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ABSTRACT

Stock market is found in many financial studies. Nonetheless, many of these literatures do not consider on the highly 
correlated stock market price. In particular, the studies on variable selection, grouping effects and robust dedicated to 
high dimension stock market price can be considered as scarce. Penalized linear regression using elastic net is one of 
the recognized methods to perform variable selection. However, the lack of consistency in variable selection may reduce 
the model performance. Hence, adaptive elastic net with distance correlation (AEDC) is proposed in this study and 
compared against elastic net, adaptive elastic net with elastic weight and adaptive elastic net with ridge weight. AEDC 
had lower mean squared error when the alpha increases from 0.05 to 0.95. Thus, the proposed method has successfully 
contributed to encouraging grouping effects between the highly correlated variables and also has an improved model 
performance in the presence of robustness.
Keywords: Adaptive elastic net; high dimensional data; penalized linear regression; robust; stock market price 

ABSTRAK

Pasaran saham sering ditemui dalam banyak kajian kewangan. Namun begitu, kebanyakan literatur tidak mengambil 
kira mengenai harga pasaran saham yang berkorelasi tinggi. Secara terperincinya, kajian mengenai pemilihan pemboleh 
ubah, penggalakan kesan pengelompokan dan keteguhan yang didedikasikan terhadap harga pasaran saham 
berdimensi tinggi adalah kurang. Kaedah regresi linear terhukum merupakan salah satu kaedah yang diperakui untuk 
melakukan pemilihan pemboleh ubah. Namun demikian, pemilihan pemboleh ubah yang kurang tekal boleh menjejaskan 
keberhasilan model. Maka, jaring elastik mudah suai dengan korelasi jarak (EJMSKJ) diusulkan dalam kajian ini dan 
dibandingkan dengan jaring elastik, jaring elastik mudah suai dengan pemberat elastik dan jaring elastik mudah suai 
dengan pemberat batas. EJMSKJ mempunyai min ralat kuasa dua yang rendah apabila nilai alfa meningkat daripada 
0.05 ke 0.95. Maka, kaedah yang diusulkan telah menyumbang kepada penggalakan kesan pengelompokan antara 
pemboleh ubah berkorelasi tinggi dan juga keberhasilan model yang lebih baik apabila keteguhan wujud.
Kata kunci: Data dimensi tinggi; harga pasaran saham; jaring elastik mudah suai; regresi linear terhukum; teguh

INTRODUCTION

In many high dimension studies, the explanatory variables 
are known to be highly correlated, of which this property 
is also applicable to the high dimension stock market 
price. When the number of stock market price is greater 
than the number of observations, applying of statistical 
approach may be a challenging task. This is due to the 

presence of overfitting and multicollinearity, which is a 
well-known problem in many high dimensional studies 
(Arashi & Roozbeh 2019; Dong et al. 2018). 

The idea of adapting ordinary least squares (OLS) 
as initial weights may be compelling. However, it is not 
applicable in high dimension data. Therefore, penalized 
method as initial weight is more suitable in order to 
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encourage grouping effects between the stock market 
price variables. Ridge regression is among the widely used 
penalized method to overcome the multicollinearity 
problem that is usually presence in the highly correlated 
data between the variables (Arashi & Roozbeh 2019; 
Dong et al. 2018). Hoerl and Kennard (1970) whom 
introduced this method showed that the regression 
coefficients can never equal to zero although it converges 
towards zero. This result is obtained by adding an L2-
penalty in the sum of squares residual, of which also 
causes bias in the estimated parameters as well as increase 
the regression coefficients variances. Although ridge can 
be applied to highly correlated stock market price data, 
however, it might be restricted in performing variable 
selection. Hence, the interpretation of high dimensional 
model is not easily obtained (Tibshirani 1996).

To overcome the ridge limitation, another known 
penalized method which is least absolute shrinkage and 
selection operator (LASSO) was introduced by Tibshirani 
(1996). LASSO utilised L1-penalty instead of L2-
penalty, in which the variable selection can be performed 
by assigning zero values to some stock market price 
coefficients. Indeed, LASSO has garnered the attention of 
many researches particularly in high dimensional studies. 
On the contrary, it also has some flaws, for instance, the 
selection of stock market price is usually less than the 
number of observations. In addition, this method attempts 
to choose only one stock market price among the highly 
correlated stock market price. Besides that, the method 
also has no oracle properties where the probability of 
choosing the right set of stock market price that have 
nonzero coefficients converged to one. Similarly, if the 
zero coefficients were known antecedent, it will have 
a similar means and covariances as the asymptotically 
normal nonzero coefficients estimators. Notwithstanding, 
LASSO has become the baseline of many penalized 
methods and has elucidate several extensions in diverse 
practical applications.

