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ABSTRACT

For successful development of new amaranth varieties, it is important to find inexpensive and rapid analysis methods 
for the measurement of proximate, fatty acid, mineral content, and proline level in seeds. In this study, calibration 
equations in NIR spectroscopy were developed to estimate for the fatty acid, mineral content and proline level of 
amaranth using the modified partial least squares (MPLS) regression method. The calibrations estimated by NIR 
spectroscopy were consistent with the correlations between reference values at external validation. The equations 
developed were evaluated based on the relative estimate determination results for external validation (RPDv). The 
equations for total protein (RPDv = 2.967), fat (RPDv = 4.396), Zn (RPDv = 3.668), proline (RPDv = 6.692), oleic acid 
(RPDv = 3.366) and linoleic acid (RPDv = 2.086) showed high accuracy, while the equations for ash (RPDv = 1.675) 
and Fe (RPDv = 1.565) showed relatively high accuracy. When calculated with the same validation factors, the level 
of Ca (RPDv = 0.268), palmitic acid (RPDv = 1.434), stearic acid (RPDv = 0.949), linolenic acid (RPDv = 1.244) and 
arachidic acid (RPDv = 0.402) were lower than the estimated value. Protein, oil, ash, Fe, Zn, proline, oleic acid and 
linoleic acid can be used as reliable users, while equations developed for Ca, palmitic acid, stearic acid, linolenic acid 
and arachidic acid can be reliably used to screen samples for amaranth breeding programmes.
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ABSTRAK

Bagi mencapai kejayaan pembangunan varieti amaranth baru, adalah penting untuk mencari kaedah analisis 
yang murah dan pantas untuk pengukuran proksimat, asid lemak, kandungan mineral dan tahap prolin dalam benih. 
Dalam kajian ini, persamaan penentukuran spektroskopi NIR telah dibangunkan untuk menganggar asid lemak, 
kandungan mineral dan tahap prolin amaranth menggunakan kaedah regresi separa terkecil (MPLS) yang terubah 
suai. Penentukuran yang dianggarkan oleh spektroskopi NIR adalah tekal dengan korelasi antara nilai rujukan pada 
pengesahan luaran. Persamaan yang dibangunkan telah dinilai berdasarkan keputusan penentuan anggaran relatif 
untuk pengesahan luaran (RPDv). Persamaan untuk jumlah protein (RPDv = 2.967), lemak (RPDv = 4.396), Zn (RPDv 
= 3.668), prolin (RPDv = 6.692), asid oleik (RPDv = 3.366) dan asid linoleik (RPDv = 2.086) menunjukkan ketepatan 
yang tinggi manakala persamaan untuk abu (RPDv = 1.675) dan Fe (RPDv = 1.565) menunjukkan ketepatan yang 
agak tinggi. Apabila dihitung dengan faktor pengesahan yang sama, paras Ca (RPDv = 0.268), asid palmitik (RPDv = 
1.434), asid stearik (RPDv = 0.949), asid linolenik (RPDv = 1.244) dan asid arakidik (RPDv = 0.402) adalah lebih 
rendah daripada nilai anggaran. Protein, minyak, abu, Fe, Zn, prolin, asid oleik dan asid linoleik boleh digunakan 
sebagai pengguna yang boleh dipercayai, manakala persamaan yang dibangunkan untuk Ca, asid palmitik, asid stearik, 
asid linolenik dan asid arakidik boleh digunakan dengan pasti untuk menyaring sampel untuk program pembiakan 
amaranth.
Kata kunci: Asid lemak; mineral; penentukuran; prolin; spektroskopi pemantulan inframerah dekat 

INTRODUCTION

Amaranth can be grown in arid and low fertility soils and 
cultivated with maize, beans, peppers and squash (Reta 
Alemayehu et al. 2015). Amaranth required 53-58% less 

water than wheat, 40-50% less than corn, and 21% less 
water than cotton (Brenner et al. 2010). Amaranth has low 
nitrogen requirements so it can be grown in crop rotation 
with a legume, and can be used as a cover crop in pastures, 
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thereby providing sufficient available nitrogen to the soil 
(Ejieji & Adeniran 2010). The nutritional properties of 
amaranth seeds and leaves, especially the high content 
of lysine, arginine and histidine, and a unique protein 
composition make it possible to use it as a nutritional 
supplement to treat malnutrition in children (Garcia et 
al. 2011; Reta Alemayehu et al. 2015). 

