A Study on Antibacterial, Antioxidant, and Hepatoprotective Efficacy of Elephantopus scaber L.
(Suatu Kajian Keberkesanan Antibakteria, Antioksidan dan Hepatopelindung Elephantopus scaber L.)

NGUYEN TRONG HONG PHUC & PHAN THANH DAT

School of Education, Can Tho University, Can Tho City, Vietnam

Received: 19 April 2022/Accepted: 9 August 2022

ABSTRACT
Elephantopus scaber is an herb widely used in folk remedies in Vietnam, especially in the treatment of liver disease. However, scientific studies evaluating the activity and ability to treat the disease in a scientific way are still very limited. This study evaluated the antibacterial, antioxidant, acute toxicity and hepatoprotective efficacy of E. scaber extracts. The extracts restricted the growth of 6 types of bacteria, being particularly most effective against E. coli. It was found that the E. scaber leaves extract was more efficient than root, stem, flower, and whole plant extracts. DPPH assay showed that the flower extract had the highest antioxidant activity (EC$_{50}$ = 60.29 µg/mL). The E. scaber extracts (>5000 mg/kg) also did not cause acute toxicity in mice. Additionally, the extracts effectively protected and recovered mice liver cells damaged by CCl$_4$. The reduction of mice liver enzyme levels (AST and ALT) was similar between the extracts and silymarin. This hepatoprotective efficiency was also illustrated by the morphology and histology of the mice liver cells. The extracts healed mice liver cells by recovering the cell diameter, reducing inflammation swelling and increasing Hb concentration.

Keywords: Acute toxicity; antibacterial; antioxidant; Elephantopus scaber; hepatoprotective

INTRODUCTION
The Elephantopus scaber (Asteraceae family) is widely distributed in Vietnam, from the Ha Giang province in the northeast, to different provinces in the Mekong Delta, especially in the An Giang province (Le 2007; Pham 2003). This plant species possesses numerous bioactive compounds, such as phenolic compounds, flavonoids, terpenoids, sesquiterpene lactones, lupeol, lupeol acetate, ursolic acid, stigmasterol steroids, glycosides, alkaloids, quinones, carbohydrates, saponins, and tannins (Das & Bandyopadhyay 2017; Jamali 2017).
These compounds contribute to *E. scaber*'s biological activities, such as anticancer, antimicrobial, antidiabetic, antioxidant, anti-inflammatory, hepatoprotective, anti-parasitic, anti-HIV, anti-asthmatic, improving memory power, nephroprotective, wound healing, and anti-pest activity (Mandal et al. 2019). Therefore, this plant has been used in traditional remedies as an antipyretic, diuretic, and anti-cough agent; as an emollient; and for the treatment of bronchitis, wound healing, gastropathy, nephritis, edema, arthritis, diarrhea, dysentery, blood vomiting, especially hepatitis and cirrhosis (Bich et al. 2006; La et al. 2005; Vo 2012).

Although *E. scaber* is widely used in Vietnamese traditional medicine, to the best of our knowledge, there is a lack of published scientific studies on its biological activities, such as antibacterial, antioxidant, and hepatic protective efficacy. Moreover, although previous studies have shown that secondary compounds in *E. scaber* have antibacterial and antioxidant activities, they have not shown that extracts from *E. scaber* have medicinal properties. This is of particular importance since people often use the whole herb to make traditional medicine. Therefore, this study was conducted using both in vitro and in vivo methods to assess the antibacterial and antioxidant capacity of *E. scaber* extracts, and to evaluate its potential for the clinical treatment of liver disease in humans by using the mouse model.

Materials and Methods

Plant Material

For the experiments, *E. scaber* (12 kg) was obtained from the To mountain in the An Giang Province, Vietnam. It was morphologically classified with reference to An Illustrated Flora of Vietnam and Flora of Vietnam – Asteraceae Dumort (Le 2007).

