝛽𝛽)(𝑇𝑇−𝑤𝑤), 

𝐾𝐾(𝑚𝑚)(𝜌𝜌) = 1
 1/𝛽𝛽+ 𝑚𝑚𝑚𝑚 + 𝜌𝜌. 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ℒ−1 ( 𝐺𝐺(𝜌𝜌)

1−1
𝛽𝛽𝐾𝐾(𝜌𝜌)) = ℒ−1 ( 𝐺𝐺(𝜌𝜌)

1−1
𝛽𝛽( 1

 1/𝛽𝛽+𝛿𝛿+𝜌𝜌)
)  

 = ℒ−1 (𝐺𝐺(𝜌𝜌) + 𝐺𝐺(𝜌𝜌)
𝛽𝛽(𝛿𝛿+𝜌𝜌)) = 𝑔𝑔(𝑇𝑇) + 1

𝛽𝛽 ℒ−1 ( 1
𝛿𝛿+𝜌𝜌 𝐺𝐺(𝜌𝜌)), 

𝜇𝜇𝑧𝑧
(1)(𝑇𝑇) = ℒ−1 ( 𝐺𝐺(𝜌𝜌)

1−1
𝛽𝛽𝐾𝐾(𝜌𝜌)) = ℒ−1 ( 𝐺𝐺(𝜌𝜌)

1−1
𝛽𝛽( 1

 1/𝛽𝛽+𝛿𝛿+𝜌𝜌)
)  

 = ℒ−1 (𝐺𝐺(𝜌𝜌) + 𝐺𝐺(𝜌𝜌)
𝛽𝛽(𝛿𝛿+𝜌𝜌)) = 𝑔𝑔(𝑇𝑇) + 1

𝛽𝛽 ℒ−1 ( 1
𝛿𝛿+𝜌𝜌 𝐺𝐺(𝜌𝜌)), 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽𝐾𝐾(2)(𝜌𝜌) ) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽( 1

 1/𝛽𝛽+𝛿𝛿+𝜌𝜌)
)  

 = ℒ−1 (𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) +

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

𝛽𝛽(𝛿𝛿+𝜌𝜌) ) 

 = 𝑔𝑔(2)(𝑇𝑇) + ℒ−1 (𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))) 

 +ℒ−1 (
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))
𝛽𝛽(𝛿𝛿+𝜌𝜌) ). 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽𝐾𝐾(2)(𝜌𝜌) ) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽( 1

 1/𝛽𝛽+𝛿𝛿+𝜌𝜌)
)  

 = ℒ−1 (𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) +

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

𝛽𝛽(𝛿𝛿+𝜌𝜌) ) 

 = 𝑔𝑔(2)(𝑇𝑇) + ℒ−1 (𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))) 

 +ℒ−1 (
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))
𝛽𝛽(𝛿𝛿+𝜌𝜌) ). 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽𝐾𝐾(2)(𝜌𝜌) ) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽( 1

 1/𝛽𝛽+𝛿𝛿+𝜌𝜌)
)  

 = ℒ−1 (𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) +

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

𝛽𝛽(𝛿𝛿+𝜌𝜌) ) 

 = 𝑔𝑔(2)(𝑇𝑇) + ℒ−1 (𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))) 

 +ℒ−1 (
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))
𝛽𝛽(𝛿𝛿+𝜌𝜌) ). 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽𝐾𝐾(2)(𝜌𝜌) ) = ℒ−1 (

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

1−1
𝛽𝛽( 1

 1/𝛽𝛽+𝛿𝛿+𝜌𝜌)
)  

 = ℒ−1 (𝐺𝐺(2)(𝜌𝜌) + 𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇)) +

𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))

𝛽𝛽(𝛿𝛿+𝜌𝜌) ) 

 = 𝑔𝑔(2)(𝑇𝑇) + ℒ−1 (𝐶𝐶(𝜌𝜌)ℒ (𝜇𝜇𝑧𝑧
(1)(𝑇𝑇))) 

 +ℒ−1 (
𝐺𝐺(2)(𝜌𝜌)+𝐶𝐶(𝜌𝜌)ℒ(𝜇𝜇𝑧𝑧

(1)(𝑇𝑇))
𝛽𝛽(𝛿𝛿+𝜌𝜌) ). 

