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ABSTRACT

In recent years, many attempts have been carried out to develop the Burr type X distribution, which is widely used in
fitting lifetime data. These extended Burr type X distributions can model the hazard function in decreasing, increasing
and bathtub shapes, except for unimodal. Hence, this paper aims to introduce a new continuous distribution, namely
exponentiated beta Burr type X distribution, which provides greater flexibility in order to overcome the deficiency of
the existing extended Burr type X distributions. We first present its density and cumulative function expressions. It
is then followed by the mathematical properties of this new distribution, which include its limit behaviour, quantile
function, moment, moment generating function, and order statistics. We use maximum likelihood approach to estimate
the parameters and their performance is assessed via a simulation study with varying parameter values and sample
sizes. Lastly, we use two real data sets to illustrate the performance and flexibility of the proposed distribution. The
results show that the proposed distribution gives better fits in modelling lifetime data compared to its sub-models
and some extended Burr type X distributions. Besides, it is very competitive and can be used as an alternative model
to some nonnested models. In summary, the proposed distribution is very flexible and able to model various shaped
hazard functions, including the increasing, decreasing, bathtub, and unimodal.
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ABSTRAK

Dalam beberapa tahun kebelakangan ini, banyak percubaan telah dijalankan untuk membangunkan taburan Burr
jenis X yang digunakan secara meluas dalam model sepanjang hayat yang sesuai. Taburan lanjutan Burr jenis X ini
boleh memodelkan fungsi hazard dalam bentuk menurun, meningkat dan bathtub, kecuali bagi unimod. Kertas ini
bertujuan untuk memperkenalkan taburan berterusan baharu, iaitu taburan Burr jenis X beta eksponen, yang lebih
keluwesan, bagi mengatasi kekurangan taburan lanjutan Burr jenis X sedia ada. Kami bermula dengan membentangkan
ketumpatan dan ungkapan fungsi terkumpulnya. Ia kemudiannya diikuti dengan sifat matematik taburan baharu ini,
yang merangkumi kelakuan hadnya, fungsi kuantil, momen, fungsi penjanaan momen dan statistik pesanan. Kami
menggunakan pendekatan kemungkinan maksimum untuk menganggarkan parameter dan prestasinya dinilai melalui
kajian simulasi dengan nilai parameter dan saiz sampel yang berbeza-beza. Akhir sekali, kami menggunakan dua set
data sebenar untuk menggambarkan prestasi dan berkefleksibelan taburan yang dicadangkan. Keputusan menunjukkan
bahawa taburan yang dicadangkan memberikan kesesuaian yang lebih baik dalam pemodelan data sepanjang hayat
berbanding dengan sub-modelnya dan beberapa taburan lanjutan Burr jenis X. Selain itu, ia sangat bersaing dan
boleh digunakan sebagai model alternatif kepada beberapa model tidak bersarang. Secara ringkasnya, taburan yang
dicadangkan adalah sangat fleksibel dan boleh memodelkan pelbagai bentuk fungsi hazard, termasuk peningkatan,
penurunan, bathtub dan unimod.

Kata kunci: Analisis kemandirian; beta teritlak; Burr jenis X; eksponen; unimod
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INTRODUCTION

Statistical distributions are essential to statistical
modelling in lifetime analysis. However, in some cases,
the existing distributions could not fit the lifetime data
well, especially for lifetime data with bathtub and
unimodal shaped hazard function, which are common
in survival analysis. Thus, exploring new forms of
distributions with higher flexibility in modelling lifetime
data becomes necessary. Given that, many attempts
have been established to generate new distributions
by extending the existing distributions. For instance,
exponentiated Weibull Burr type XII (Abouelmagd,
Hamed & Afify 2017), Kumaraswamy exponentiated
Burr XII (Afify & Mead, 2017), beta-burr type V (Dikko,
Aliyu & Alfa2017), Weibull Burr XII (Afify et al. 2018),
and generalized Marshall- Olkin extended Burr XII
(Handique & Chakraborty 2018) distributions. These
new distributions have higher flexibility compared to
their baseline distribution.