Preparation of Aqueous Extract

E. scaber and its parts (roots, stems, leaves, and flowers) were collected and dried using a sample drying cabinet set at 50 °C. The dried *E. scaber* parts were then ground into fine powder. Twenty-five grams of the plant powder was then macerated in 750 mL of water and boiled (90 – 100 °C) for 30 minutes in a conical flask. The extract was filtered using 15-20 μm pore size filter paper, and then the filtrate was evaporated using a rotary evaporator (RV 10 digital V-C, IKA, Germany) (Al-Manhel & Kareem Niamah 2012).

Experimental Animals

The study was conducted in accordance with the policy for experimental and clinical studies (Assessment No. AWA2020-02/KSP). Fifty-eight male Swiss mice *Mus musculus* (30-35 g) obtained from the Pasteur Institute in Ho Chi Minh City, Vietnam were used for the experiments. These mice were fed twice per day with a standard diet (containing 38% prude protein) and were acclimatized to experimental conditions (27-32 °C, humidity 65-80%, and 12:12 dark/light cycle) for 7 days before the study. All of the mice were randomly distributed into 10 groups (4 groups for the toxicity test and 6 groups for the hepatoprotective test).

Antibacterial Activity

The antibacterial activity of the *E. scaber* extracts was determined according to Parkavi et al. (2012). Six strains of bacteria that included both Gram negative and positive species were used in the experiment, which were *Bacillus subtilis* (ATCC23857™), *Bacillus cereus* (ATCC14579™), *Escherichia coli* (ATCC25922™), *Salmonella sp.*, *Staphylococcus aureus* (ATCC25923™), and *Listeria innocua*. One-hundred (100) μL of each bacterial species (10^6 CFU/mL) were spread evenly over the surface of LB agar plates. On each plate, seven (7) wells were made with a sterile metallic borer (6 mm in diameter). Following the Zaidan et al. (2005)’, method, 50 μL of distilled water that served as the negative control, ampicillin (0.001 mg/mL) as the positive control, and *E. scaber* extracts at different concentrations (10, 50, 100, 150, and 200 mg/mL) were added into each well. These plates were then incubated at 37 °C for 24 hours. At the end of the incubation period, sterile zone was determined by measuring the diameter and then subtracting 6 mm of well diameter. The tests were triplicated.

Antioxidant Activities by DPPH Antioxidant Assay

The capability of *E. scaber* roots, stems, leaves, flowers, and the whole plant extracts to scavenge the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical was determined according to the method of Aquino et al. (2001) and Zarezade et al. (2018) with some modifications. The reaction mixture consisted of 80 μL of methanol DPPH solution (1000 μg/mL) and 1920 μL of *E. scaber* extract at different concentrations (10, 50, 100, 150, and 200 mg/mL). The absorbance capacity of each treatment was
determined at 515 nm after a 20 minutes incubation at room temperature. Tocopherol (vitamin E) was used as the positive control. EC₅₀ was graphically determined from the graph by plotting the inhibition percentage against the extract concentration.

The free radical scavenging activity (%) was calculated as follows:

\[
\text{Free radical scavenging activity (\%)} = \left(\frac{A_{\text{control}} - A_{\text{sample}}}{A_{\text{control}}} \right) \times 100
\]

ACUTE TOXICITY STUDY OF E. scaber AQUEOUS EXTRACT

The E. scaber whole plant aqueous extract at doses of 0 mg/kg (water), 300 mg/kg, 2000 mg/kg, and 5000 mg/kg were administered orally to four groups of mice, that comprised of 10 male mice (30-35 g) in each group, following the guidelines stipulated by the Organization for Economic Cooperation and Development – Oral Guideline 420 (OECD 2002). The mice were given the extract orally once daily with a maximum volume of 10 mL/kg of body weight. The mice were then observed for behavioral changes for 72 hours.