Alternatively, Zou and Hastie (2005) has then 
proposed elastic net method to overcome limitation 
issue in LASSO by combining both L1-penalty and L2-
penalty. It is regarded that elastic net often performs 
much better than LASSO in selection of correlated 
explanatory variables and prediction accuracy (Zhou 
2013). Nevertheless, elastic net is also lack of oracle 
properties, particularly in the consistency of variable 
selection. Hence, the adaptive elastic net was introduced 

to overcome these drawbacks. The adaptive elastic net 
developed by Zou and Zhang (2009) proposed the use of 
elastic net estimates as initial weights. However, when 
applying adaptive elastic net with elastic net as initial 
weight, it may cause lower precision and some significant 
stock market price variables may be incorrectly assigned 
with smaller weight values in the initial estimator. 
As a result, the important variables would be falsely 
removed from the model by the penalized method, which 
subsequently lower the accuracy of the prediction in the 
selection of informative stock market price variables. 
Furthermore, if the pairwise correlation between the 
stock market price is low, the adaptive elastic net may 
underperform. Therefore, to encourage grouping effect and 
reduce bias in variable selection, it is pertinent to propose 
an alternative initial weight which is more suitable for 
highly correlated stock market price data.

Most of the methods available in the literature 
explicitly relies on the assumption of normality. 
Nonetheless, much of the real applications presents 
departure from normality. This is often the case of 
high dimensional data as the existence of heavy tailed 
distribution or presence of outliers in the response 
variable. Therefore, this may affect the consistency of 
conducting variable selection, encouraging grouping 
effect and robustness. Due to the presence of outliers 
in the response variable, it is known that conventional 
method such as OLS might not fully provide the desired 
estimation (Alhamzawi 2015). Henceforth, robust 
penalized regression methods have attracted interest of 
some researchers due to its capability to perform robust 
variable selection and robust estimation. Nonetheless, 
majority of the previous studies do not consider the high 
correlation between the stock market price, as they only 
focused on solving the outlier problems. Indeed, elastic 
net is better in encouraging grouping effect as compared 
to LASSO. However, the limitation of elastic net should 
also be considered. This can be observed in their poor 
model performance and lower prediction error, which 
is contributed further by the inconsistency of variable 
selection. Furthermore, the lack of oracle properties in 
elastic net also cannot be neglected. To deal with this 
shortcomings, adaptive elastic net was proposed (Zou 
& Zhang 2009). Thus, to overcome the shortcomings 
mentioned in the existing penalized methods, this study 
proposed a distance correlation weight as an alternative 
weight in adaptive elastic net (AEDC). 
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As of today, many stock market price researches are 
concentrated only on the financial aspects of the stock 
market price. The four main financial observations 
are the trading volume of the stock market prices, the 
behavior of the stock market (Jafry et al. 2020), the linkage 
between exchange rates and the stock market (Gharleghi 
et al. 2014), and the volatility of the stock market prices 
after a phenomenon such as a recession or news of a 
company’s takeover. However, many of these studies 
do not discussed the stock market price when they are 
highly correlated. Therefore, this study will apply the 
proposed method on the high dimensional stock market 
price to further improve the grouping effects between the 
stock market price and enhanced the oracle property of the 
adaptive elastic net by introducing initial weight.

MATERIALS AND METHODS

PENALIZED LINEAR REGRESSION 

The relationship between the explanatory variables 
and response variable can be describe through linear 
regression model. The linear regression model between 
the response vector, y ∈ ℝ𝑛𝑛×1  and explanatory variable, 𝑿𝑿 ∈ ℝ𝑛𝑛×𝑝𝑝  and explanatory variable, 
X ∈ ℝ𝑛𝑛×1  and explanatory variable, 𝑿𝑿 ∈ ℝ𝑛𝑛×𝑝𝑝 (Kurnaz et al. 2018)  can be obtained as 

(1)

where y = (y1, …, yn)
T, X = (x0, x1 …, xp)

T, β = (β0, β1…, 
βp)

T ∈ ℝ𝑝𝑝+1  are the unknown regression coefficients and  
ε = (ε1, …, εn)

T ∈ ℝ𝑛𝑛×1  and explanatory variable, 𝑿𝑿 ∈ ℝ𝑛𝑛×𝑝𝑝  is the error vector. The first column 
of the X is the ones considered for the β0, of which all of 
the components in (1) are independently and identically 
distributed (iid) with mean and variance of (0,σε2 ). 

