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Outlier Detection in Balanced Replicated Linear Functional Relationship Model
(Pengesanan Data Terpencil dalam Model Hubungan Fungsian Linear Bereplika Seimbang)

AZURAINI MOHD ARIF, YONG ZULINA ZUBAIRI* & ABDUL GHAPOR HUSSIN

ABSTRACT

Identification of outlier in a dataset plays an important role because their existence will affect the parameter 
estimation. Based on the idea of COVRATIO statistic, we modified the procedure to accommodate for replicated linear 
functional relationship model (LFRM) in detecting the outlier. In this replicated model, we assumed the observations are 
equal and balanced in each group. The derivation of covariance matrices using Fisher Information Matrices is also 
given for balanced replicated LFRM. Subsequently, the cut-off points and the power of performance are obtained via a 
simulation study. Results from the simulation studies suggested that the proposed procedure works well in detecting outliers 
for balanced replicated LFRM and we illustrate this with a practical application to a real data set. The implication of the 
study suggests that with some modification to the procedures in COVRATIO, one could apply such a method to identify 
outliers when modelling balanced replicated LFRM which has not been explored before.
Keywords: Covariance matrix; covratio; influential observation; linear functional relationship model; outliers

ABSTRAK

Pengesanan data terpencil di dalam set data adalah penting kerana kewujudannya akan mengganggu penganggaran 
nilai parameter. Berdasarkan idea statistik COVRATIO, kami mengubah suai prosedur tersebut supaya bersesuaian bagi 
model hubungan fungsian linear bereplika dan seimbang dalam pengesanan data terpencil. Setiap unsur dalam kumpulan 
adalah sama dan seimbang dalam model replikasi ini. Pembentukan matriks kovarians melalui matrik maklumat Fisher 
juga diberikan bagi model ini. Seterusnya, titik potongan dan kuasa prestasi bagi kaedah yang dicadangkan diperoleh 
melalui kajian simulasi. Hasil keputusan daripada kajian simulasi menunjukkan prosedur yang dicadangkan 
berfungsi dengan baik dalam pengesanan data terpencil untuk model hubungan fungsian linear bereplika dan seimbang 
dan kami memberikan contoh ke atas set data sebenar. Implikasi daripada kajian ini menunjukkan bahawa kita boleh 
mengesan data terpencil dengan sedikit pengubahsuaian terhadap prosedur COVRATIO bagi model hubungan fungsian 
linear bereplika dan seimbang kerana pengesanan data terpencil menggunakan model ini masih belum lagi diteroka.
Kata kunci: Covratio; data berpengaruh; matriks kovarians; model hubungan fungsian linear; terpencil 

INTRODUCTION 
The linear functional relationship model (LFRM) is one of 
the families in the error-in-variables model (EIVM) besides 
the linear structural relationship model and ultrastructural 
relationship model. Many authors have considered 
LFRM over the years in fitting the parameters (Barnett 
1970; Cheng & Van Ness 1994; Kendall & Stuart 1979; 
Lindley 1947). Furthermore, the LFRM can be extended 
to unreplicated and replicated functional relationship 
models, with certain recommendation (Dorff & Gurland 
1961). In unreplicated LFRM, the assumption on the 
ratio of error variances, 𝜆𝜆 = 𝜎𝜎2

𝜏𝜏2, is needed to estimate the 
parameters and usually equal to 1. However, in the absence 

of knowledge on the ratio of error variances, λ, the data 
can be transformed into pseudo replicates which is called 
as replicated and used maximum likelihood method to 
estimate all parameters (Hussin et al. 2005). 

However, the estimation of the parameter becomes 
inconsistent when outliers occur in the dataset. Outliers 
are observations in the dataset which follow unusual 
patterns and occur because of gross measurement and 
recording errors (Aggarwal 2013). As mentioned by 
Hampel et al. (1986), “A routine data set typically contains 
about 1-10% outliers and even the highest quality data 
set cannot be guaranteed free of outliers”. Hence, to 
evaluate their influence on the model, it is important to 
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locate the outliers. The presence of outliers changes the 
parameter estimates for example in the linear regression 
for circular variables when estimating the parameters on 
a wind direction dataset (Hussin et al. 2013; Rambli et al. 
2015) and also on an eye dataset (Alkasadi et al. 2019). 