HEPATOPROTECTIVE ASSAY

Hepatoprotective activity was determined based on the methods of Kang and Koppula (2014) and Xia et al. (2019). A total of 18 mice was equally divided into six groups of three mice each. Group I served as the control and received only the distilled water (1 mL/kg/day). Group II served as the negative control and was treated with 1 mL/kg carbon tetrachloride (CCl₄) (1:4 of CCl₄ in olive oil) once daily. Group III served as the positive control and the mice in this group received 1 mL/kg CCl₄ (1 mL/kg CCl₄) in olive oil) once daily. Group IV, V, and VI received 1 mL/kg CCl₄ (1:4 ratio of CCl₄ in olive oil) and were treated with the E. scaber whole plant extract (200 mg/kg, 400 mg/kg, and 800 mg/kg). All of these treatments were orally administered for 14 days. At the end of the experiment, the animals were humanely sacrificed by stretching the spine after being anesthetized with diethyl ether. Blood and liver tissue samples were then collected. The livers were fixed in 10% neutral formalin for histological examination. Blood was collected from each animal for red blood cell count (RBC), hemoglobin concentration (Hb), serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity to examine the liver function. Liver samples were preserved in 10% buffered formalin and dehydrated in ascending grades of ethanol and cleared in xylene. The specimens were then embedded in paraffin and cut into sections with 5 μm thickness. The sections were stained with hematoxylin and eosin Y (H&E). The degree of necrosis, hepatocyte size, and hepatocyte nuclear size were observed under a CX23 light microscope (Olympus, Japan) with a digital camera using the OptixCam Touview software (Microscope, USA). Hematological parameters including RBC and Hb were determined using a CELL-DYN Ruby Automated Hematology Analyzer (Abbott, USA). AST and ALT concentrations were determined using the Cobas clinical chemistry automatic analyzer (La Roche Ltd., Japan).

STATISTICAL ANALYSIS

Experimental data were processed and graphed using Microsoft Excel software (Ver.2019; Microsoft Inn., USA). Differences among means was determined using IBM SPSS (SPSS Inn., USA) via ANOVA and Duncan post-hoc at 95% confidence.

RESULTS AND DISCUSSION

ANTIBACTERIAL ACTIVITY OF E. scaber

The E. scaber leaf extract showed the highest activity against all tested pathogen strains, followed by the flower extract, and whole plant extract. Meanwhile, the root and stem extracts consistently showed the lowest antibacterial activity (Figure 1).

Table 1 compares the antibacterial activity of all E. scaber extracts at the highest concentration (200 mg/mL). It was found that all of the extracts exhibited the highest antibacterial activity against E. coli (p < 0.05) at this concentration. E. scaber extracts also inhibited the growth of L. innocua and Salmonella sp. which were not reported in previous studies (Ahmed Chyad Ali et al. 2018; Anitha, Antonisamy & Jeeva 2012; Aslam et al. 2016; Jamali 2017; Jenny et al. 2012; Pandian, Banu & Kumar 2006).

Virulent strains of E. coli can cause gastroenteritis, urinary tract infections, neonatal meningitis, haemolytic uraemic syndrome, peritonitis, mastitis, and septicaemia (Anitha, Antonisamy & Jeeva 2012). In this study, E. coli was inhibited by the E. scaber extracts, indicating its promising use in the treatment of urinary tract infections.
TABLE 1. Inhibition zone of *E. scaber* at 200 mg/mL

<table>
<thead>
<tr>
<th>E. scaber extract</th>
<th>E. coli</th>
<th>Sal. sp.</th>
<th>S. aureus</th>
<th>L. innocua</th>
<th>B. subtilis</th>
<th>B. cereus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>3.33±0.58A</td>
<td>4.00±0.00A</td>
<td>0.33±0.58A</td>
<td>1.33±0.58A</td>
<td>2.00±0.00A</td>
<td>1.33±0.58A</td>
</tr>
<tr>
<td>Stem</td>
<td>6.33±0.58B</td>
<td>3.67±0.58A</td>
<td>2.33±1.15AB</td>
<td>3.67±1.15B</td>
<td>5.67±0.58B</td>
<td>1.67±0.58AB</td>
</tr>
<tr>
<td>Leaf</td>
<td>21.00±1.00C</td>
<td>15.00±2.00D</td>
<td>12.33±1.15D</td>
<td>11.67±0.58C</td>
<td>12.67±1.53D</td>
<td>10.67±1.15D</td>
</tr>
<tr>
<td>Flower</td>
<td>16.33±1.53D</td>
<td>11.67±2.52C</td>
<td>5.33±0.58C</td>
<td>12.00±1.00C</td>
<td>8.00±2.65C</td>
<td>4.33±1.15C</td>
</tr>
<tr>
<td>Whole plant</td>
<td>9.33±0.58C</td>
<td>6.00±1.73A</td>
<td>4.33±0.58BC</td>
<td>5.67±0.58B</td>
<td>5.00±1.00D</td>
<td>3.00±0.00BC</td>
</tr>
</tbody>
</table>