The amaranth seed is considered a good source of 
mineral with amount of iron at 72-174 ppm, calcium at 
1300-2850 ppm, sodium at 160-480 ppm, magnesium 
at 2300-3360 ppm and zinc at 36.2-40.0 ppm (Becker 
et al. 1981). The oil fraction of amaranth is similar to 
cereals with 77%; unsaturated fatty acids with linoleic 
acid as the predominant fatty acid (Barba de la Rosa et 
al. 2009; Repo-Carrasco-Valencia et al. 2009). Amaranth 
has high consumption potential among consumers such 
as children, high-performance athletes, diabetics, celiac 
patients, and people with gluten or lactose intolerance 
(Valca`rcel-Yamani & Lannes 2012).

In many studies, proline accumulation has been 
observed in response to abiotic stress conditions such as 
drought and salt stress (Gregorova et al. 2015; Hasegawa 
et al. 2000; Maritim et al. 2015; Muscolo et al. 2015). 
Proline may have different roles in salt and drought 
stress. It can balance low turgor pressure inside the 
cell (Delauney et al. 1993) or reduce reactive oxygen 
species (Wutipraditkul et al. 2015). In this case, it can be 
concluded that there may not be a positive relationship 
between proline level and drought stress (Montesinos 
Pereira et al. 2014).

In IR region, near infrared (NIR) region covers 
wavelengths from 780 nm up to 2.5 µm, mid infrared 
(MIR) covers the region from 2.5 to 25 µm (Herold et al. 
2009). The overtones and combinations of fundamental 
vibrations of C-H, N-H, O-H and S-H bonds in organic 
molecules observed in the mid-infrared (MIR) range from 
the most dominant absorption bands in the NIR spectra 
of biological samples (Porep et al. 2015). 

The spectra of the sample are collected and the 
quality parameters are determined by conventional 
techniques before starting the calibration. The calibration 
model obtained may be used to accurately predict the 
quality characteristics in samples using the rapid method, 
therefore replacing the conventional method through 
multivariate calibrations by applying appropriate 
mathematical modelling (Herold et al. 2009). NIR spectra 
can provide information on the physical properties 
of the sample under investigation, as well as showing 
fingerprint properties for its chemical composition 
(Siesler 2008). The sample parameters are introduced 
to an instrument and computer system by choosing the 
correct calibration methods and converted to the NIR 

analysis method (Porep et al. 2015). The NIR spectrum 
contains noise and background interference, including 
overlapping bands. Different light scattering effects 
occur when recording its spectrum; therefore, spectral 
information becomes complex and lacks the detailed 
structure required for analysis (Guo et al. 2016).  The 
chemo metrics was required to correlate the spectral 
features and quality parameters of samples from NIR 
spectra and to construct calibration models (Qu et 
al. 2015). The collection of NIR spectra of known 
samples; pre-processing of original spectra; elimination 
of abnormal samples; creation and validation of the 
model using chemometric methods; estimating target 
parameters of unknown samples are the process of near-
infrared analysis (Li et al. 2020). Major absorptions in 
the NIR spectra of the forages include with two bands 
water at 1940 nm and 1450 nm; aliphatic carbon bands 
(lipids) at 2310, 1725, 1400, and 1210 nm; and oxygen 
bands (carbohydrates) around 2100 and 1600 nm (Conzen 
2006). 

Unlike most conventional analytical methods, NIR 
spectroscopy is fast and non-destructive; it does not use 
chemicals, does not generate chemical wastes that require 
disposal and is also multiparametric analysis because 
of several parameters can be determined simultaneously 
in the same measurement (Acosta et al. 2020). Some 
studies have been conducted using NIR spectroscopy 
for betacyanin and moisture content in fresh or dried 
samples from different parts of Amaranthus plants (Cai 
& Cork 2001), determining the total arsenic content in 
prostrate amaranth (Font et al. 2004), and carotenoid 
content in amaranth leaf (Aditya et al. 2018). However, 
no study has determined amaranth grain quality using 
NIR spectroscopy for seed cultivar improvement and 
breeding. Today, wheat, maize, rice and potatoes are 
the main food sources in more than half of the World 
(Savary et al. 2019). It is important to grow alternative 
plants to these products in terms of changing climatic 
conditions. Amaranth is an alternative plant especially 
for cereals. In addition to its excellent nutritional value, 
its ability to grow in temperate climates, that is, in all 
conditions where wheat and corn can grow, adds a special 
importance to the plant and shows the possibility of using 
it as an alternative plant in rural areas. It is important to 
get accurate and quick results from the large amount of 
initial breeding materials in field crop breeding studies. 
The objectives of this study were to develop a non-
extractive, rapid and accurate measurement analysis 
method of proximate composition (protein, oil, ash), 
mineral (Ca, Fe, Zn), oil composition (palmitic, stearic, 
oleic, linoleic, linolenic and arachidic) and proline level 
of amaranth.
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MATERIALS AND METHODS