Without loss of generality, the assumptions 
follow that the explanatory variables are standardized, 
∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1 = 0 and (𝑛𝑛−1) ∑ = 1𝑛𝑛

𝑖𝑖=1  where ∀ 𝑗𝑗 ∈ {1,2, … , 𝑝𝑝}  and ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 0 and (𝑛𝑛−1) ∑ = 1𝑛𝑛

𝑖𝑖=1  where ∀ 𝑗𝑗 ∈ {1,2, … , 𝑝𝑝}  where ∑ 𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1 = 0 and (𝑛𝑛−1) ∑ = 1𝑛𝑛

𝑖𝑖=1  where ∀ 𝑗𝑗 ∈ {1,2, … , 𝑝𝑝}  
The response variable is also assumed centred as 

as ∑ 𝑦𝑦𝑖𝑖 = 0𝑛𝑛
𝑖𝑖=1  without β0 consideration. Penalized linear 

regression (PLR) model is defined as the following:

(2)

where λ∈[0,∞] which is the tuning parameter and P (∙) is 
the penalty term that represents the coefficients function. 

The penalty term has the capability to conduct variable 
selection which is through shrinking the parameters to 
zero controlled by the λ values. When the λ = 0, this is 
the OLS estimation. Conversely, the coefficient estimates 
which are influenced by the shrinkage amount increase 
when the λ has large values. The coefficient estimates can 
be obtained by the minimization of (2) as:

(3)

Likewise, Equations (1) and (3) can be written as a 
constrained minimization problem

(4)

with subject to

(5)

where the tuning parameter is denoted by H ≥ 0.
It is worthy of note the advantages of penalized 

methods especially in their selection stability and 
computing efficiency as compared to the conventional 
variable selection methods (Hastie et al. 2015; Rish & 
Grabarnik 2014). Therefore, various penalty terms have 
been developed and their properties are methodically 
discussed. 

ELASTIC NET

Elastic net was developed by combining the L1-norm 
penalty and the L2-norm penalty which are from ridge 
and LASSO, respectively (Zou & Hastie 2005). The ridge 
penalty is to overcome the highly correlated problem, 
whereas the LASSO penalty is for the variable selection 
problem. Elastic net estimator with penalized linear 
regression is defined as follows,

(6)

where the two tuning parameters are λ1 ≥ 0 and λ2 ≥ 0. 
The sparsity in the regression coefficients is encourage 
by the first tuning parameter of λ1 whereas the grouping 
effect is encouraged from the second tuning parameter 

𝒚𝒚 = 𝑿𝑿𝑿𝑿 + 𝛆𝛆  

 

.

�̂�𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = argmin
𝛽𝛽 

PLR. (3) 

  

�̂�𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = argmin
𝛽𝛽 

(y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) (4) 

  

∑ 𝑃𝑃𝜆𝜆(|𝛽𝛽𝑗𝑗|) ≤ 𝐻𝐻
𝑝𝑝

𝑗𝑗=1
 

(5) 
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(y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) (4) 

  

∑ 𝑃𝑃𝜆𝜆(|𝛽𝛽𝑗𝑗|) ≤ 𝐻𝐻
𝑝𝑝

𝑗𝑗=1
 

(5) 

 

�̂�𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = argmin
𝛽𝛽 

PLR. (3) 

  

�̂�𝛽𝑃𝑃𝑃𝑃𝑃𝑃 = argmin
𝛽𝛽 

(y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) (4) 

  

∑ 𝑃𝑃𝜆𝜆(|𝛽𝛽𝑗𝑗|) ≤ 𝐻𝐻
𝑝𝑝

𝑗𝑗=1
 

(5) 

 

PLRElastic(𝜷𝜷; 𝜆𝜆1, 𝜆𝜆2) = (y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) + 𝜆𝜆1∑|𝛽𝛽𝑗𝑗|
𝑝𝑝

𝑗𝑗=1
+ 𝜆𝜆2∑𝛽𝛽𝑗𝑗2

𝑝𝑝

𝑗𝑗=1
 (6) 