Extensive works on outlier detection have been 
well established in linear models (Cheng & Van Ness 
1994; Ibrahim et al. 2013; Satman et al. 2021; Wong 
1989). Applications using COVRATIO statistics can 
be seen in physiological, epidemiology, medicine and 
many different disciplines (Alcaraz-Ibáñez et al. 2021; 
Satari & Khalif 2020; Viechtbauer & Cheung 2010). 
Several researchers proposed a group deleted version to 
identify outliers based on the COVRATIO statistic because 
this procedure is simple, widely used and had been 
well established in both linear and circular regression 
modelling (Belsley et al. 1980; Rambli et al. 2016). As 
for errors-in-variable models, outlier detection using 
COVRATIO statistics has been developed for the linear 
model (Ghapor et al. 2014; Mamun et al. 2019) as well 
as for circular variables (Hussin et al. 2010; Mokhtar 
et al. 2019). Additionally, the COVRATIO method has 
been used in detecting the outlier in unreplicated linear 
functional relationship model (Ghapor et al. 2014). 
However, works on identifying outliers in replicated 
linear functional relationship model are somewhat 
limited; this could largely due to the complexity of 
the model with little use in modelling real data sets. 
Nevertheless, this does not deem the model less 
important; in fact, this is the motivation of this study. 
Thus, in this article, we propose the COVRATIO statistic 
in detecting a single outlier in balanced replicated LFRM 
and investigate on the suitability of the procedure.  

This paper is organized as follows: Firstly, we review 
the replicated linear functional relationship model and 
derive the covariance matrix of the balanced replicated 
LFRM. Secondly, we present the COVRATIO statistic 
in identifying the outlier. Thirdly, the procedures are 
described by simulation study to determine the cut-off 
point. Next, the performance of the statistic proposed is 
investigated. Finally, we illustrate the detection of the 
outlier using examples of some data.

REPLICATED LINEAR FUNCTIONAL RELATIONSHIP 
MODEL

In replicated LFRM, suppose xij and  yij are the observed 
values of the linear variables Xi and Yi. For any fixed Xi, 
we assume that may be replicated observations of  Xi 
and Yi  occurring in p groups and measured with errors 
δijand εij, respectively. This can be written as  
 

     
                               (1)

where α is the intercept and β is the slope parameters, 
respectively. We assume the error terms δij and εij follow 
a normal distribution where δij~N(0,σ^2 ) and εij~N(0,τ2), 
respectively (Mohd Arif et al. 2020). For balanced 
replicated LFRM, we assumed the elements in the groups 
are equal and balanced which is m. For example, if the 
dataset consists of 60, then the data can be divided 
randomly into 6 groups to obtain the pseudo-replicates 
and each group has 10 observations or elements that are 
balanced and equal. In this case, p = 6 and m = 10.

The common method that is frequently used 
in estimating the parameters in a replicated linear 
functional relationship model is the Maximum 
Likelihood Estimation (Barnett 1970; Hussin 2005). 
In the case of balanced replicated LFRM, the log-
likelihood function can be expressed as

 

(2)

There are p + 4 parameters to be estimated and 
can be obtained by the first partial derivative of the 
log-likelihood function as given in (2) with respect to 
𝛼̂𝛼, 𝛽̂𝛽, 𝜎̂𝜎2, 𝜏̂𝜏2 and 𝑋̂𝑋𝑖𝑖 respectively, and equating to zero 
(Barnett 1970). From Barnett (1970), by setting the equal 
size in each group, m, the estimates of 𝛼̂𝛼, 𝛽̂𝛽, 𝜎̂𝜎2, 𝜏̂𝜏2 and 𝑋̂𝑋𝑖𝑖  
can be solved iteratively by setting initial estimates 
from the unreplicated linear functional relationship 
model by assuming λ = 1 or σ2 = τ2  or until all parameters 
converge. Thus, we can obtain the parameters in the order 
of 
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∑
𝑥𝑥