Mean ± SD with the same letter in the column are not significantly different (Duncan, P > 0.05)
and neonatal meningitis. The *E. scaber* extracts also displayed inhibitory activity against *B. cereus*, which can cause nausea, vomiting, and diarrhea (Carlin & Nguyen-The 2013; Pexara & Govaris 2010) when present in high numbers. This result supports the folk-medicinal use of this plant in treating these symptoms (Ho 2003; La et al. 2005; Vo 2012).

ANTIOXIDANT ACTIVITY OF *E. scaber* EXTRACT

The antioxidant properties of various extracts from many plants have been of great interest in academia, food, cosmetic, and pharmaceutical industries since they can be used as natural additives. Moreover, there is a growing tendency to replace synthetic antioxidants with naturally-derived ones (Manssouri, Znini & Majidi 2020). Antioxidants are able to reduce DPPH radicals, causing a decrease in their absorbance at 515 nm. This DPPH radical scavenging ability may be due to the antioxidants’ ability to donate hydrogen (Nithya & Madhavi 2017). DPPH is a stable free radical that accepts an electron or hydrogen to form a stable diamagnetic molecule. DPPH, which is purple in methanol, will turn into a yellow solution in the presence of a free radical scavenging agent (Molyneux 2004).

In this study, the scavenging effect of the *E. scaber* extract linearly increased when its concentration rose. Thus, linear regression equations and EC$_{50}$ values were calculated from the results of the *E. scaber* extracts and compared with that of vitamin E (Table 2).

<table>
<thead>
<tr>
<th>E. scaber extract</th>
<th>Linear regression equation</th>
<th>R2</th>
<th>EC$_{50}$ (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>$y = 0.0742x – 2.5786$</td>
<td>0.9309</td>
<td>708.61</td>
</tr>
<tr>
<td>Stem</td>
<td>$y = 0.2476x – 4.5242$</td>
<td>0.9443</td>
<td>220.21</td>
</tr>
<tr>
<td>Leaf</td>
<td>$y = 0.3775x – 0.1904$</td>
<td>0.9759</td>
<td>132.95</td>
</tr>
<tr>
<td>Flower</td>
<td>$y = 0.8953x – 3.9778$</td>
<td>0.9555</td>
<td>60.29</td>
</tr>
<tr>
<td>Whole plant</td>
<td>$y = 0.5132x – 3.6688$</td>
<td>0.9657</td>
<td>104.62</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>$y = 4.3883x – 4.1490$</td>
<td>0.9695</td>
<td>12.34</td>
</tr>
</tbody>
</table>

According to the results obtained, none of the *E. scaber* extracts showed antioxidant activity as strong as vitamin E. The flower extract had the highest antioxidant activity in comparison with the other *E. scaber* extracts (EC$_{50}$ = 60.29 µg/mL). The whole plant extract was ranked second (EC$_{50}$ = 104.62 µg/mL), followed by leaf and stem extracts at 132.95 µg/mL and 220.21 µg/mL, respectively. Although the antioxidant activity of *E. scaber* was lower than vitamin E, it could potentially be used in the liver healing process. This is because this process is accelerated by antioxidant activity with almost negligible side effects, thus herbal medicines have been used for this purpose (Chaudhari & Mahajan 2016).