 
PLR = (y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) + 𝜆𝜆∑𝑃𝑃(|𝛽𝛽𝑗𝑗|)

𝑝𝑝

𝑗𝑗=1
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λ2 in (6). Meanwhile, increasing λ1 shrinkage value will 
subsequently decrease the number of stock market price 
selected. On the other hand, there is another tuning 
parameter which is α, a mixing proportion of the LASSO 
(L1) and ridge (L2) penalties in the value of (0, 1). Under 
the assumption of α = 𝛼𝛼 = 𝜆𝜆2

𝜆𝜆1+𝜆𝜆2
,  a linear combination of both 

penalties can be obtained by rewriting (6) as:

(7)

Equation (7) is a ridge regression if α = 1. On the 
contrary, it becomes the LASSO regression if α = 1. in 
(7). Noteworthy, when  is between 0 and 1, (7) can shrink 
the coefficients as ridge regression and select variables 
as LASSO. The penalized linear regression using elastic 
net regression coefficient estimates can be obtained as:

(8)

ADAPTIVE ELASTIC NET WITH DISTANCE CORRELATION

Zou and Zhang (2009) proposed an adaptive version 
of the elastic net. This is through merging the ridge 
penalty with the adaptive weight of L1-norm penalty. 
The adaptive elastic net is capable of encouraging the 
grouping effects between the variables. Meanwhile, 
distance correlation (DC) follows that two random 
vectors is equivalent to zero if and only if they are 
both independent to each other. In addition to this, the 
two univariate random normal variables DC function 
is strictly increasing of the absolute Pearson correlation 
value of these two random normal variables (Székely et 
al. 2007). The dependence between two random vectors 
of DC can be measured by a non-negative weight function 
of  w(t, s) where t and s are the dimensions of  p ∈ ℝ𝑚𝑚 and 𝑞𝑞 ∈ ℝ𝑛𝑛  
and q ∈ ℝ𝑚𝑚 and 𝑞𝑞 ∈ ℝ𝑛𝑛  as:

with 𝑐𝑐𝑚𝑚 = 𝜋𝜋1+𝑚𝑚 2⁄

Γ((1+m)/2),  a non-negative constant associated 
to the dimensionality of cm and the Gamma complete 
function is denoted by Γ(∙) (Shen et al. 2020; Székely et al. 
2007). The Euclidean norm of  is defined as as ‖𝑎𝑎‖ = 𝑎𝑎𝑇𝑇𝑎𝑎 if 𝑎𝑎 is real vector and ‖𝜓𝜓‖2 = 𝜓𝜓�̅�𝜓 for a complex-valued 𝜓𝜓 function, with �̅�𝜓 is 

the conjugate of 𝜓𝜓. 

 
if  is real vector and as ‖𝑎𝑎‖ = 𝑎𝑎𝑇𝑇𝑎𝑎 if 𝑎𝑎 is real vector and ‖𝜓𝜓‖2 = 𝜓𝜓�̅�𝜓 for a complex-valued 𝜓𝜓 function, with �̅�𝜓 is 

the conjugate of 𝜓𝜓. 

 for a complex-valued  
as ‖𝑎𝑎‖ = 𝑎𝑎𝑇𝑇𝑎𝑎 if 𝑎𝑎 is real vector and ‖𝜓𝜓‖2 = 𝜓𝜓�̅�𝜓 for a complex-valued 𝜓𝜓 function, with �̅�𝜓 is 

the conjugate of 𝜓𝜓. 

 function, with as ‖𝑎𝑎‖ = 𝑎𝑎𝑇𝑇𝑎𝑎 if 𝑎𝑎 is real vector and ‖𝜓𝜓‖2 = 𝜓𝜓�̅�𝜓 for a complex-valued 𝜓𝜓 function, with �̅�𝜓 is 

the conjugate of 𝜓𝜓. 

 is the conjugate of as ‖𝑎𝑎‖ = 𝑎𝑎𝑇𝑇𝑎𝑎 if 𝑎𝑎 is real vector and ‖𝜓𝜓‖2 = 𝜓𝜓�̅�𝜓 for a complex-valued 𝜓𝜓 function, with �̅�𝜓 is 

the conjugate of 𝜓𝜓. 