This study was carried out with a total of 76 amaranth 
cultivars in the Cukurova region of Turkey between 
November-February (2019-2020). Three different 
amaranth cultivars (Amaranthus hypochondriacus (30) 
and Amaranthus caudatus (26), Amaranthus paniculatus 
(20)) with different seed and leaf colours and grown 
as cereals were used. The harvest was carried out in 
the period end of June-July 2020. Surface and subsoil 
drip irrigation systems were used in the experiment. 
In the surface drip system, the main line, manifold and 
laterals used in the transmission system were made of 
polyethylene pipes. In-line drippers were spaced at 30 
cm intervals on the laterals with a diameter of 16 mm. 
The dripper flow rate was 2 L/hour at 100 kPa operating 
pressure. Laterals are placed in each plant row. In the 
subsoil drip irrigation system, the laterals were placed 
25 cm below the soil surface at the level of the plant row. 
Drippers are spaced at 30 cm intervals on the 16 mm 
diameter laterals. The dripper flow rate was 2.1 L/hour 
at 100 kPa operating pressure. The seed samples were 
stored in plastic cups with screw caps or sealed plastic 
bags at 4 °C in a refrigerator. Approximately 100 g of 
fresh leaf samples were dried in the oven at 80 °C for 48 
h for proline analyses. All samples were ground in a mill 
(with a 1 mm pore spacing) and wet chemistry analyses 
were performed at the specified parameters. To prevent 
insect infestation and chemical change, the samples were 
stored in a deep freezer in plastic containers with lids 
until analysis.

Proximate composition, mineral and proline analyses 
The crude protein content (calculated as N × 5.83) 
was determined on amaranth samples by the standard 
Kjeldahl procedure (AOAC 2005). Organic materials were 
burned at 550 °C for ash determination, the remaining 
amount was expressed as a percentage (AOAC 2005). 
The samples prepared as a result of ash determination 
were read in an Inductively Coupled Plasma Atomic 
Emission Spectrometer (ICP-AES) device and the 
concentrations of mineral (Ca, Fe, Zn) were determined 
(AOAC 2005). Crude oil was extracted with petroleum 
ether using a Soxhlet apparatus for 4 h. Fatty acid 
methylesters obtained by methylation of total lipids 
were analysed by the American Oil Chemists’ Society 
according to the method described in the analysis methods 
of Ce1-62 (AOCS 2005). 

To determine the proline concentration, 20 mg of 
sample was dissolved in 10 mL of distilled water, kept 
at 100 °C for 20 min and filtered. The filtrate was kept 
in a dark and cool environment for 24 h, 2 mL of this 
filtrate was taken and 2 mL of acid ninhydrin and 2 

mL of glacial acetic acid were added to it and kept in 
a water bath at 100 °C for 1 h. An ice bath was used to 
stop the reaction. Then, 4 mL of cold toluene was added 
to the solution in the tubes, mixed with a stirrer, and the 
absorbance of the toluene-containing fraction aspirated 
from the liquid phase was taken at 520 nm in a UV-VIS 
spectrophotometer. The resultant proline concentration 
was expressed as μg g–1dry weight (DW) (Barickman et 
al. 2019).

Spectra collection and pretreatment 
XDS- NIR spectroscopy rapid content analyzer (FOSS 
Analytical, Slangerupgade, Denmark) and ISI scanning 
program was used to collect the spectra of the amaranth. 
The spectrum of milled amaranth between 400 and 
2500 nm wavelengths was scanned by measuring the 
absorptions every 2 nm. Each sample was subsequently 
scanned 32 times and an average spectrum was collected 
to process calibration and external validation. The spectra 
were collected and managed using ISI scan software 
(Infrasoft International Port Matilda, PA, USA).

Calibration 
The calibration models were developed using WinISI III 
software (version 1.61). The calibration was performed 
using the recommended modified partial least squares 
(MPLS) in developing compatible calibrations for 
amaranth components. In order to eliminate reflection 
irregularities in absorbance spectra, different smoothing 
amounts were used, from which the difference was 
calculated. For an acceptable equation, nine different 
mathematical treatments were tried. The first and 
second derivatives of log I/R were also included in 
the selection of mathematical treatments. The spectra 
were collected and managed using ISI scan software 
(Infrasoft International Port Matilda, PA, USA). For each 
component, the samples from the calibration population 
were randomly selected by the software and used to test 
the equations. The SD and mean of the validation set 
data obtained by wet chemistry analysis were compared 
with the SD and mean of the calibration set. To select 
the most appropriate equation, multiple distribution 
correction (MSC), standard normal variable and trend 
shift (SNV+D), standard normal variable (SNV), trend 
reversal (DET), standard multiple distribution correction 
(S-MSC), weighted multiple scatter correction (W-MSC) 
and inverse multidistribution correction (I-MSC) scatter 
correction algorithms were used (Barnes et al. 1989).