ACUTE TOXICITY OF *E. scaber* EXTRACT

Although medicinal plants contain elements that are essential for humans, these may become toxic when present at high concentrations (Brown 2017b, 2017a) hepatotoxic herbs and dietary supplements based on PubMed case reports exists in a summarized tabular form. Methods Documented case reports of herbs or dietary supplements (DS; includes herbs. One of the important steps to improve the overall safety and quality of medicinal plants and herbal products is to determine their acute toxicity (Street et al. 2008). In this study, the acute oral toxicity assay was carried out based on the OECD Guideline 420 (OECD 2002). The results showed that all of the treated mice could tolerate and remained alive after 72 hours of treatment with *E. scaber* at 300, 2000, and 5000 mg/kg without any abnormalities. Therefore, the LD$_{50}$ value of the *E. scaber* extract was unable to be calculated and is considered nontoxic in oral consumption up to 5000 mg/kg in mice.

No statistically significant differences in AST, ALT, RBC, and Hb were observed between the treated groups and the control (Table 3). The Hb concentrations and
RBC numbers showed that the extract had no potential in inducing anemia. Also, the AST and ALT levels showed that normal functioning of the hepatocellular membrane. A dysfunction of the hepatocellular membrane or general liver damage will result in increased levels of AST and ALT (Saha et al. 2011). Thus, the normal values of AST, ALT, RBC, and Hb in this test showed a good safety profile of the E. scaber extract on liver function.

The livers, kidneys, and spleen morphologies of the treated mice were indistinguishable from the untreated control (Figure 2). The stained and sliced liver was exhibited normal cell morphology after 72 hours of treatment at 5000 mg/kg. No necrosis or fatty infiltration were observed, indicating the good safety profile of the extract. In conclusion, even at the highest concentration of 5000 mg/kg, the E. scaber extract did not lead to acute toxicity in mice.

TABLE 3. AST, ALT, RBC, and Hb values of acute toxicity test groups

<table>
<thead>
<tr>
<th>Group</th>
<th>AST (U/L)</th>
<th>ALT (U/L)</th>
<th>RBC (mil/mm³)</th>
<th>Hb (g/100 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>122.67±44.30a</td>
<td>36.00±9.17a</td>
<td>6.56±0.13a</td>
<td>12.20±1.68a</td>
</tr>
<tr>
<td>300 mg/kg</td>
<td>107.00±22.11a</td>
<td>43.67±9.87a</td>
<td>7.15±0.26a</td>
<td>17.89±1.63b</td>
</tr>
<tr>
<td>2000 mg/kg</td>
<td>108.00±32.05a</td>
<td>42.33±3.79a</td>
<td>6.16±0.37a</td>
<td>13.13±0.37a</td>
</tr>
<tr>
<td>5000 mg/kg</td>
<td>109.33±20.43a</td>
<td>36.33±5.51a</td>
<td>6.46±0.98a</td>
<td>14.23±0.69a</td>
</tr>
</tbody>
</table>

Means ± SD in a column having the same letters are not significantly different (Duncan, p > 0.05)

HEPATOPROTECTIVE EFFECT OF E. scaber EXTRACT
AST and ALT

CCl₄ is commonly used as a standard hepatotoxin for in vivo studies (Rajesh & Latha 2001). The hepatotoxic mechanism is via transformation of CCl₄ into a highly reactive trichloromethyl (CCl₃‾) radical by cytochrome P450 in the liver endoplasmic reticulum. CCl₃‾ then reacts readily with O₂ to form the peroxy-trichloromethyl (CCl₃OO‾) radicals. These free radicals initiate lipid peroxidation, thereby disrupting the structure and function of cell membranes (Abdel-Ghany et al. 2016).

When hepatic dysfunction takes place, AST and ALT are leaked from the cytoplasm into the bloodstream. Therefore, by measuring these two enzymes, liver cell damage could be assessed (Rajesh & Latha 2001). The current study showed that the CCl₄ treated group had the highest AST and ALT activities. Specifically, the levels of AST (1160.00±497.80 U/L) and ALT (1805.00±1303.90 U/L) were significantly higher (p < 0.05) in comparison to the distilled water group (AST: 51.00±2.65 U/L; ALT: 31.67±6.66 U/L) (Table 4).