. Thus, AEDC is 

obtained as follows:

where the estimation of adaptive elastic net is denoted by
 

(9)

and wj in (9) is the variables screen using DC approach 
which is

(10)

RESULTS AND DISCUSSION

SIMULATION STUDY

The simulation matrix is generated according to the 
combination of linear, nonlinearity and seasonality 
pattern. Apart from resembling the stock market price, it 
is also pertinent to include the error that has a heavy-tailed 
distribution or outliers in the response variable. Thus, 
the response variable is generated to have a seasonality 
pattern. The following shows the generated matrix 
simulation. In the linear model, the matrix simulation is 
built up as the following. A random uniform distribution 
matrix of n = 30 and p = 200 in the interval of 0 to 1 is 
generated through (11)

(11)

where ur and Yt with 1 ≤ r ≤ p and 1 ≤ t ≤ n.
Meanwhile, in the nonlinear matrix design, it was also 
generated randomly using uniform distribution of 
U[0,1] where n = 30 and p = 400 as in shown in (12).

(12)

The seasonality pattern was generated following the 
uniform distribution of [0,1] whereby ui,t  is 1 ≤ t ≤ T 
and  1 ≤ i ≤ m and  ft,-2 ≤ t ≤ T  respectively, with n = 30 
and p = 401 as in (13). In addition, this also includes the 
response variable matrix value.

(13)

PLRElastic(𝜷𝜷; 𝛼𝛼) = (y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) + (1 − 𝛼𝛼)∑|𝛽𝛽𝑗𝑗|
𝑝𝑝

𝑗𝑗=1
+ 𝛼𝛼∑𝛽𝛽𝑗𝑗2.

𝑝𝑝

𝑗𝑗=1
 (7) 

 

�̂�𝛽PLRElastic = argmin
𝛽𝛽

PLRElastic(𝜷𝜷; 𝛼𝛼).  (8) 

 

𝑤𝑤(𝑡𝑡, 𝑠𝑠) = (𝑐𝑐𝑚𝑚𝑐𝑐𝑛𝑛|𝑡𝑡|1+𝑚𝑚 |𝑠𝑠|1+𝑛𝑛)−1, 

 

PLRAEDC(𝜷𝜷; 𝜆𝜆1, 𝜆𝜆2) = (y − 𝜷𝜷𝜷𝜷)𝑇𝑇(y − 𝜷𝜷𝜷𝜷) + 𝜆𝜆1∑𝑤𝑤𝑗𝑗|β𝑗𝑗|
𝑝𝑝

𝑗𝑗=1
+ 𝜆𝜆2∑𝛽𝛽𝑗𝑗2

𝑝𝑝

𝑗𝑗=1
, 

 

𝑤𝑤𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)
√(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)∙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦) , 𝑗𝑗 = 1,… , 𝑝𝑝. 𝑤𝑤𝑗𝑗 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥, 𝑦𝑦) = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)

√(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)∙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑦𝑦) , 𝑗𝑗 = 1,… , 𝑝𝑝. 

𝑌𝑌𝑡𝑡 = 0.4𝑌𝑌𝑡𝑡−1 − 0.3𝑌𝑌𝑡𝑡−2 + 𝑢𝑢𝑟𝑟 (11) 

 

𝑌𝑌𝑟𝑟 = 𝑢𝑢𝑟𝑟 − 0.4𝑢𝑢𝑟𝑟−1 + 0.3𝑢𝑢𝑟𝑟−2 + 0.5𝑢𝑢𝑟𝑟𝑢𝑢𝑟𝑟−2 (12) 

 

𝑧𝑧𝑖𝑖,𝑡𝑡 = 10 sin (2𝜋𝜋 ( 𝑖𝑖𝑚𝑚))𝑓𝑓𝑡𝑡 + 10 cos (2𝜋𝜋 ( 𝑖𝑖𝑚𝑚))𝑓𝑓𝑡𝑡−1 + 𝑢𝑢𝑖𝑖,𝑡𝑡 (13) 

 

�̃̂�𝛽AEDC = argmin
𝛽𝛽

{(y − 𝜷𝜷�̃�𝑋)𝑇𝑇(y − 𝜷𝜷�̃�𝑋) + 𝜆𝜆1 ∑ 𝑤𝑤𝑗𝑗|β𝑗𝑗|𝑝𝑝
𝑗𝑗=1 + 𝜆𝜆2 ∑ 𝛽𝛽𝑗𝑗2𝑝𝑝

𝑗𝑗=1 } (9) 
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The computing steps for the simulation is presented in Table 1. 