𝜇𝜇𝑧𝑧
(2)(𝑇𝑇) = 𝑔𝑔(2)(𝑇𝑇) + ∫𝑇𝑇

0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧
(1)(𝑤𝑤)𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤  

 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫𝑇𝑇

0 𝑒𝑒−2𝛿𝛿(𝑇𝑇−𝑤𝑤)(𝑇𝑇 − 𝑤𝑤)𝜆𝜆−1𝑒𝑒−(𝑇𝑇−𝑤𝑤
𝛽𝛽 )

𝜆𝜆

𝜇𝜇𝑧𝑧
(2)(𝑤𝑤)𝑑𝑑𝑤𝑤 

 = 𝑔𝑔(2)(𝑇𝑇) + ∫𝑇𝑇
0 𝑐𝑐(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧

(1)(𝑤𝑤)𝑑𝑑𝑤𝑤 + 𝜆𝜆
𝛽𝛽𝜆𝜆 ∫𝑇𝑇

0 𝑘𝑘(2)(𝑇𝑇 − 𝑤𝑤)𝜇𝜇𝑧𝑧
(2)(𝑤𝑤)𝑑𝑑𝑤𝑤.  
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Notice that (18) and (19) are equivalent to (16) and 
(17) in Mohd Ramli and Jang (2014), as well as (10) and 
(16) in Bargès et al. (2011). Had we use the Neumann series 
expansion as in Mohd Ramli and Jang (2014), the number 
of integrals would increase with the order of moments 
even with a simple Poisson counting process. This would 
cause the computation of moments to be less efficient 
and less robust due to computing error as we attempt 
to compute the value of higher moments for a Weibull 
inter-waiting time when λ ≠ 1. Hence, we will work with 
numerical inversion of the Laplace transform instead of 
obtaining the explicit expressions.  
 

THE GAVER-STEHFEST ALGORITHM

The numerical inversion of the Laplace transform of the 
moments as given by (14) and (15) will be solved by 
utilizing the Gaver-Stehfest algorithm Stehfest (1970) 
when λ ≠ 1. The algorithm has been used to solve Laplace 
equations arising in many fields including geophysics 
(Harris & Bourne 2017), chemistry (Montella 2008), 
and financial derivatives (Qian et al. 2018). Based on the 
computation times, simplicity, robustness, and speed of 
convergence, the performance of this algorithm is very 
efficient in estimating the ruin probability (Usábel 1999).

The Gaver-Stehfest algorithm is an extrapolation of 
prior sequences derived by Stehfest (1970) that we will 
use to estimate the moment functions  𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇) = E[𝑍𝑍𝑚𝑚(𝑇𝑇)] = ∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚E(𝑋𝑋𝑚𝑚|𝑊𝑊 = 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∑𝑚𝑚−1
𝑗𝑗=1 (𝑚𝑚𝑗𝑗 )∫

𝑇𝑇
0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚E(𝑋𝑋𝑗𝑗|𝑊𝑊 = 𝑤𝑤)𝜇𝜇𝑧𝑧

(𝑚𝑚−𝑗𝑗)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

(T): 
 

(20)
 
whereby the coefficient ak is defined as: 

for even values of n.
Under this algorithm, we approximate an inverse of 

a Laplace transform using a sample Ik (T) given as: 
 

(21)

with k being the number of expansion terms (Krougly et 
al. 2017). For each k, the function Δk (T,y) forms a delta 

convergent sequence, which implies that Ik (T) approaches 
 𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇) = E[𝑍𝑍𝑚𝑚(𝑇𝑇)] = ∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚E(𝑋𝑋𝑚𝑚|𝑊𝑊 = 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∫𝑇𝑇0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤 

 +∑𝑚𝑚−1
𝑗𝑗=1 (𝑚𝑚𝑗𝑗 )∫

𝑇𝑇
0 𝑓𝑓𝑊𝑊(𝑤𝑤)𝑒𝑒−𝑚𝑚𝑚𝑚𝑚𝑚E(𝑋𝑋𝑗𝑗|𝑊𝑊 = 𝑤𝑤)𝜇𝜇𝑧𝑧

(𝑚𝑚−𝑗𝑗)(𝑇𝑇 − 𝑤𝑤)𝑑𝑑𝑤𝑤.  