<table>
<thead>
<tr>
<th>Group</th>
<th>AST (U/L)</th>
<th>AST-RP (%)</th>
<th>ALT (U/L)</th>
<th>ALT-RP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water</td>
<td>51.00±2.65</td>
<td>100.00±0.00</td>
<td>31.67±6.66</td>
<td>100.00±0.00</td>
</tr>
<tr>
<td>CCl₄</td>
<td>1160.00±497.80</td>
<td>0.00±0.00</td>
<td>1805.00±1303.90</td>
<td>0.00±0.00</td>
</tr>
<tr>
<td>Silymarin</td>
<td>399.67±118.50</td>
<td>63.40±12.62</td>
<td>618.00±174.25</td>
<td>67.90±11.54</td>
</tr>
<tr>
<td>200 mg/kg</td>
<td>395.67±317.30</td>
<td>75.28±20.31</td>
<td>493.00±344.07</td>
<td>81.0±9.72</td>
</tr>
<tr>
<td>400 mg/kg</td>
<td>521.00±288.50</td>
<td>67.86±19.63</td>
<td>763.00±558.61</td>
<td>59.43±1.94</td>
</tr>
<tr>
<td>800 mg/kg</td>
<td>230.33±208.35</td>
<td>85.22±13.93</td>
<td>405.33±405.18</td>
<td>78.62±12.30</td>
</tr>
</tbody>
</table>

Means ± SD in columns having the same letter are not significantly different (Duncan, p>0.05). AST-RP: reduced performance of AST; ALT-RP: reduced performance of ALT

On the other hand, silymarin, whose most active flavonoid component is silybin, has a powerful protective effect against CCl₄ hepatotoxicity (Abdel-Ghany et al. 2016). In the present study, the silymarin treated positive control group, and all E. scaber extracts (200 mg/kg, 400 mg/kg and 800 mg/kg) treated groups showed significant reduction in AST and ALT levels compared to the CCl₄ group (p < 0.05) (Table 4). The AST and ALT reduction efficiency of both silymarin and the E. scaber extracts was similar, at 63% to 85% (p > 0.05). This indicates the hepaprotective potential of the E. scaber extract against CCl₄.

RED BLOOD CELL AND HEMOGLOBIN

In this study, the RBC and Hb of experimental mice treated with E. scaber extract were counted to investigate its hematopoietic ability (Figure 4). The results showed that the distilled water control group had the highest number of RBC (7.91±1.11 million/mm³), whereas the CCl₄, silymarin, and E. scaber extract treatment groups had similar numbers of RBC (p > 0.05). This indicates that silymarin and E. scaber extracts were unable to reduce the destruction of erythrocytes by CCl₄ in this study (Figure 3(A)).

The CCl₄ group had the lowest Hb concentration (11.77±1.62 g/100 mL). Meanwhile, the Hb concentrations in the silymarin and E. scaber extract treatment groups increased from 13.29±1.96 g/100 mL to 15.02±1.55 g/100 mL, which were similar to the distilled water group 14.19±0.82 g/100 mL (p < 0.05). Therefore, the E. scaber extracts increased the Hb concentration in mice treated with CCl₄ (Figure 3(B)).

DIAMETER OF HEPATOCYTES

In this study, the RBC and Hb of experimental mice treated with E. scaber extract were counted to investigate its hematopoietic ability (Figure 4). The results showed that the distilled water control group had the highest number of RBC (7.91±1.11 million/mm³), whereas the CCl₄, silymarin, and E. scaber extract treatment groups had similar numbers of RBC (p > 0.05). This indicates that silymarin and E. scaber extracts were unable to reduce the destruction of erythrocytes by CCl₄ in this study (Figure 3(A)).