𝑖𝑖𝑖𝑖
−𝑋𝑋

𝑖𝑖( )2

σ2  − 1
2

𝑖𝑖=1

𝑝𝑝

∑
𝑗𝑗=1

𝑚𝑚

∑
𝑦𝑦

𝑖𝑖𝑖𝑖
−α−β𝑋𝑋

𝑖𝑖( )2

τ2

(2)

There are parameters to be estimated and can be obtained by the first partial derivative of the𝑝𝑝 + 4( )

log-likelihood function as given in (2) with respect to and , respectively, andα
^

,  β,  σ
^ 2

, τ
^2

𝑋𝑋
^

𝑖𝑖

equating to zero (Barnett 1970). From Barnett (1970), by setting the equal size in each group,

m, the estimates of and can be solved iteratively by setting initial estimatesα
^

,  β
^

,  σ
^ 2

, τ
^2

𝑋𝑋
^

𝑖𝑖

from the unreplicated linear functional relationship model by assuming orλ = 1 σ2 = τ2

  𝑋̂𝑋𝑖𝑖 =
1
∆̂𝑖𝑖
{𝑚𝑚𝑥̅𝑥𝑖𝑖.
𝜎̂𝜎2 + 𝑚𝑚𝛽̂𝛽

𝜏̂𝜏2 (𝑦̅𝑦𝑖𝑖. − 𝛼̂𝛼)},                                                                  (3) 

𝜎̂𝜎2 = ∑ ∑ (𝑥𝑥𝑖𝑖𝑖𝑖−𝑋̂𝑋𝑖𝑖)
2𝑚𝑚

𝑗𝑗=1
𝑝𝑝
𝑖𝑖=1

∑ 𝑚𝑚𝑝𝑝
𝑖𝑖=1

    ,  𝜏̂𝜏2 = ∑ ∑ (𝑦𝑦𝑖𝑖𝑖𝑖−𝛼̂𝛼−𝛽̂𝛽𝑋̂𝑋𝑖𝑖)
2𝑚𝑚

𝑗𝑗=1
𝑝𝑝
𝑖𝑖=1

∑ 𝑚𝑚𝑝𝑝
𝑖𝑖=1

 ,                                      (4) 

𝛼̂𝛼 = ∑ 𝑚𝑚𝑝𝑝
𝑖𝑖=1 (𝑦̅𝑦𝑖𝑖.−𝛽̂𝛽𝑋̂𝑋𝑖𝑖)

∑ 𝑚𝑚𝑝𝑝
𝑖𝑖=1

   ,   𝛽̂𝛽 = ∑ 𝑚𝑚𝑋̂𝑋𝑖𝑖(𝑦̅𝑦𝑖𝑖.−𝛼̂𝛼)𝑝𝑝
𝑖𝑖=1
∑ 𝑚𝑚𝑋̂𝑋𝑖𝑖2
𝑝𝑝
𝑖𝑖=1

                                                (5) 
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wherewhere 𝑥̅𝑥𝑖𝑖. =
∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

, 𝑦̅𝑦𝑖𝑖. =
∑𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

 and ∆̂𝑖𝑖=
𝑚𝑚𝑖𝑖
𝜎̂𝜎2 +

𝑚𝑚𝑖𝑖𝛽̂𝛽2

𝜏̂𝜏2 . Thus, 

𝐹𝐹 = [
𝐵𝐵 0 𝐸𝐸
0 𝐶𝐶 0
𝐸𝐸𝑇𝑇 0 𝐷𝐷

] 

 

and where 𝑥̅𝑥𝑖𝑖. =
∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

, 𝑦̅𝑦𝑖𝑖. =
∑𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

 and ∆̂𝑖𝑖=
𝑚𝑚𝑖𝑖
𝜎̂𝜎2 +

𝑚𝑚𝑖𝑖𝛽̂𝛽2

𝜏̂𝜏2 . Thus, 

𝐹𝐹 = [
𝐵𝐵 0 𝐸𝐸
0 𝐶𝐶 0
𝐸𝐸𝑇𝑇 0 𝐷𝐷

] 

 

 Thus, 
for balanced replicated LFRM, all parameters can be 
estimated.