External validation 
The optimum combination of SE (standard error) and r2 
(the coefficient of determination in calibration) of the 
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calibration and validation sets and the bias and slope of 
the validation sets were selected for the best equations. 
In addition, the points corresponding to the known 
absorbance peaks of the wavelengths related to the studied 
components were also evaluated. The standard error of 
calibration (SEC), the coefficient of determination in 
calibration (R2), the standard error of cross validation 
(SECV), and one minus the ratio of unexplained variance 
to total variance (1 – VR) were calculated to evaluate the 
predictive ability of the models (Williams & Norris 2001). 
Relative predictive determination for cross-validation 
(RPDc) was calculated (SD of reference data/SECV) to 
test the accuracy of the calibration models developed 
(Font et al. 2003; Patil et al. 2010). The equations for 
each amaranth parameter were screened based on 
minimizing the SEC and SECV, and maximizing the 1 
– VR. The R2 and RPDc values were used as criteria for 
evaluation of the optimal performance of the calibration 
equations (Patil et al. 2010).

To independently check the NIR calibration 
equations, samples were randomly selected from 76 
calibration sample sets using the Monitor program in 
WinISI. Hence, an independent test set representing a 
complete range of proximate (protein, oil, ash), mineral 

(Ca, Fe, Zn), fatty acid composition (palmitic acid, 
stearic acid, oleic acid, linoleic acid, linolenic acid and 
arachidic acid) and proline levels were used for validation 
of each model. 

There are two control limits to determine whether 
there is a significant bias and a significant increase in 
unexplained error. The results contain deviation limits 
and values for global and neighbourhood spectral 
distances. The coefficient of determination in validation 
(r2), SEP (standard error of performance), SEP(C) 
(standard error of prediction corrected for bias), the bias 
(mean difference between NIR predicted and reference 
concentration), RPDv (SD of the external validation set 
data/SEP(C)) to determine the accuracy of prediction 
(Williams & Norris 2001), and the range to error ratio 
were used to evaluate the predictive ability of the models.

RESULTS AND DISCUSSION

PRETREATMETS

The means, standard deviations and range values for 
proximate composition, mineral and fatty acids, and 
proline level in the calibration and validation sets are 
shown in Table 1. The value of protein, ash, oil fatty acid 

TABLE 1. Relative compositions of proximate, mineral and fatty acids and proline level in amaranth used in calibration and 
validation

Constituent                                                     Calibration set           External validation set   

               
Number         Min        Max        

Mean%         SD*         
Number        Min           

Max
      

Mean%        SD*

Protein % 76 11.868 13.909 12.889 0.340 31 11.669 13.773 12.808 0.328

Oil % 76 1.771 3.292 2.531 0.294 32 1.739 3.323 2.513 0.321

Ash % 76 2.003 4.456 3.229 0.409 32 1.991 4.115 3.229 0.449

Ca% 76 0.065 0.544 0.304 0.079 32 0.064 0.547 0.306 0.089

Fe(ppm) 76 21.703 113.829 67.767 15.354 32 21.301 106.973 67.557 17.139

Zn(ppm) 76 3.585 60.182 31.883 9.433 29 3.306 55.005 31.662 10.888

Palmitic 
acid% 76 16.799 20.582 18.690 0.631 32 14.399 1.607 16.338 0.663

Stearic 
acid% 76 2.234 4.869 3.552 0.439 32 2.289 4.849 3.502 0.467

Oleic 
acid% 76 25.704 32.453 29.078 1.625 32 25.348 32.621 29.216 1.821

Linoleic 
acid% 76 16.841 44.019 30.430 4.529 32 14.435 3.437 26.599 0.652

Linolenic 
acid% 76 0.519 1.710 1.115 0.198 31 0.494 1.543 1.122 0.190

Arachidic 
acid% 76 0.527 0.807 0.667 0.017 32 0.500 0.728 0.671 0.016

Proline 
(μg .g–1) 76 5.035 20.538 12.786 5.084 32 4.950 20.337 12.706 4.909

*Standart deviation
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composition, Ca and Fe of the samples used in this study 
are similar to those reported by other authors (Nasirpour-
Tabrizi et al. 2020; Olaniyi et al. 2004; Reta Alemayehu 
et al. 2015).