TABLE 1.  Algorithm of initial weight in the simulation

Algorithm: The implementation of initial weight for simulation

Step 1: Data: Generate the high dimension matrix data which are linear, nonlinear and have seasonality pattern using 

(11), (12) and (13). Set runs = 0.

Initialize: runs ← runs + 1

For each combination, generate the following (x, y) at random U[0,1] of which dimension of n = 30, p = 1001, 
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A 5-fold cross-validation was performed to assist  
λ in selecting the optimal tuning parameters in all the 
first part of all the three adaptive elastic net excluding 
the elastic net. The next step was introduced the initial 
weights in these adaptive elastic net methods namely 
with elastic net weight (AEN), adaptive elastic net with 
ridge weight (AER), and AEDC. On the other hand, there 
was no initial weight introduced in the elastic net (EN) 
method. 

In AEDC, DC between each explanatory variables 
and response variable was calculated to screen the most 
relevant variables. The number of rows of both variables 
must be equivalent and without any missing values. 
After the initial weights were introduced, the 5-fold cross-
validation were run once more to obtain the minimum λ 

value in AEN, AER, and AEDC. Since no additional weights 
were added in the elastic net, thus, the simulation step 
was initiate here. Next, the generalized linear model 
was fitted using linear regression, using the minimum λ 
obtained previously. The subsequent calculation steps are 
executed accordingly.

The simulation was repeated for 1000 times 
to ensure the stability of all methods in this section. 
Additionally, the performance of each method is assessed 
by different alpha (α) values ranging from 0.05 to 0.95. 
AEDC was compared with elastic net, AEN and AER 
based on the mean squared error (MSE) and number of 
selected stock market price. The result are summarized as 
in Tables 2 and 3, where the standard deviation is denoted 
in parentheses.
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TABLE 2.  Simulation result of mean squared error at different α

  α EN AEN AER AEDC

0.05 0.0013 (0.0012) 0.0013 (0.0012) 0.0013 (0.0012) 0.0013 (0.0012)

0.10 0.0035 (0.0031) 0.0034 (0.0030) 0.0034 (0.0030) 0.0033 (0.0031)

0.15 0.0063 (0.0055) 0.0061 (0.0054) 0.0061 (0.0054) 0.0060 (0.0055)

0.20 0.0096 (0.0083) 0.0094 (0.0081) 0.0094 (0.0082) 0.0092 (0.0083)

0.25 0.0133 (0.0114) 0.0131 (0.0111) 0.0130 (0.0113) 0.0128 (0.0113)

0.30 0.0174 (0.0146) 0.0170 (0.0143) 0.0169 (0.0145) 0.0167 (0.0145)

0.35 0.0216 (0.0180) 0.0212 (0.0176) 0.0211 (0.0179) 0.0208 (0.0179)

0.40 0.0260 (0.0214) 0.0256 (0.0210) 0.0255 (0.0213) 0.0250 (0.0212)

0.45 0.0306 (0.0248) 0.0300 (0.0243) 0.0299 (0.0247) 0.0294 (0.0246)

0.50 0.0351 (0.0281) 0.0345 (0.0276) 0.0344 (0.0281) 0.0338 (0.0279)

0.55 0.0396 (0.0314) 0.0390 (0.0308) 0.0388 (0.0313) 0.0382 (0.0311)

0.60 0.0441 (0.0346) 0.0435 (0.0339) 0.0432 (0.0345) 0.0426 (0.0343)

0.65 0.0486 (0.0377) 0.0479 (0.0370) 0.0476 (0.0376) 0.0469 (0.0374)

0.70 0.0529 (0.0406) 0.0522 (0.0399) 0.0519 (0.0406) 0.0512 (0.0404)

0.75 0.0571 (0.0435) 0.0564 (0.0427) 0.0560 (0.0434) 0.0553 (0.0433)

0.80 0.0612 (0.0462) 0.0605 (0.0454) 0.0600 (0.0461) 0.0593 (0.0460)

0.85 0.0652 (0.0487) 0.0644 (0.0478) 0.0639 (0.0486) 0.0632 (0.0485)

0.90 0.0690 (0.0511) 0.0682 (0.0501) 0.0677 (0.0510) 0.0670 (0.0509)

0.95 0.0726 (0.0533) 0.0718 (0.0522) 0.0713 (0.0532) 0.0705 (0.0531)

Based on Table 2, the MSE value was similar among 
the four methods at α = 0.05. It can be clearly observed 
that when the α increases from 0.05 to 0.95, the MSE 
also increases. Nonetheless, the MSE for our proposed 
method were the lowest compared to the other methods 
as α increases up to 0.95 from 0.10. This was followed 
close by AEN and AER. Conversely, the elastic net had the 
highest MSE than of other three methods. Furthermore, 
the increment of the α values causes a wider MSE gap 
when it is compared to our proposed method. 