 

(T) as k increases (Davies & Martin 1979): 
 

(22)
 
The delta function, Δk (T,y), 
  

(23)

 forms sequences of approximation as follows: 
  

(24)
 
where M(ρ) is the Laplace transform of μz

(m) (T). Equation 

(24) is obtained by expanding (1 − 𝑒𝑒−
ln(2)
𝑇𝑇 𝑦𝑦)

𝑘𝑘
  in (23) using 

binomial theorem (Gaver 1966).
By working on the numerical inversion of the 

Laplace transform using the Gaver-Stehfest algorithm, 
we are left with solving the straightforward function g(m)

(T), making the computation more efficient despite using 
a Weibull inter-waiting time.

RESULTS AND DISCUSSION

VERIFICATION OF THE LAPLACE INVERSION

We numerically solve the first and second moments 
to verify that our derivation in the previous section is 
correct. We compare the results obtained using Gaver-
Stehfest algorithm with the results in Mohd Ramli and 
Jang (2014) under the Neumann series method with θ = 
0 and + 0.9 with Poisson counting process. We assume 
exponential claims size with mean 1/α = 0.1, Weibull 
inter-claim time with shape parameter λ = 1, scale 
parameter β = 1, instantaneous rate of net interest δ = 4% 
and T = 5 under the FGM copula (Table 1).

We confirm that the computations under both 
methods yield the same results for λ = 1. The Gaver-
Stehfest method allows us to compute the first moment 
for an almost perfect correlation of θFGM = + 0.999, as 
opposed to only up to θFGM = + 0.95 when the computation 
was done using the long-winded expressions as in Mohd 
Ramli and Jang (2014).

𝜇𝜇𝑧𝑧
(𝑚𝑚)(𝑇𝑇) ≈ 𝐼𝐼𝑘𝑘(𝑇𝑇) = ln(2)

𝑇𝑇 ∑𝑛𝑛
𝑘𝑘=1 𝑎𝑎𝑘𝑘  𝑀𝑀 (𝑘𝑘 ln(2)

𝑇𝑇 ) , 𝑛𝑛 ≥ 2, 𝑇𝑇 > 0, (20) 

 whereby the coefficient 𝑎𝑎𝑘𝑘 is defined as:  

 𝑎𝑎𝑘𝑘: = (−1)𝑘𝑘+𝑛𝑛/2  

(𝑛𝑛/2)! ∑𝑘𝑘∧𝑛𝑛/2  
𝑗𝑗=⌊𝑘𝑘+1

2 ⌋
𝑗𝑗𝑛𝑛/2+1  (𝑛𝑛/2  

𝑗𝑗 ) (2𝑗𝑗
𝑗𝑗 ) (𝑗𝑗

𝑘𝑘 − 𝑗𝑗), 

 

𝜇𝜇𝑧𝑧
(𝑚𝑚)(𝑇𝑇) ≈ 𝐼𝐼𝑘𝑘(𝑇𝑇) = ln(2)

𝑇𝑇 ∑𝑛𝑛
𝑘𝑘=1 𝑎𝑎𝑘𝑘  𝑀𝑀 (𝑘𝑘 ln(2)

𝑇𝑇 ) , 𝑛𝑛 ≥ 2, 𝑇𝑇 > 0, (20) 

 whereby the coefficient 𝑎𝑎𝑘𝑘 is defined as:  