The values between minimum and maximum in 
calibration and validation sets are high in all parameters 
except % Ca and arachidic acid (C20-0). The difference 
between the minimum and maximum values was 
determined at the highest Fe (ppm) content, followed 
by Zn (ppm), proline (μg g–1), linoleic acid (C18-2), 
oleic acid (C18-1), palmitic acid (C16-0), stearic acid 
(C18-0), ash, protein, oil, and linolenic acid (C18-3), 
respectively. Standard deviation values ranged between 
0.017% and 15.354% in the calibration set and between 
0.016% and 17.139% in the validation set. The content 
with the highest variability was Fe, followed by Zn, 
proline, linoleic acid, oleic acid, palmitic acid, stearic 
acid and linolenic acid, and ash, protein, and fat contents. 
The values of Ca and arachidic acid had the lowest in 
terms of variability. It was observed that the differences 
between the means and standard deviations between the 
calibration set and the validation set were minimal. It 
has been observed that the linolenic acid values have a 
relatively wider range in the calibration set compared to 
the validation set. The ranges of the components in the 
calibration set were found to be similar to those in the 
validation set except for linolenic acid. In this case, it 
can be seen that both the calibration and validation set 
parameters for NIR spectroscopy analysis represent the 
total variation for the analysed constituents.

DETERMINING THE BEST SCATTER CORRECTION 
PROCEDURE AND MATHEMATICAL TREATMENT

The original NIRS spectra of all amaranth samples used 
in this study are shown in Figure 1(a). The original 
spectra have large peaks and significant baseline shifts 
(vertical shifts). A series of mathematical operations 
combined with scatter correction algorithms are attempted 
to resolve the broad peaks of the spectra and eliminate 
baseline and parallel shifts (Uddin et al. 2006).

To develop the calibration equation for the 
best scatter correction procedure and mathematical 
treatment, one proximate component (protein), one 
mineral compound (Fe), one fatty acid (linoleic acid) 
and proline content were randomly selected. These 
components were used for different mathematical 
treatments with different scatter correction algorithms 
in the MPLS regression method. This method was useful 
for agricultural crops such as soybean and chickpea (Font 
et al. 2021; Han et al. 2014).

Calibrations were first performed with nine 
different mathematical treatments (0,0,1,1; 1,4,4,1; 
1,6,8,1; 1,10,10,1; 1,12,12,1; 2,4,4,1; 2,6,8,1; 2,10,10,1; 
2,12,12,1) (Table 2). RPDc valuesto indicate the 
standardization of the SECV and the performance of the 
equation were used to determine the robustness of the 
equation. RPDc values more than 3 represent perfectly 
calibrated equations, while values between 2 and 3 can 
be considered equations with very reliable estimates. 
The values between 2 and 1.5 indicate limited predictive 
values, while values below 1.5 indicate equations that can 
be used for scanning (Williams & Norris 2001). It was 
observed that the components had significant effects 
on the calibration equations when compared with the 
mathematical treatment 0.0,1,1 used as a control. Good 
calibration models for protein and proline content were 
developed. They had higher RPD values with maths 
treatment 1,4,4,1 (RPDc = 2.589) and 2,6,8,1 (RPDc 
= 2.727) in protein and 1,4,4,1 (RPDc = 2.647) and 
2,6,8,1 (RPDc = 2.788) in proline content, respectively. 
However, relatively lower calibration results were 
obtained for Fe and linoleic acid (1,6,8,1 (RPDc = 1.168) 
in Fe, 2,6,8,1 (RPDc =1.275) in linoleic acid). Therefore, 
treatment 2,6,8,1 was chosen as the mathematical 
treatment that produces optimum equations for other 
values. MSC, SNV + D, SNV, DET, S-MSC, W-MSC and 
I-MSC scatterings for all components were used to reduce 
the parallel shifts caused by the scattering of the samples 
along with the 2.6, 8.1 treatment as shown in Table 3. 
The treatment of 2,6,8,1 with SNV+D was determined 
as the most suitable method giving the best results for 
protein (RPDc = 3.118), linoleic acid (RPDc = 1.459) and 
proline (RPDc = 3.189), since this combination was used 
to match the reference values of the spectral data of the 
other components. 

Using standard normal variable and de-trending 
(SNVD) transformations after derivation to correct for 
baseline deviations due to particle size and path length 
differences between samples helped refine the calibration 
model (Font et al. 2021). Figure 1(b) shows spectra in 
which spectral differences are corrected for baseline shift 
by mathematical treatment 2,6,8,1. In Figure 1(c), the 
spectra are closer because the scattering of the spectra 
processed with the mathematical operation 2,6,8,1 
combined with SNV+D is corrected and their variations 
are corrected.