Next, we derived the asymptotic covariance of 
parameters for balanced replicated LFRM using the 
Fisher Information matrix. By considering the first 
partial derivative and minus the expected value of the 
second partial derivative of the log-likelihood function, 
we obtain the estimated Fisher information matrix, F, 
for 𝑋̂𝑋1,⋯ , 𝑋̂𝑋𝑝𝑝, 𝜎̂𝜎2, 𝜏̂𝜏2, 𝛼̂𝛼, 𝛽̂𝛽, 𝜎̂𝜎2, 𝜏̂𝜏2 and 𝑋̂𝑋𝑖𝑖  and 𝛼̂𝛼, 𝛽̂𝛽, 𝜎̂𝜎2, 𝜏̂𝜏2 and 𝑋̂𝑋𝑖𝑖  given by

where B is a p × p diagonal matrix having same elements 
equal to  𝑚𝑚𝑖𝑖

𝜎𝜎2 +
𝑚𝑚𝑖𝑖𝛽𝛽2
𝜏𝜏2      while E is a p × 2 matrix given 

by 𝐸𝐸 = [

𝑚𝑚1𝛽𝛽
𝜏𝜏2

𝑚𝑚1𝑋𝑋1𝛽𝛽
𝜏𝜏2

⋮ ⋮
𝑚𝑚𝑝𝑝𝛽𝛽
𝜏𝜏2

𝑚𝑚𝑝𝑝𝑋𝑋𝑝𝑝𝛽𝛽
𝜏𝜏2

]   = [
𝑛𝑛
2𝜎𝜎4 0
0 𝑛𝑛

2𝜏𝜏4
]       𝐷𝐷 = [

𝑚𝑚𝑚𝑚
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖2
𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

] , C is a 2 × 2 matrix given by  

𝐸𝐸 = [

𝑚𝑚1𝛽𝛽
𝜏𝜏2

𝑚𝑚1𝑋𝑋1𝛽𝛽
𝜏𝜏2

⋮ ⋮
𝑚𝑚𝑝𝑝𝛽𝛽
𝜏𝜏2

𝑚𝑚𝑝𝑝𝑋𝑋𝑝𝑝𝛽𝛽
𝜏𝜏2

]   = [
𝑛𝑛
2𝜎𝜎4 0
0 𝑛𝑛

2𝜏𝜏4
]       𝐷𝐷 = [

𝑚𝑚𝑚𝑚
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖2
𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

] and D is a 2 × 2  matrix given by D =

𝐸𝐸 = [

𝑚𝑚1𝛽𝛽
𝜏𝜏2

𝑚𝑚1𝑋𝑋1𝛽𝛽
𝜏𝜏2

⋮ ⋮
𝑚𝑚𝑝𝑝𝛽𝛽
𝜏𝜏2

𝑚𝑚𝑝𝑝𝑋𝑋𝑝𝑝𝛽𝛽
𝜏𝜏2

]   = [
𝑛𝑛
2𝜎𝜎4 0
0 𝑛𝑛

2𝜏𝜏4
]       𝐷𝐷 = [

𝑚𝑚𝑚𝑚
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

𝑚𝑚∑ 𝑋𝑋𝑖𝑖2
𝑝𝑝
𝑖𝑖=1
𝜏𝜏2

] , respectively.