 𝑎𝑎𝑘𝑘: = (−1)𝑘𝑘+𝑛𝑛/2  

(𝑛𝑛/2)! ∑𝑘𝑘∧𝑛𝑛/2  
𝑗𝑗=⌊𝑘𝑘+1

2 ⌋
𝑗𝑗𝑛𝑛/2+1  (𝑛𝑛/2  

𝑗𝑗 ) (2𝑗𝑗
𝑗𝑗 ) (𝑗𝑗

𝑘𝑘 − 𝑗𝑗), 

 

 lim
𝑘𝑘→∞

𝐼𝐼𝑘𝑘(𝑇𝑇) =  lim
𝑘𝑘→∞ ∫∞

0 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦)𝜇𝜇𝑧𝑧
(𝑚𝑚)(𝑦𝑦)𝑑𝑑𝑦𝑦 → 𝜇𝜇𝑧𝑧

(𝑚𝑚)(𝑇𝑇), 𝑇𝑇 > 0. (22) 

 The delta function, Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦),  

 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦): = (ln(2)
𝑇𝑇 ) (2𝑘𝑘)!

𝑘𝑘!(𝑘𝑘−1)! (1 − 𝑒𝑒−ln(2)
𝑇𝑇 𝑦𝑦)

𝑘𝑘
𝑒𝑒−ln(2)

𝑇𝑇 𝑘𝑘𝑦𝑦, (23) 

 forms sequences of approximation as follows:  

 𝐼𝐼𝑘𝑘(𝑇𝑇) = ln(2)
𝑇𝑇

(2𝑘𝑘)!
𝑘𝑘!(𝑘𝑘−1)! ∑𝑘𝑘

𝑖𝑖=0 (𝑘𝑘
𝑖𝑖 ) (−1)𝑖𝑖𝑀𝑀 ((𝑘𝑘 + 𝑖𝑖) ln(2)

𝑇𝑇 ) , 𝑘𝑘 ≥ 1, 𝑇𝑇 > 0, (24) 

 

 lim
𝑘𝑘→∞

𝐼𝐼𝑘𝑘(𝑇𝑇) =  lim
𝑘𝑘→∞ ∫∞

0 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦)𝜇𝜇𝑧𝑧
(𝑚𝑚)(𝑦𝑦)𝑑𝑑𝑦𝑦 → 𝜇𝜇𝑧𝑧

(𝑚𝑚)(𝑇𝑇), 𝑇𝑇 > 0. (22) 

 The delta function, Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦),  

 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦): = (ln(2)
𝑇𝑇 ) (2𝑘𝑘)!

𝑘𝑘!(𝑘𝑘−1)! (1 − 𝑒𝑒−ln(2)
𝑇𝑇 𝑦𝑦)

𝑘𝑘
𝑒𝑒−ln(2)

𝑇𝑇 𝑘𝑘𝑦𝑦, (23) 

 forms sequences of approximation as follows:  

 𝐼𝐼𝑘𝑘(𝑇𝑇) = ln(2)
𝑇𝑇

(2𝑘𝑘)!
𝑘𝑘!(𝑘𝑘−1)! ∑𝑘𝑘

𝑖𝑖=0 (𝑘𝑘
𝑖𝑖 ) (−1)𝑖𝑖𝑀𝑀 ((𝑘𝑘 + 𝑖𝑖) ln(2)

𝑇𝑇 ) , 𝑘𝑘 ≥ 1, 𝑇𝑇 > 0, (24) 

 

 lim
𝑘𝑘→∞

𝐼𝐼𝑘𝑘(𝑇𝑇) =  lim
𝑘𝑘→∞ ∫∞

0 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦)𝜇𝜇𝑧𝑧
(𝑚𝑚)(𝑦𝑦)𝑑𝑑𝑦𝑦 → 𝜇𝜇𝑧𝑧

(𝑚𝑚)(𝑇𝑇), 𝑇𝑇 > 0. (22) 

 The delta function, Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦),  

 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦): = (ln(2)
𝑇𝑇 ) (2𝑘𝑘)!