Burr type X distribution (Burr 1942) is one of the
famous distributions used in lifetime data analysis. Its
initial form is a single-parameter distribution. Then, a
two parameters scaled Burr type X distribution (BX)
was introduced by Surles and Padgett (2001) by adding
a scale parameter to the one-parameter Burr type X
distribution. In literature, many attempts have been
carried out by developing new families of Burr type X
distribution. These include gamma Burr type X (GBX)
(Khaleel et al. 2016), beta Burr type X (BBX) (Merovci
et al. 2016), exponentiated generalised Burr type X
(EGBX) (Khaleel et al. 2018), Weibull Burr type X (WBX)
(Ibrahim et al. 2017), and beta Kumaraswamy Burr type
X (Madaki, Bakar & Handique 2018) distributions.
However, it is noticed that these extended Burr type X
distributions only model the hazard functions with the
shapes of decreasing, increasing and bathtub, but not for
unimodal. The unimodal is a shape with a single peak
and is commonly used in survival analysis. Since the
flexibility of distribution is always the main concern in
choosing a suitable model to fit the lifetime data, more
attention is needed in developing the distribution with
greater flexibility to improve the statistical findings.

In this study, we focus our discussion on the
BBX distribution and look forward to enhancing its
flexibility. Merovci et al. (2016) stated that with Burr
type X distribution as the baseline distribution, the BBX
distribution can be formed by implementing the beta-G
(Eugene Lee & Famoye 2002). The probability density
function (pdf) of BBX is given by

25 —(Ax)2
20A°xe (1)

glx,a,B,1,0) = B p)

(1 - e=@0*)ad-1[1 — (1 — g=(A0*)0]4-1

and the corresponding cumulative distribution function
(cdf) becomes
(1-e-02)°

te (1 —t)f-1qdt

)

1

G(x,a,B,1,0) = B(a,f)
) 0

=1, _p-any? (@B,

where a, B, 4, 0 > 0 and I o(a,B), is the

(1-e-(0?)
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then can be obtained by computing the ratio of pdf to
survival function, such as
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It is worth mentioning that the hazard function
in equation (3) only covers the shapes of increasing,
decreasing and bathtub, but not for the unimodal shape.
Thus, this study aims to generate a new exponentiated
beta Burr type X distribution by adding a shape parameter
to the BBX distribution using the exponentiated type
of distribution proposed by Gupta, Gupta and Gupta
(1998). By the additional shape parameter, the proposed
distribution has greater flexibility than the BBX
distribution by covering hazard functions in different
shapes, including unimodal and bathtub. Besides, this
distribution has several sub-models and thus can be used
to model more comprehensive structural properties. We
expect that the proposed distribution be superior to solve
the deficiency of BBX.

The rest of the paper is outlined as follows. Next
section presents the pdf, cdf, and hazard function of
exponentiated beta Burr type X (EBBX) distribution.
We explain the derivation of statistical properties
and likelihood function in subsequent two sections.
Besides, the limit behaviour of the pdf and cdf of
EBBX distribution when x approaches zero and infinity
are also presented in section that follows. We access the
performance of EBBX distribution via simulation studies
in the following section, while the implementation of
EBBX distribution through two real data sets is illustrated
next. Lastly, the paper ends with concluding remarks in
the last section.

EXPONENTIATED BETA BURR TYPE X DISTRIBUTION

In this study, we introduce a new five-parameter
distribution, namely exponentiated beta Burr type X
(EBBX) distribution which is obtained by implementing



the exponentiated type of distribution proposed by
Gupta, Gupta and Gupta (1998) along with the BBX as
the baseline distribution. By applying the exponentiated
type of distribution, a shape parameter is added to the
BBX distribution by taking exponent on equation (2). We
may obtain the cdf of EBBX distribution such as
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by differentiating equation (4), where B([1 — e=??16 ¢, g)
is the incomplete beta function and a, £, 4, 0 > 0. Thus,
the EBBX distribution hazard Qn%pon car ertten as
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Figures 1 and 2 display the pdf and hazard
function of EBBX distribution with various parameter
values, respectively. The EBBX distribution fits well in
most cases, including bathtub, unimodal, decreasing,
and increasing. It is greatly flexible and can be reduced
to several sub-models when changing its parameters,
as listed in Table 1. For instance, EBBX distribution
approaches BBX distribution when y = 1 and becomes
Burr type X distribution when o = f = y = 1. Hence, it
has been proven that EBBX distribution can cover the
characteristics of all the sub-models and is more flexible
than the sub-models.
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FIGURE 2. EBBX distribution hazard functions for different parameters
values
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TABLE 1. Exponentiated beta Burr type X distribution sub-models

Parameters values

Distribution o b y A 0
Beta Burr type X 1

Beta one-parameter Burr type X 1 1

Burr type X 1 1 1

Rayleigh 1 1 1 1

MATHEMATICAL PROPERTIES

This section explores several important properties of the
EBBX distribution, particularly in its limited behaviour,
quantile function, moment, moments generating function
(mgf), and order statistics.