The asymptotic covariance matrix of 𝑋̂𝑋1,⋯ , 𝑋̂𝑋𝑝𝑝, 𝜎̂𝜎2, 𝜏̂𝜏2, 𝛼̂𝛼, 𝛽̂𝛽, 𝜎̂𝜎2, 𝜏̂𝜏2 and 𝑋̂𝑋𝑖𝑖  and 
𝛼̂𝛼, 𝛽̂𝛽, 𝜎̂𝜎2, 𝜏̂𝜏2 and 𝑋̂𝑋𝑖𝑖  is the bottom right minor of order 4 × 4 of the inverse 

of matrix F which is our main interest. From the theory 
of partitioned matrices (Graybill 1961), this is given by,

It can be shown that for (D - ET B-1 E) -1 is as follows:

In particular, we have the following results:

                                                 
(6)

                                                 

(7)
                                         

(8)

COVRATIO STATISTIC FOR BALANCED REPLICATED 
LFRM

The  COVRATIO  statistic has been used in detecting 
the outliers in the linear regression model and also in 
unreplicated LFRM (Belsley et al. 1980; Ghapor et 
al. 2014). The idea of COVRATIO statistic is based on 
the determinantal ratio between determinant of the 
covariance matrix for a full data set and a reduced data 
set (Belsley et al. 1980). This is given by

where |COV| is the determinant of the covariance matrix 
for a full data set and |COV(-i)| is the determinant for the 
reduced data set by excluding the ith observation. If the 
ratio is close to one, then the ith observation is consistent 
with other observations. In this study, the idea is extended 
to the replicated LFRM in which the cut-off values and 
formula will be derived.  

For balanced replicated LFRM, the ratio of statistic 
is suggested by a slightly different procedure. The 
proposed procedure is based on the determinant of 
the asymptotic covariance of the parameters from 
(8).  Although the |COV| is the determinant of the 
covariance matrix for a full data set, the |COV*(-i)| is 
obtained by deleting ith observation of every group and 
this observation is repeated with the mean of every group 
to make balanced replication of all sample groups. The 
use of mean substitution may be based on the fact that 
the mean is a reasonable guess of a value for a randomly 
selected observation from a normal distribution (Acock 
2005). This is given by
                                               

   (9)

where |COV*(-i)| is a determinant of the covariance matrix 
by the proposed method. Any |COVRATIO(-i)

by

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

− 1| | = 𝐶𝐶𝑂𝑂𝑉𝑉| |
𝐶𝐶𝑂𝑂𝑉𝑉

(−𝑖𝑖)| |

where is the determinant of the covariance matrix for a full data set and is𝐶𝐶𝐶𝐶𝐶𝐶| |  𝐶𝐶𝐶𝐶𝐶𝐶
(−𝑖𝑖)| |

the determinant for the reduced data set by excluding the observation. If the ratio is close𝑖𝑖𝑡𝑡ℎ

to one, then the observation is consistent with other observations. In this study, the idea is𝑖𝑖𝑡𝑡ℎ

extended to the replicated LFRM in which the cut-off values and formula will be derived.

For balanced replicated LFRM, the ratio of statistic is suggested by a slightly different

procedure. The proposed procedure is based on the determinant of the asymptotic covariance

of the parameters from (8). Although the is the determinant of the covariance matrix𝐶𝐶𝐶𝐶𝐶𝐶| | 

for a full data set, the is obtained by deleting ith observation of every group and this𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

*|||
|||

observation is repeated with the mean of every group to make balanced replication of all

sample groups. The use of mean substitution may be based on the fact that the mean is a

reasonable guess of a value for a randomly selected observation from a normal distribution

(Acock 2005). This is given by

(9)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

− 1| | = 𝐶𝐶𝑂𝑂𝑉𝑉| |

𝐶𝐶𝑂𝑂𝑉𝑉
−𝑖𝑖( )

*|||
|||

where is a determinant of the covariance matrix by the proposed method. Any𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

*|||
|||

with observation exceeds the cut-off points will be considered as an𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

− 1| |
outlier. As mentioned earlier, for the balanced replicated LFRM, the cut-off points are

obtained through the simulation studies by following the idea from (Ghapor et al. 2014;

Mamun et al. 2019).