The absorbances of spectra peaked between 1460-
1934 nm wavelengths (Figure 1(a)). These wavelengths 
gave information about O-H and C-H molecule bonds. 
Maximum were found at 950, 1130, 1224, 1326, 1390, 
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1672, 1882, 2020, 2234, and 2330 nm and minimum 
were found at 1204, 1360, 1428, 1586, 1700, 1824, 
1922, 2054, 2278, and 2346 nm in second derivative 
(Figure 1(c)). In the NIR segment of the spectrum, the 
absorption bands were displayed at 1224 nm, which has 
been attributed to C-H second overtone; 1390 nm related 
to C-H combination of methylene groups, 2054 nm which 
has been assigned N-H bend second overtone or N-H 
bend/N-H stretch combination band of protein; 2278 nm 

was due to C-H stretch/CH2 deformation band of starch 
(Shenk et al. 2008). Kamboj et al. (2017) specified the 
absorbance between 1620-2345 nm for carbohydrates, 
1180-1590 nm and 1860-2094 nm for fat and 1700-
2345 nm for proteins in chickpea flours. Minerals of 
plant were found as organic complexes, chelates with 
other mineral salts, and in ionic forms. The minerals that 
do not have absorption bands for the NIR region can be 
detected by changes in the hydrogen bonding of salts in 
high humidity samples, theoretically (Shenk et al. 2008).

 
A                                                                                                                             B 

 
 

 

C 

FIGURE 1. Pre-processing stages of amaranth spectra. A. Original spectra of amaranth samples in 
the 400 to 2,490 nm wavelength range, B. 2,6,8,1 treated spectra of samples in the 400 to 2,490 
nm wavelength range, C. 2,6,8,1 and SNV+D treated spectra of samples in the 400 to 2,490 nm 

wavelength range



  3327

TABLE 2. Comparative results from calibration equations for protein%, Fe(ppm), linoleic acid and proline content with different 
mathematical treatments

Constituent M1 Calibration Cross 
validation RPD5

* Constituent M Calibration Cross 
validation RPD

  SEC2 R2* SECV3 1-VR4    SEC R2 SECV 1-VR  

Protein% 0,0,1,1 0.156 0.788 0.151 0.184 2.259 Linoleic 
acid% 0,0,1,1 2.999 0.653 4.199 0.493 1.057

1,4,4,1 0.123 0.894 0.131 0.202 2.589 1,4,4,1 2.364 0.740 3.666 0.543 1.211

1,6,8,1 0.142 0.832 0.146 0.186 2.325 1,6,8,1 2.723 0.689 4.080 0.499 1.088

1,10,10,1 0.142 0.832 0.146 0.186 2.325 1,10,10,1 2.723 0.689 4.080 0.499 1.088

1,12,12,1 0.152 0.799 0.155 0.178 2.197 1,12,12,1 2.916 0.662 4.317 0.477 1.028

2,4,4,1 0.111 0.922 0.144 0.192 2.369 2,4,4,1 2.158 0.764 4.004 0.515 1.108

2,6,8,1 0.112 0.918 0.125 0.205 2.727 2,6,8,1 2.145 0.760 3.479 0.551 1.275

2,10,10,1 0.138 0.842 0.142 0.190 2.399 2,10,10,1 2.646 0.697 3.953 0.510 1.122

2,12,12,1 0.150 0.809 0.150 0.184 2.269 2,12,12,1 2.878 0.670 4.182 0.494 1.061

Fe(ppm) 0,0,1,1 8.239 0.767 12.804 0.559 1.032 Proline 
(μg .g–1) 0,0,1,1 0.931 0.836 2.292 0.532 2.310

1,4,4,1 7.661 0.771 11.942 0.563 1.106 1,4,4,1 0.734 0.948 2.001 0.586 2.647

1,6,8,1 7.525 0.772 11.308 0.566 1.168 1,6,8,1 0.846 0.883 2.227 0.539 2.378

1,10,10,1 7.931 0.769 11.790 0.564 1.120 1,10,10,1 0.846 0.883 2.227 0.539 2.378

1,12,12,1 8.066 0.769 12.069 0.563 1.095 1,12,12,1 0.906 0.848 2.357 0.514 2.247

2,4,4,1 7.448 0.772 12.779 0.558 1.034 2,4,4,1 0.670 0.979 2.186 0.556 2.423

2,6,8,1 7.101 0.775 11.562 0.564 1.143 2,6,8,1 0.666 0.974 1.899 0.595 2.788

2,10,10,1 7.352 0.774 11.511 0.565 1.148 2,10,10,1 0.822 0.893 2.158 0.550 2.454

 2,12,12,1 8.741 0.763 12.424 0.561 1.063  2,12,12,1 0.894 0.859 2.283 0.533 2.319

1Mathematical treatment, 2Standard error of calibration, 3Standart error of cross validation, 4Coefficient of determination in cross validation
*SD/SECV
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TABLE 3. Statistics on scatter correction algorithms for calibration equations for protein%, Fe(ppm), linoleic acid and proline 
content combined with 2,6, 8, 1 mathematical treatment