The CCl₄ group had the lowest Hb concentration (11.77±1.62 g/100 mL). Meanwhile, the Hb concentrations in the silymarin and E. scaber extract treatment groups increased from 13.29±1.96 g/100 mL to 15.02±1.55 g/100 mL, which were similar to the distilled water group 14.19±0.82 g/100 mL (p < 0.05). Therefore, the E. scaber extracts increased the Hb concentration in mice treated with CCl₄ (Figure 3(B)).
The hepatocyte diameter in the CCl₄ group was the widest at 46.25 ± 6.72 µm (Figure 4), in comparison with the other treatments (p < 0.05). This result is similar to the study of Ho et al. (2012), in which the hepatocytes were ballooned due to macrovesicular steatosis. In the silymarin and E. scaber extract treatment groups, there was a decrease in hepatocyte diameter compared to the CCl₄ group. The E. scaber extract at a concentration of 800 mg/kg had more significant difference in hepatocyte diameter (28.67 ± 5.18 µm) in comparison with the distilled water control group (27.27 ± 3.16 µm). Thus, E. scaber extracts showed the ability to restore damaged hepatocytes.

The histology of the mouse liver is shown in Figure 5. Liver sections of normal control mice showed normal hepatic cells with well-preserved cytoplasm, prominent nuclei, and well brought-out central veins (Figure 5(A), 5(A’)). Meanwhile, CCl₄ induced centrilobular necrosis.
which spread to the hepatic cells surrounding the central vein. It also caused extensive infiltration of lymphocytes and Kupffer cells, and necrosis with the loss of nuclei. The presence of small foci of necrotic cells and the occurrence of steatosis or accumulation of fatty droplets were detected in many regions of the liver sections of CCl\textsubscript{4} treated mice.

In this study, the large cells surrounding the necrotic zone are ballooned hepatocytes that might be due to macrovesicular steatosis. Their enlarged cytoplasm led to cell membrane between the cells to stick together, causing unidentifiable capillary spokes (Figure 5(B), 5(B')). This result is consistent with previous studies of CCl\textsubscript{4} effects on the liver by Athokpam, Bawari and Choudhury (2017), Kang and Koppula (2014), and Singhal and Gupta (2012).

FIGURE 5. The histopathology of mice liver. A, A': distilled water group; B, B': CCl\textsubscript{4} group; C, C': CCl\textsubscript{4}+silymarin group; D, D': CCl\textsubscript{4}+E. scaber extract (200 mg/kg) group; E, E': CCl\textsubscript{4}+E. scaber extract (400 mg/kg) group; F, F': CCl\textsubscript{4}+E. scaber extract (800 mg/kg) group

Mice treated with silymarin after being administered CCl\textsubscript{4} had recovery of liver cells (Figure 5(C), 5(C')). These cells were arranged in series towards the central vein. The phagocytic cells of these tissue were significantly reduced in comparison to those of the CCl\textsubscript{4} treated group. This concentration around vascular structures, which demonstrates the hepatoprotective ability of silymarin, has also been observed in other studies (Athokpam, Bawari & Choudhury 2017; Yang et al. 2019; Zarezade et al. 2018).

Similarly, hepatocytes of mice treated with E. scaber extracts (200, 400, and 800 mg/kg) also recovered from CCl\textsubscript{4} damage (Figure 5(D), 5(D'), 5(E), 5(E'), 5(F), 5(F')). This was showed by the reduction of phagocytic organizations after continuous treatment of these extracts for 14 days. Additionally, the cell enlargement was reduced and the cells were arranged in series, leading to identifiable capillary spokes.

CONCLUSION

We have found that the aqueous extracts of *E. scaber* possess strong biological activities such as antioxidant, antibacterial, and hepatoprotective activity. The flowers and leaves of the *E. scaber* had higher biologically activities than other parts of the plant, so they can be used to prepare essences from this part. Furthermore, the whole plant extracts did not cause any acute toxicity to
experimental mice, even at high concentrations (5000 mg/kg). However, subclinical and clinical follow-up studies are needed to optimize the use of E. scaber extracts as a drug.

REFERENCES

*Corresponding author; email: nthphuc@ctu.edu.vn