When x approaches zero, the limit becomes
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For the quantile function of EBBX distribution, we may
derive it by inverting its cdf such as

1 1 % 2
Quw) =x = 7 [—ln <1 - [Iu%’ (a, B)] )] ,

where u = G(x, a, f, 7, 4, 0) and I}, (a, p) is the inverse
function of regularised beta function. Equation (7)
is used to simulate EBBX random variable in the
Simulation section by letting u~U(0,1).

Besides, the " moment of EBBX distribution can be
defined as
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Using the pdf of the EBBX distribution in equation (5),
it becomes
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By expanding the binomial term in equation (10), it can
then be rewritten as follow,
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The r* moment of EBBX distribution may be further
explored for determining the mean, median, coefficient of
variation, kurtosis and skewness of the EBBX distribution.

An alternative way to obtain the »* moment of
EBBX distribution is through its moment generating
function (mgf). Here, the mgf of the EBBX distribution
can be expressed as
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The mgf in equation (13) above then can be further
simplified as
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Let X< X,< .. <X be independent random
variables from the EBBX distribution, G(x) with its
corresponding pdf, g(x). Then, the pdf of the i order
statistic can be defined as
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Incorporating beta function and binomial expansion, the
equation (16) above then becomes
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By inserting the equations (4) and (5) into equation (17)
gives
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by using the binomial expansion. We then simplify the
i order statistic of EBBX distribution as follows:
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PARAMETER ESTIMATION

Maximum likelihood approach is the most common
approach for estimating the distribution parameters
(Phoong & Ismail 2015). Let x, x,, ..., x, be a random
sample of EBBX distribution with size n, and then the
log-likelihood function can be expressed as
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To obtain the maximum likelihood estimation (MLE)
of the parameters of EBBX distribution, we differentiate
equation (19) partially with respect to each parameter and
equate them to zero. We obtain the equations herewith.
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respectively. Due to the complicated system of equations,
a numerical method is needed to obtain the MLE of the
parameters of EBBX distribution. We have selected the
Broyden—Fletcher—Goldfarb—Shanno (BFGS) method

) 1In(1 - t)dt

as it is often used for unconstrained optimisation of
nonlinear functions and is proven to be the most effective
method among all quasi-Newton methods (Hery, [brahim
& June 2014). The R software is chosen for handling
this issue.

SIMULATION

To assess the performance of the MLE of the EBBX
distribution parameters, we carry out a simulation study
along with three sets of parameter values and various
sample sizes (n =50, 150, 300). The three parameter sets
are (a, f, v, 4, 8) = {(80, 0.06, 0.012, 2.2, 30), (0.7, 1.3,
1.0, 1.0, 0.25), (0.1, 5.0, 10, 0.5, 3.0)} for covering the
hazard functions in the shapes of unimodal, bathtub and
increasing, respectively, as shown in Figure 2. Firstly,
we generate the EBBX random variable using its quantile
function in equation (7) and then the data are fitted using
EBBX distribution. We repeat 2000 times the similar
procedure for all cases we consider. The average, root
mean square error (RMSE) and bias of the parameter
estimations are then recorded in Table 2. Generally, we
notice that all the bias values are less than 0.17, while
the RMSE values are less than 0.54. The values of bias
and RMSE decrease as sample size increases. Besides,
for all three sets of parameter values, the average values
are close to the true value, RMSE values are decreased
toward zero, and bias are close to zero as sample size
increase. Hence, we may conclude that the parameter
estimators considered are asymptotically unbiased. On
the whole, MLE approach is appropriate for estimating
EBBX distribution parameters.

APPLICATION

For illustration, we investigate the performance
of EBBX distribution through two real data sets. The
first data set consists of the failure time of 85 aircraft
windshields (Tahir et al. 2015) and the second data
set is the failure time reported in ‘Weibull Models’
(Murthy, Xie & Jiang 2004). We compare the fitness of
EBBX distribution with its sub-models, some extended
Burr type X distributions inclusive of the WBX, BBX,
EGBX, GBX, and BX, and four nonnested distributions
including beta Burr type XII (BBXII) (Paranaiba et al.
2011), exponentiated Burr type XII Poisson (EBXIIP)
(Da Silva et al. 2015), exponentiated Weibull Burr
type XII (EWBXII) (Abouelmagd, Hamed & Afify
2017), and generalised Marshall-Olkin extended
Burr-X1I (GMOBXII) (Handique & Chakraborty 2018)
distributions.