Constituent S1       Calibration                 Cross validation

 SEC R2 SECV 1-VR RPDc

Protein% SNV+D2 0.126 0.863 0.109 0.204 3.118

SNV3 0.121 0.877 0.109 0.208 3.105

DET4 0.109 0.898 0.098 0.223 3.476

S-MSC5 0.124 0.877 0.112 0.208 3.039

W-MSC6 0.123 0.878 0.112 0.208 3.039

I-MSC7 0.121 0.877 0.110 0.207 3.092

Fe(ppm) SNV+D 8.013 0.728 10.111 0.559 1.307

SNV 8.049 0.728 10.111 0.559 1.307

DET 4.543 0.741 13.011 0.570 1.015

S-MSC 8.049 0.728 10.111 0.559 1.307

W-MSC 8.049 0.728 10.007 0.560 1.320

I-MSC 8.013 0.728 10.111 0.559 1.307

Linoleic acid% SNV+D 2.421 0.714 3.043 0.547 1.459

SNV 2.319 0.726 3.056 0.557 1.452

DET 2.095 0.743 3.392 0.599 1.308

S-MSC 2.381 0.726 3.122 0.559 1.421

W-MSC 2.365 0.727 3.122 0.559 1.421

I-MSC 2.319 0.726 3.069 0.555 1.446

Proline (μg .g–1) SNV+D 0.752 0.915 1.661 0.589 3.189

SNV 0.720 0.930 1.668 0.601 3.175

DET 0.651 0.952 1.852 0.646 2.860

S-MSC 0.739 0.930 1.704 0.603 3.107

W-MSC 0.734 0.931 1.704 0.603 3.107

 I-MSC 0.720 0.930 1.675 0.599 3.161

1Scatter correction algorithm, 2Standard normal variate + detrending, 3Standard normal variate, 4Detrending, 5Standard multiple scatter correction, 6Weighted multiple 
scatter correction, 7Inverse multiple scatter correction
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CALIBRATION

Calibration equations developed using 2,6,8,1 
mathematical operations and SNV+D scatter correction 
method for values other than protein, Fe, linoleic acid 
and proline values are given in Table 4. The coefficients of 
determination (R2), SEC, SECV and 1-VR were obtained 
for all equations. The equation for oleic acid with the 
highest RPDc value (6.176) and the best equation had low 
SEC (0.331) and SECV (0.279) and high R2 (0.913) and 
1-VR (0.822).  While RPDC values of oil (3.301) and Zn 
(3.066) were high, R2, 1-VR, SEC and SECV values were 
0.930, 0.965; 0.893, 0.909; 0.067, 1.762; 0.088, 2.929, 
respectively.  The ash had an acceptable RPDc (1.612) 
value, with an R2 value of 0.707, 1-VR value of 0.541, 
SEC value of 0.221, and SECV value of 0.271. Ca, palmitic 
acid, stearic acid, linolenic acid and arachidic acid had 
RPDc (0.878, 1.071, 1.279, 1.144 and 0.425, respectively) 

and very low R2 (0.453, 0.439, 0.698, 0.677 and 0.353, 
respectively) and 1-VR (-0.182, 0.177, 0.534, 0.619 
and 0.318), respectively. These calibration equations 
can be used for screening because they are within the 
limits of reliable predictability with low SEC (0.059, 
0.472, 0.241, 0.113 and 0.037, respectively) and SECV 
(0.089, 0.569, 0.331, 0.125 and 0.389, respectively). The 
values between 2 and 1.5 indicate usable with caution 
for many applications, while values below 1.5 indicate 
equations that can be used for scanning and some other 
‘approximate’ applications (Williams & Norris 2000). 
The oil and fatty acid results were similar to study on 
olive oil and soybean (Han et al. 2014; Mailer 2004). 
The authors analyzed the reflectance spectral data and 
obtained R2 values of oleic acid and linoleic acid greater 
than 0.97. However, the correlation between stearic acid 
and linolenic acid were poor and could not be used for 
the prediction of its content.

TABLE 4. Statistics on calibration equations representing proximate, mineral and fatty acids and proline level in amaranth 
samples with 2,6,8,1 mathematical treatments and SNV+D scatter correction method

Calibration Cross Validation

 Constituent  N SD  Range      SEC  R2         SECV     1-VR RPDc

Oil % 74 0.291 1.632-3.487 0.067 0.930 0.088 0.893 3.301

Ash % 74 0.449 1.962-4.410 0.221 0.707 0.278 0.541 1.612

Ca% 75 0.780 0.063-0.538 0.059 0.453 0.888 -0.182 0.878

Zn(ppm) 75 0.898 3.628-55.215 1.762 0.965 0.293 0.909 3.066

Palmitic acid% 74 0.609 16.611-18.771 0.472 0.439 0.569 0.177 1.071

Stearic acid% 72 0.423 2.089-4.825 0.241 0.698 0.331 0.534 1.279

Oleic acid% 74 1.727 24.467-34.504 0.331 0.913 0.279 0.822 6.176

Linolenic 
acid% 71 0.143 0.636-1.468 0.113 0.677 0.125 0.619 1.144

Arachidic 
acid% 74 0.165 0.532-0.740 0.037 0.353 0.389 0.318 0.425
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TABLE 5. External validation statistics of NIRS predictive equations proximate, mineral and fatty acids and proline level in 
amaranth