𝑘𝑘!(𝑘𝑘−1)! (1 − 𝑒𝑒−ln(2)
𝑇𝑇 𝑦𝑦)

𝑘𝑘
𝑒𝑒−ln(2)

𝑇𝑇 𝑘𝑘𝑦𝑦, (23) 

 forms sequences of approximation as follows:  

 𝐼𝐼𝑘𝑘(𝑇𝑇) = ln(2)
𝑇𝑇

(2𝑘𝑘)!
𝑘𝑘!(𝑘𝑘−1)! ∑𝑘𝑘

𝑖𝑖=0 (𝑘𝑘
𝑖𝑖 ) (−1)𝑖𝑖𝑀𝑀 ((𝑘𝑘 + 𝑖𝑖) ln(2)

𝑇𝑇 ) , 𝑘𝑘 ≥ 1, 𝑇𝑇 > 0, (24) 

 

 𝐼𝐼𝑘𝑘(𝑇𝑇) = ∫∞0 Δ𝑘𝑘(𝑇𝑇, 𝑦𝑦)𝜇𝜇𝑧𝑧(𝑚𝑚)(𝑦𝑦)𝑑𝑑𝑦𝑦,  
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TABLE 1. Moments of the aggregate discounted claims under the FGM copula claim with claims size X ~ 
Exp (α = 10) and inter-claim arrival time W ~ Weibull (λ = 1, β = 1)     

θFGM μz
(1) (5) μz

(2) (5)

-0.999 0.477657 0.334509

-0.995 0.477559 0.334318

-0.99 0.477436 0.334078

-0.95 0.476456 0.332163

-0.9 0.475231 0.329774

-0.5 0.465427 0.310877

0 0.453173 0.287786

0.5 0.440919 0.265283

0.9 0.431115 0.247706

0.95 0.429890 0.245535

0.99 0.428910 0.243803

0.995 0.428787 0.243586

0.999 0.428689 0.243413

MOMENTS AND PREMIUM COMPUTATION UNDER 
VARIOUS WEIBULL INTER-CLAIM TIME SHAPE 

PARAMETER (λ)

We examine the effect of dispersion of the counting 
process on the moments of the aggregate claims and 
its variance. To do so, we first note that the Weibull 
counting process exhibits overdispersion when λ ∈ (0,1), 
underdispersion when λ ∈ (1,∞), and equidispersion 
when  λ = 1 (McShane et al. 2008). We first use (1) and 
(2) to compute the mean and variance of the Weibull 
count models (WeibullC (λ, β)). For each pair of equi- and 
under-/overdispersed count model, the parameters λ and 
β are chosen in such a way that both pairs of the counting 
processes have an equal mean but different variance. We 
then evaluate the moments of the risk portfolio Z and 
present the results in Tables 2 and 3.

Table 2 shows that although both counting processes 
have an equal mean of 0.506, the variance under the 
overdispersed scenario (WeibullC (λ = 0.5, β = 5) is higher 
than the variance under the equidispersed counterpart 
(WeibullC (λ = 0.5, β = 9.874). Figure 1 shows that the 
probability of two or more claims occurring when the 
counting process is overdispersed is higher than the 
probability under the equidispersed scenario. Therefore, 
there is a higher chance of more claims coming in the fixed 
time interval when the counting process is overdispersed. 
This is reflected in the value of moments and variance 
of the risk portfolio, Z which are higher under the 
overdispersed scenario than the equidispersed counterpart. 
In addition, the difference between the values returned by 
the mean and variance as θ changes from -0.999 to 0.999 
(spread), are also wider under the overdispersed case.
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TABLE 2. Moments, variance and premium computation of the aggregate discounted claims under the FGM copula with claims size 
X ~ Exp (0.1) for overdispersed and equidispersed Weibull count models when T = 5 

 Overdispersed Equidispersed

WeibullC (λ = 0.5, β = 5) WeibullC (λ = 1, β = 9.874)