TABLE 2. Average, RMSE, and bias for different set of parameter values
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Set 1
a=80 £=0.06 =0.012
Average ~ RMSE Bias Average RMSE Bias Average ~ RMSE Bias
n=50 80.00002  0.00036 0.00002 0.11980 0.11223 0.05980  0.01553 0.01681 0.00353
n=150 80.00002  0.00010 0.00002 0.09233 0.06213 0.03233  0.01265 0.00267 0.00065
n=300 80.00001  0.00005 0.00001 0.07897 0.03920  0.01897  0.01219  0.00124 0.00019
1=2.2 6=30
Average ~ RMSE Bias Average RMSE Bias
n=50 2.23978 0.13422 0.03978 30.00007 0.00095 0.00007
n=150 2.21051 0.05291 0.01051 30.00005 0.00027  0.00005
n=300 2.20255 0.02344 0.00255 30.00003 0.00012  0.00003
Set 2
a=0.7 p=13 =1.0
Average ~ RMSE Bias Average RMSE Bias Average ~ RMSE Bias
n=50 0.77322  0.21323 0.07322 1.33763 0.47939  0.03763 1.10527  0.23259 0.10527
n=150 0.75005 0.12484 0.05005 1.33100 027552 0.03100  1.05633 0.13767 0.05633
n=300 0.73702  0.08764 0.03702 1.33335 0.18827  0.03335  1.03948 0.09716 0.03948
=1.0 6=0.25
Average ~ RMSE Bias Average RMSE Bias
n=50 1.16194  0.53389 0.16194 0.24316 0.10585 -0.00684
n=150 1.03535 0.24725 0.03535 0.23731 0.05293 -0.01269
n=300 1.00535 0.15147 0.00535 0.23966 0.03430  -0.01034
Set 3
0=0.1 p=5.0 =10
Average  RMSE Bias Average RMSE Bias Average  RMSE Bias
n=50 0.11211 0.03979 0.01211 5.00070 0.10733 0.00070  10.00009  0.00498 0.00009
n=150 0.10293 0.01492 0.00293 5.00012 0.03336  0.00012  9.99994  0.00122 -0.00006
n=300 0.10217  0.01260 0.00217 4.99824 0.04293 -0.00176  9.99996  0.00190 -0.00004
=0.5 6=3.0
Average =~ RMSE Bias Average RMSE Bias
n=50 0.50513 0.04345 0.00513 2.98549 0.32343 -0.01451
n=150 0.50176  0.02881 0.00176 2.99898 0.10065 -0.00102
n=300 0.50098 0.01209 0.00098 2.99201 0.13100  -0.00799
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We use the maximum likelihood approach to
estimate the parameters of EBBX distribution. The
BFGS method is selected to obtain the parameters’ MLE.
The initial values are chosen by fitting the model to
the Kaplan-meier survival function. It is then followed
by the use of chi-square goodness of fit tests, negative
log-likelihood (-/), Akaike information criteria (AIC)
(Akaike 1974), and Bayesian information criteria (BIC)
(Schwarz 1978) for assessing the goodness of fit of all
competing models. Chi-square goodness of fit test is used
to test if the data came from a specific distribution. At the
same time, AIC and BIC are used to examine the model fit
and model selection. AIC and BIC are the most widely
used goodness of fit test statistics in model selection.
AIC emphasises the model performance more, and BIC
penalises the model complexity more. The smaller value
of these criteria indicates a better fit. The chi-square
goodness of fit test results is presented in Tables 3 and 5,
while the MLEs, negative log-likelihood (-/), AIC, and BIC
of all competing models are presented in Tables 4 and 6.

Meanwhile, the survival functions are plotted in
Figures 3 and 5 and the hazard functions are plotted
in Figures 4 and 6. The first data set shows that all
competing models can fit the data well as their p-values
are greater than 0.025. EBBX distribution is the best-
fitted model among its sub-models and extended Burr
type X distributions as it has the second smallest
values in all criteria and the non-nested model EWBXII
distribution has the smallest values in all criteria.
Besides, it can be considered as an alternative model of
EWBXII distribution as the difference between the EBBX
distribution and EWBXII distribution for all criteria are
small. Meanwhile, for the second data set, all competing
models except BBXII distribution can fit the data well as
their p-values are greater than 0.025 while the p-value
of BBXII distribution is less than 0.025. Besides, EBBX
distribution is comparable with all competing models
since there is not much difference in the values of all
criteria used. In conclusion, the EBBX distribution fits
both data sets well.