Constituent        N SD Bias r2 a SEPb Slope RPDc
v

Protein % 31 0.063 -0.032 0.792 0.021 0.768 2.967

Oil % 32 0.277 0.000 0.935 0.063 1.000 4.396

Ash % 32 0.405 0.000 0.744 0.242 1.000 1.675

Ca% 32 0.145 0.000 0.524 0.540 1.000 0.268

Fe(ppm) 32 0.995 0.000 0.763 0.636 1.000 1.565

Zn(ppm) 29 0.987 -0.864 0.905 0.269 1.038 3.668

Palmitic acid% 32 0.645 0.000 0.475 0.450 1.000 1.434

Stearic acid% 32 0.218 0.000 0.718 0.230 1.000 0.949

Oleic acid% 32 0.986 0.000 0.930 0.293 1.000 3.366

Linoleic acid% 32 0.472 0.000 0.742 0.226 1.000 2.086

Linolenic acid% 31 0.164 -0.014 0.538 0.132 0.925 1.244

Arachidic acid% 32 0.144 0.000 0.373 0.360 1.000 0.402

Proline (μg .g–1) 32 0.445 0.000 0.932 0.066 1.000 6.692

aCoefficient of determination in external validation, bStandard error of prediction, cRelative predictive determinant of external validation

EXTERNAL VALIDATION

The estimation capabilities of all calibration equations 
with external validation were evaluated in Table 5. 
At this stage, as in calibration and cross-validation, 
optimum equations are selected based on low SEP and 
high coefficients of determination (r2) for external 
validation (Shenk et al. 2008). Except for the equations 
for palmitic acid, Fe and Ca minerals which had 
relatively high error values, all other equations had low 
SEPs. High coefficients of determination was obtained 
for the equations for oil (r2 = 0.935), proline (r2 = 
0.932), oleic acid (r2 = 0.930) and Zn (r2 = 0.905). The 
determination coefficients of protein, ash, Fe, stearic 
acid, and linoleic acid were relatively high (r2 = 0.792, 
0.744, 0.763, 0.718, and 0.742, respectively). The lowest 
values were obtained for Ca, palmitic acid, linolenic 

acid, and arachidic acid (r2 = 0.524, 0.475, 0.538, and 
0.373, respectively). Biases varied around ‘0’ and ‘1’ in 
all equations. The highest RPDv were obtained from the
equations for proline (6.692) and oil (4.396). Protein 
and Zn, oleic acid and linoleic acid had high RPDv 
values (2.967, 3.668, 3.366, 2.086, respectively). RPDv 
values corresponding to ash (1.675) and Fe (1.565) 
were relatively high while those for Ca (0.268), palmitic 
acid (1.434), stearic acid (0.949), linolenic acid (1.244) 
and arachidic acid (0.402) were low. Calibration and 
internal cross-validation results paralleled with minimal 
differences, while external validation results agreed 
with these results. Quampah et al. (2012) reported a high 
R2cv values in predicting oil (0.993) and linoleic acid 
(0.963) in cottonseed kernels. RPDv of these components 
ranged from 11.495-5.026.
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CONCLUSION

In this study, different constituents of amaranth 
plant were determined. The comparative analysis of 
mathematical treatments combined with different scatter 
correction methods should be done as a pre-treatment to 
develop more accurate estimation methods. The results 
from the external validation showed that the prediction 
capabilities of the calibration equations can be used for 
analysis. In the current experiment, protein, oil, Zn and 
proline and oleic acid and linoleic acid showed high 
RPDv (2.967, 4.396, 3.668, 6.692, 3.366, and 2.086, 
respectively), while ash and Fe showed acceptable 
RPDv (1.675 and 1.565, respectively). Protein, oil, 
ash, Fe, Zn, proline, oleic acid, and linoleic acid can be 
predicted accurately using NIR spectroscopy method 
in amaranth breeding programmes. The results of Ca, 
palmitic acid, stearic acid, linolenic acid, and arachidic 
acid may be used for scanning purposes. These results 
suggest that NIR spectroscopy could be suitably used as 
a standard screening method for the contents of these 
eight traits in large scale amaranth breeding programs 
where the use of conventional screening methods may 
be a limiting factor. The inclusion of amaranth cultivars 
of different geographical origins in future study may 
increase the robustness of the equations and lead to the 
sequence of a global calibration for these properties in 
amaranth.
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