MeanC= 0.506, VarianceC =0.638 MeanC = 0.506, VarianceC = 0.506

θ μz
(1) (5) μz

(2) (5) Variance Premium μz
(1) (5) μz

(2) (5) Variance Premium

-0.999 14.733 627.091 410.021 16.758 6.055 163.521 126.860 7.181

-0.995 14.723 626.284 409.532 16.746 6.049 163.273 126.684 7.174

-0.990 14.710 625.286 408.899 16.732 6.042 162.964 126.463 7.166

-0.950 14.607 617.288 403.923 16.617 5.983 160.496 124.701 7.100

-0.900 14.478 607.344 397.722 16.473 5.910 157.424 122.501 7.016

-0.500 13.447 529.915 349.088 15.316 5.323 133.354 105.022 6.348

0.000 12.159 438.466 290.627 13.864 4.589 104.532 83.469 5.503

0.500 10.871 352.939 234.772 12.403 3.856 77.115 62.247 4.645

0.900 9.840 288.783 191.965 11.225 3.269 56.195 45.507 3.944

0.950 9.711 281.031 186.725 11.078 3.196 53.643 43.429 3.855

0.990 9.608 274.872 182.557 10.959 3.137 51.611 41.769 3.784

0.995 9.596 274.106 182.033 10.945 3.130 51.358 41.562 3.775

0.999 9.585 273.489 181.625 10.932 3.124 51.155 41.396 3.767

FIGURE 1. Histogram of overdispersed Weibull count model, 
WeibullC (λ = 0.5, β = 5), and equidispersed Weibull count 

model, WeibullC (λ = 1, β = 9.874) when T = 5
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Similarly, Table 3 shows both underdispersed and 
equidispersed Weibull counting processes have equal mean 
value of 4.243, with the variance of the underdispersed 
Weibull count model, WeibullC = (λ = 2, β = 1.5), being 
lower than its mean. When the counting process is 
underdispersed, the moments of the risk portfolio Z will 
be smaller than those under the equidispersion case. Figure 
2 shows that the claim frequencies are less concentrated 
around the mean value of 4.243 under the equidispersed 
scenario. The wider spread of claim frequency implies a 
higher chance that six or more claims occurring under the 
equidispersed process as opposed to the underdispersed 
process within the fixed time interval of T = 5. This is 
reflected in Table 3 by higher average value, second 
moment and variance of the aggregate discounted claims 
under the equidispersed case than the underdispersed 
counterpart. The spread in value for both mean and 
variance under the equidispersed case is higher as θ 
changes from -0.999 to 0.999. We can see from Tables 2 

and 3 that the numerical inversion of Laplace transform 
with Gaver-Stehfest algorithm allow the computation of 
first and second moments for θFGM = + 0.999, even though 
the count model is not equidispersed.

With the computation of first and second moments, 
we can compute the loaded premium related to the risk 
profile of the insurance risk portfolio represented by Z(t), 
where the dependence structure is described by the FGM 
copula. The premium computation, Π according to the 
standard deviation premium principle is illustrated as 
following: 
  

(25)

Tables 2 and 3 exhibit the results of the loaded 
premium for both overdispersed and equidispersed scenario 
with κ = 0.1. It can be shown that the overdispersed case 
results in a higher premium than the equidispersed case, 
while the underdispersed case produces a lower premium 
to be paid by the insured than the equidispersed case.

Π(𝑇𝑇) = E[𝑍𝑍(𝑇𝑇)] + 𝜅𝜅√Var[𝑍𝑍(𝑇𝑇)], 

TABLE 3. Moments, variance and premium computation of the aggregate discounted claims under the FGM copula with claims 
size  X ~ Exp (0.1) for underdispersed and equidispersed Weibull count models when T = 5

Underdispersed Equidispersed

WeibullC (λ = 2, β = 1.5) WeibullC (λ = 1, β = 1.178)