TABLE 3. Chi-Square goodness of fit test for first data set

Model Test statistics p-value
EBBX 6.59134 0.1591
WBX 3.24228 0.6627
BBX 3.78341 0.581

EGBX 4.22105 0.518

GBX 3.78969 0.7051
BX 3.46435 0.839

BBXII 7.19548 0.1259
EBXIIP 2.9798 0.5612
EWBXII 5.60685 0.2305
GMOBXII 3.14854 0.6771




TABLE 4. MLEs, , AIC, BIC, CAIC and HQ for first data set

Model

MLEs

-l

AIC

BIC

EBBX

6 =38.48913

125.1093

260.2186

272.3726

WBX

@ =109.62902
B =0.108693

6 =11.144093

129.3485

266.6970

276.4203

BBX

& =11.76432
p =0.42007

1=0.57382

130.0671

268.1342

277.8574

EGBX

127.2304

262.4608

272.1841

GBX

130.0599

266.1199

273.4123

BX

130.4696

264.9391

269.8008

BBXII

126.7847

263.5693

275.7234

EBXIIP

129.7183

269.4367

281.5908

EWBXII

124.3476

258.6951

270.8492

GMOBXII

@ =130.39520
£ =1.90189
A=1.66131
6 =4.11653

128.0537

264.1073

273.8306
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TABLE 5. Chi-square goodness of fit test for second data set

Model Test Statistics p-value
EBBX 7.1297 0.0283
WBX 8.8194 0.0318
BBX 7.1933 0.066
EGBX 6.8325 0.0774
GBX 4.0379 0.4009
BX 3.7776 0.5819
BBXII 7.6158 0.0222
EBXIIP 3.7795 0.1511
EWBXII 6.0054 0.0497
GMOBXII 4.1764 0.2430

TABLE 6. MLEs, , AIC, BIC, CAIC and HQ for second data set

Model

MLEs

-l

AIC

BIC

EBBX

0.00641
g =127.79513
7 =4.07587
1=0.166093
8 =0.00735

a

127.2269

264.4537

276.6670

WBX

@ =0.00609
B =3.84535
1=0.06725
6 =0.07293

128.0732

264.1464

273.9170

BBX

@ =0.02737
j =125.32588

127.2328

262.4657

272.2363

EGBX

129.5429

267.0857

276.8563

GBX

132.0494

270.0989

277.4268
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08

08

04

02

00

BX ’} = 0378329 132.4766 268.9532 273.8385
6 =1.19405
@ =4.82107
g =3.89308
BBXII 7 =1.02918 129.6880 269.3761 281.5893
1=0.35632
6 =5.05567
@ =11.61529
g =5.73349
EBXIIP 7=0.56406  131.6705 273.3409 285.5542
1=10.00540
6 =4.27022
@ =17.23979
g =3.13659
EWBXII 7=0.84318  126.5972 263.1944 275.4076
1=0.03761
6 =0.12841
@ =182.39431
p=2.13133
GMOBXII - 129.6934 267.3868 277.1574
1=1.51739
6 =4.67072

Models Comparison

pooanaannnn

Kaplan-Meier
EBBX
WBX
BBX
EBX
GBX

BX
EBXIP
EWBXI
BBXIl
GMOBXII

FIGURE 3. Estimated survival function for first data set
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FIGURE 4. Estimated hazard function for first data set
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FIGURE 5. Estimated survival function for second data set
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FIGURE 6. Estimated hazard function for second data set




CONCLUSION

This study aims to introduce a new continuous
distribution, which provides greater flexibility, to
overcome the deficiency of the existing extended Burr
type X distributions. That is, these extended Burr type
X distributions can only model the hazard function
in shapes of decreasing, increasing and bathtub, but
not for unimodal. Hence, we propose a new five-
parameter distribution, namely exponentiated beta
Burr type X distribution which extends the beta Burr
type X distribution. We obtain its pdf, cdf, and hazard
function. The hazard function has various forms, such
as increasing, decreasing, bathtub, and unimodal. We
explore the mathematical properties of EBBX distribution,
which includes quantile function, moment, moment
generating function, and order statistics. We use the
maximum likelihood method to estimate the parameters
of EBBX distribution. A simulation study with varying
sample sizes and parameters is conducted to examine
the performance of EBBX distribution. The parameter
values chosen covered unimodal, bathtub, and increasing
hazard functions. The result shows that EBBX performed
well in modelling hazard functions in various shapes
and the maximum likelihood approach can be used to
estimate the parameters of EBBX distributions. The
real data sets illustrate that the suggested distribution is
comparable to all competing distributions. In conclusion,
the proposed EBBX distribution provides a better fit in
modelling lifetime data and can be used as an alternative
model for all the competing models, especially the four
nonnested models. It may model all shapes of hazard
functions, including the unimodal. In addition, the
proposed distribution can be applied to model lifetime
data in different fields, such as engineering and the
medical fields. However, the paper did not consider the
presence of censored observations and covariates. Thus,
future research should consider the presence of censored
observations and covariates.
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