In contrast, the number of selected variables in Table 
3 decreases as the α increases to 0.95 in all elastic net, 
AEN, AER and AEDC, respectively. It can be observed 
clearly that AER had the highest number of selected 
variables when α = 0.05, 0.10 and α = 0.20, when compared 
to other three methods. Contrariwise, the remaining α 
showed that AEDC successfully outperformed elastic net, 
AEN and AER having the highest number of variables. 
The fact that AEN and elastic net did not outperform the 
other two methods were practically due to the inability of 
addressing the heavy-tailed distribution error or presence 
of outliers in the response variable. 
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TABLE 3.  Simulation result of selected variables at different α

   α EN AEN AER AEDC

0.05 163.76 (21.90) 163.97 (21.90) 164.38 (21.73) 164.26 (22.03)

0.10 99.71 (14.19) 99.68 (14.10) 100.03 (13.83) 100.01 (14.07)

0.15 72.87 (11.15) 72.92 (11.20) 73.21 (10.97) 73.23 (11.06)

0.20 57.78 (9.51) 57.95 (9.60) 57.99 (9.63) 57.94 (9.64)

0.25 47.68 (8.81) 47.85 (8.71) 48.07 (8.87) 48.08 (8.82)

0.30 40.66 (8.68) 40.68 (8.67) 41.02 (8.67) 41.05 (8.67)

0.35 35.24 (8.59) 35.33 (8.60) 35.51 (8.60) 35.79 (8.68)

0.40 30.90 (8.62) 30.96 (8.34) 31.30 (8.69) 31.41 (8.52)

0.45 27.45 (8.69) 27.48 (8.39) 27.76 (8.79) 27.99 (8.67)

0.50 24.56 (8.79) 24.70 (8.63) 24.88 (8.93) 25.04 (8.72)

0.55 22.07 (8.89) 22.19 (8.67) 22.44 (8.95) 22.59 (8.80)

0.60 19.93 (8.95) 20.12 (8.78) 20.31 (8.80) 22.59 (8.80)

0.65 18.11 (9.03) 18.27 (8.90) 18.41 (8.95) 18.69 (8.95)

0.70 16.55 (9.10) 16.66 (8.95) 16.80 (9.04) 17.07 (9.04)

0.75 15.07 (9.06) 15.29 (8.98) 15.41 (9.10) 15.61 (9.10)

0.80 13.88 (9.11) 14.03 (8.98) 14.16 (9.13) 14.38 (9.13)

0.85 12.78 (9.11) 12.83 (8.90) 13.10 (9.08) 13.23 (9.08)

0.90 11.80 (9.07) 11.87 (8.85) 12.17 (9.02) 12.19 (9.02)

0.95 10.98 (9.04) 10.98 (8.78) 11.30 (9.20) 11.33 (8.97)

In addition, from both of the MSE and number of 
selected variables, the simulation results showed that 
the DC weight has significantly improved the performance 
of AEDC. Modelling with AEDC have better result 
performance which was contributed by the lower values 
of MSE. Thus, based on simulation study, AEDC has 
proved the capability to performed variable selection 
efficiently, especially in the presence of a heavy-tailed 
distribution error or outliers in the response variables. 

YEARLY STOCK MARKET PRICE

The stock market price obtained from Yahoo Finance 
consists of 4362 stock market prices over the period of 
30 years from 1987 to 2017. By removing the missing 
observations, the finalized data consists of 901 stock 
market prices. Majority of S&P 500 index values were 
derived from the 901 stock market prices, therefore it was 
chosen as the response variable (Andu et al. 2020). The 
performance results were summarised as in Tables 4 and 5.
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TABLE 4. Result of mean squared error at different  of stock market price data