MeanC = 4.243, VarianceC = 1.375 MeanC = 4.243, VarianceC = 4.243

μz
(1) (5) μz

(1) (5) Variance Premium μz
(1) (5) μz

(1) (5) Variance Premium

-0.999  31.931 1488.414 468.818  34.096  40.898  2579.938  907.318  43.910 

-0.995  31.925 1487.636 468.407  34.090  40.888  2578.285  906.463  43.899 

-0.990  31.918 1486.665 467.893  34.081  40.876  2576.218  905.395  43.885 

-0.950  31.861 1478.903 463.784  34.015  40.778  2559.705  896.858  43.773 

-0.900  31.789 1469.219 458.657  33.931  40.656  2539.116  886.212  43.633 

-0.500  31.217 1392.458 417.984  33.261  39.679  2376.504  802.070  42.511 

0.000  30.501 1298.292 368.006  32.419  38.458  2178.478  699.450  41.103 

0.500  29.785 1206.111 318.987  31.571  37.237  1986.275  599.670  39.686 

0.900  29.212 1133.795 280.463  30.887  36.260  1836.705  521.892  38.545 

0.950  29.140 1124.845 275.691  30.801  36.138  1818.271  512.297  38.402 

0.990  29.083  117.699 271.880  30.732  36.041  1803.565  504.642  38.287 

0.995  29.076  116.806  71.404  30.723  36.028  1801.730  503.686  38.273 

0.999  29.070 1116.093 271.023  30.716  36.019  1800.262  502.922  38.261 
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FIRST MOMENT UNDER VARIOUS WEIBULL INTER-CLAIM 
TIME SCALE PARAMETER AND CLAIMS SIZE PARAMETER

We now perform sensitivity analysis on the first moment 
of the aggregate discounted claim amount under the 
FGM copula assuming an exponential claims size X by 
varying the rate parameter of the claims size, α, and the 
scale parameter of the inter-claim time, β holding other 
parameters constant and λ = 2. (Table 4 & Figure 3). Table 4 
shows that as β increases from 0.005 to 2, the rate of claim 
occurrence decreases and the marginal mean of the inter-

claim time increases within a fixed time interval. This 
implies that insurers will have to wait longer until the next 
claim occurs, which implies less claim occurrence within 
a fixed time interval (T = 5 in this case) as the distribution 
is ’stretched’. Therefore, when other parameters are 
fixed, the average discounted claim amount decreases as 
β increases. In addition, when α increases from 0.005 to 
1.5, the average claims size will decrease, and hence the 
first moment of the aggregate discounted claims will also 
decrease.

FIGURE 2. Histogram of underdispersed Weibull count 
model, WeibullC (λ = 2, β = 1.5), and equidispersed Weibull 

count model, WeibullC (λ = 1, β = 1.178) when T = 5

TABLE 4. Values of μz
(1) (5) for the risk portfolio with exponential claim size (α) and Weibull (λ = 2, β) inter-claim time when         

θ = -0.9

β

α 0.005 0.01 0.05 0.1 1 2

0.005 204,494.463 102,223.815 20,407.740 10,180.726 976.587 465.370

0.01 102,247.232 51,111.908 10,203.870 5,090.363 488.293 232.685

0.05 20,449.446 10,222.382 2,040.774 1,018.073 97.659 46.537

0.1 10,224.723 5,111.191 1,020.387 509.036 48.829 23.268

1 1,022.472 511.119 102.039 50.904 4.883 2.327

1.5 681.648 340.746 68.026 33.936 3.255 1.551
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MOMENTS AND VARIANCE OF THE COMPOUND 
DISTRIBUTION UNDER VARIOUS COPULA AND 

DIFFERENT INTER-CLAIM TIME

In this section, we present the values of the mean and 
variance of the aggregate discounted claim, Z under the 
Weibull inter-waiting time (IWT) assuming the dependency 
is captured by the FGM copula. We then compare the 
values to the mean and variance of the risk portfolio Z 
under the exponential IWT assuming the dependency is 
captured by the FGM, Frank and HRT copula. The results 
are shown in Table 5. Setting λ = 1, the Weibull count 
model under FGM copula reduces the inter-claim time 
distribution to exponential and hence, yields the same 
results as computed using the Poisson count model in Mohd 
Ramli et al. (2018). We change the shape parameter, λ to 
2 to allow for underdispersion effect and obtain a narrower 
spread of the moments and variance as opposed to an 
equidispersed IWT. 