   α EN AEN AER AEDC

0.05 5.49 5.98 5.22 6.09
0.10 11.95 13.05 10.88 9.89
0.15 19.84 21.89 18.17 16.68
0.20 30.16 32.58 29.48 24.48
0.25 39.87 42.38 36.96 35.38
0.30 53.78 57.96 48.87 45.14
0.35 70.07 77.63 67.60 60.30
0.40 91.49 98.73 85.18 80.14
0.45 114.28 122.86 103.70 96.50
0.50 133.88 145.55 126.12 113.61
0.55 157.87 180.03 154.35 132.51
0.60 191.88 204.74 169.64 162.05
0.65 212.59 229.63 195.69 181.32
0.70 240.79 267.42 222.83 204.29
0.75 267.98 291.11 247.95 229.50
0.80 313.46 337.76 282.94 261.81
0.85 346.86 369.51 322.12 293.23
0.90 375.25 405.57 357.75 325.34
0.95 407.74 448.77 377.37 349.50

TABLE 5.  Number of selected stock market price at different  of stock market price data

   α EN AEN AER AEDC

0.05 194 201 192 146

0.10 165 172 164 165

0.15 121 126 123 124

0.20 104 99 105 104

0.25 94 94 90 90

0.30 83 79 81 84

0.35 71 77 75 75

0.40 69 71 67 69

0.45 64 63 65 64

0.50 56 56 54 59

0.55 55 49 56 56

0.60 42 48 54 49

0.65 40 43 40 39

0.70 37 39 40 40

0.75 36 33 34 39

0.80 30 30 31 33

0.85 25 28 26 25

0.90 24 24 26 25

0.95 22 23 24 24
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Table 4 shows that the value of MSE increase as the α 
increase. AEDC had the highest MSE at α = 0.05 compared 
to the other three penalized methods. Nonetheless, it 
outperformed the rest of the methods in terms of model 
performance as it had the lowest MSE with the increment 
of α. Furthermore, AEDC also showed higher prediction 
power. Meanwhile, AER had better model performance 
than AEN based on the lower MSE. Although elastic net had 
smaller MSE compared to AER at α = 0.05, however, as an 
overall, it did not perform well in both model performance 
and prediction.

On the contrary, Table 5 shows that the number of 
selected variables decreases with the increment of α 
value and it was similar to the simulation result pattern. 
There were three α that have similar fair share in the 
number of selected variables, for example, 94 (α = 0.25) in 
AEN and elastic net method, and 40 (α = 0.70)  and 24 (α = 
0.95)  in AER and AEDC method. It can also be observed 
that AEN had eight variables selected, followed by six 
equally shared variables selected in AER and AEDC, 
within the range of α provided. Although AEN shows 
higher number of variables selected, nevertheless, 
it may not be efficient in explaining the presence of 
outliers or heavy tailed distribution in the variables. This 
reason also applies similarly to AER. Notwithstanding, 
the variation in the selected number of stock market 
price showed the efficiency of AEDC in dealing with the 
presence of outliers or heavy-tailed distribution in the 
response variables. 

CONCLUSION

Our study had successfully proposed initial weights 
using distance correlation in the adaptive elastic net. 
Remarkably, the comparison in both simulation and real 
application showed that AEDC yield better prediction 
power and achieved a satisfactory model performance 
when compared to elastic net, AEN, and AER. Based 
on the performance results, the proposed initial 
weight was able to further enhance AEN explicitly 
in the consistency of the number of stock market price 
selected. In addition, AEDC can be efficiently applied 
in different range of α values which has been evidently 
presented through simulation study and stock market 
price application.

The efficiency of AEDC in handling the robustness 
particularly in the existence of a heavy tailed distribution 
error or outliers in the response variable of the stock market 
price has been notably presented. Notwithstanding, the 
number of stock market price selected, correspondingly, 

the distance correlation had successfully encouraged 
grouping effects between the selected stock market price. 
Furthermore, the proposed weight also has effectively 
shown the improvement in the prediction performance, 
model interpretation and the oracle property in the stock 
market price application.

The assessment of high dimension stock market 
price using proposed initial weight in adaptive elastic net 
has been effectively performed in this study. In addition, 
our proposed method of AEDC would be an added 
value to the existing literature of stock market price 
studies, where previous studies were mostly focused on 
the financial aspects and machine learning approaches. 
Nevertheless, the result performances of high dimension 
stock market price using AEDC obtained in this study 
may also be useful to the financial experts to identify the 
significant stock market price on the stock index as well 
as for prediction purpose. 

Since the presented work in the high dimension 
focused on highly correlated data, nevertheless, the 
proposed methods here could be extended to data that do 
not necessarily own this property. Further study can be 
conducted in the case where the high dimension data has 
lower or moderate correlation between the explanatory 
variables and the response variable. 
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