The value of the first moment in Table 5 does not 
vary much under FGM copula when we apply the changes 

FIGURE 3. Sensitivity of μz
(1) (5) for the risk portfolio with exponential 

claim size (α) and Weibull (λ = 2, β) inter-claim time when θ = -0.9

on the inter-claim waiting time from Exponential to 
Weibull distribution as opposed to the changes made 
under different copula. The values of first moment under 
HRT copula shows the broadest spread as it is suitable in 
modeling the upper tail extreme events.

In contrast to the dependence structure in FGM 
copula, the Frank copula shows a positive correlation 
when the dependence parameter,  and inversely correlated 
when when θ∈(1,∞). The maximum value for both mean 
and variance for FGM and Frank copula are obtained 
when the claim size and inter-waiting time exhibit strong 
negative correlation. This is intuitively clear as negative 
dependence structure are represented by short inter-waiting 
time (or frequent claim occurrence) followed by large 
claim amount, as opposed to the positive dependence 
structure. Meanwhile, under HRT copula, as θ → ∞, the 
mean and variance converge to the 453.17 and 82,419.93, 
respectively, which is the value of the mean and variance 
when the variables are independent under FGM (when θ 
= 0) and Frank copula (when θ = 1).

TABLE 5. Values of μz
(1) (5) and Var(5) for various copula with T = 5, α = 0.01, β =1, β* = 1.1821 and δ = 0.04 

FGM Frank HRT

IWTWeibull (λ = 2, β*) IWTWeibull  (λ = 1) IWTexp IWTexp

θ μz
(1) (5) Var(5) μz

(1) (5) Var(5) θ μz
(1) (5) Var(5) μz

(1) (5) Var(5)
-0.999 410.9 59,939.2 477.6 106,351.8 0.005 400.6 35,906.6 10.4 3,704.4
-0.95 410.2 59,314.6 476.4 105,151.7 0.05 418.7 51,061.4 249.1 67,472.0
-0.9 409.5 58,678.2 475.2 103,929.5 0.5 444.6 74,366.7 374.0 19,574.0
-0.5 403.8 53,622.7 465.4 94,253.7 1 453.1 82,420.0 392.1 33,255.1
0 396.6 47,393.0 453.1 82,420.2 10 478.4 107,416.3 443.7 74,181.6
0.5 389.4 41,262.9 440.9 70,874.4 500 501.3 131,596.3 452.9 82,248.9
0.9 383.6 36,430.6 431.1 61,845.8 5000 506.8 137,716.4 453.1 82,402.8
0.95 382.9 35,831.0 429.8 60,729.5 100k 510.5 141,886.9 453.1 82,419.1
0.999 382.2 35,244.4 428.6 59,638.7 ∞ 516.0 147,815.5 453.1 82,419.9
Spread 28.7 24,694.8 48.9 46,713.0 115.4 111,908.9 442.7 78,715.5
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CONCLUSION

In this study, we attempt to accommodate count data with 
unequal mean and variance, which is a common scenario in 
applied data analysis. The proposed model generalizes the 
Poisson risk model and is able to deal with the cases when 
the inter-claim arrival time data are underdispersed or 
overdispersed. Additionally, the use of the Gaver-Stehfest 
algorithm to solve the numerical Laplace inversion of 
its first two moments allows a more robust computation, 
while the dependency between the claim size and the inter-
claim arrival time is being captured by an FGM copula. The 
comparison of the recursive moments of the risk process 
when the Weibull count process is underdispersed, 
equidispersed and overdispersed implies that when claims 
arrive at times that vary more than is expected, insured 
lives are expected to pay higher premium, ceteris paribus. 
The sensitivity analysis conducted also showed that the 
behaviour of the average aggregate discounted claims 
is inversely related to the behaviour of the Weibull scale 
parameter and the claim size rate parameter examined. 
Upon comparison of the Weibull risk process and an 
equivalent Poisson risk process, the study also shows that 
the FGM copula produce the lowest and the narrowest 
range of moment values, followed by the HRT and Frank 
copula which may be more appropriate in modeling the 
upper tail extreme events.
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