1| with 
observation exceeds the cut-off points will be considered 
as an outlier. As mentioned earlier, for the balanced 
replicated LFRM, the cut-off points are obtained through 
the simulation studies by following the idea from (Ghapor 
et al. 2014; Mamun et al. 2019). 

The asymptotic covariance matrix of and is the bottom right minor of orderσ
^ 2

, τ
^2

, α
^

 β
^

of the inverse of matrix F which is our main interest. From the theory of partitioned4×4

matrices (Graybill 1961), this is given by,

𝑉𝑉𝑉𝑉𝑉𝑉
^

σ
^ 2

 τ
^2

 α
^

   β
^

 ⎡
⎢
⎣

⎤
⎥
⎦

= 𝐶𝐶−1 0 0 𝐷𝐷 − 𝐸𝐸𝑇𝑇𝐵𝐵−1𝐸𝐸( )
−1

 ⎡
⎢
⎣

⎤
⎥
⎦

It can be shown that for is as follows:𝐷𝐷 − 𝐸𝐸𝑇𝑇𝐵𝐵−1𝐸𝐸( )
−1

𝐷𝐷 − 𝐸𝐸𝑇𝑇𝐵𝐵−1𝐸𝐸( )
−1

= 𝑚𝑚τ2+𝑚𝑚β2σ
2

𝑚𝑚2 𝑝𝑝
𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
2−

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖( )2

⎰
⎱

⎱
⎰

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
2 −

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
 −

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
 𝑝𝑝 ⎡⎢⎢⎣

⎤⎥⎥⎦

In particular, we have the following results:

(6)𝑉𝑉𝑉𝑉𝑉𝑉
^

 α
^( ) =

𝑚𝑚τ2+𝑚𝑚β2σ2( )
𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
2

𝑚𝑚2 𝑝𝑝
𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
2−

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖( )2

⎰
⎱

⎱
⎰

(7)𝑉𝑉𝑉𝑉𝑉𝑉
^

 β
^( ) = 𝑚𝑚τ2+𝑚𝑚β2σ2( )𝑝𝑝

𝑚𝑚2 𝑝𝑝
𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
2−

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖( )2

⎰
⎱

⎱
⎰

(8)𝐶𝐶𝐶𝐶𝐶𝐶
^

 α
^

, β
^( ) =−

𝑚𝑚τ2+𝑚𝑚β2σ2( )
𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖

𝑚𝑚2 𝑝𝑝
𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖
2−

𝑖𝑖=1

𝑝𝑝

∑ 𝑋𝑋
𝑖𝑖( )2

⎰
⎱

⎱
⎰

.

COVRATIO STATISTIC FOR BALANCED REPLICATED LFRM

The COVRATIO statistic has been used in detecting the outliers in the linear regression

model and also in unreplicated LFRM (Belsley et al. 1980; Ghapor et al. 2014). The idea of

COVRATIO statistic is based on the determinantal ratio between determinant of the

covariance matrix for a full data set and a reduced data set (Belsley et al. 1980). This is given

|𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(−𝑖𝑖) − 1| = |𝐶𝐶𝐶𝐶𝐶𝐶|
|𝐶𝐶𝐶𝐶𝐶𝐶(−𝑖𝑖)|

 

by

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

− 1| | = 𝐶𝐶𝑂𝑂𝑉𝑉| |
𝐶𝐶𝑂𝑂𝑉𝑉

(−𝑖𝑖)| |

where is the determinant of the covariance matrix for a full data set and is𝐶𝐶𝐶𝐶𝐶𝐶| |  𝐶𝐶𝐶𝐶𝐶𝐶
(−𝑖𝑖)| |

the determinant for the reduced data set by excluding the observation. If the ratio is close𝑖𝑖𝑡𝑡ℎ

to one, then the observation is consistent with other observations. In this study, the idea is𝑖𝑖𝑡𝑡ℎ

extended to the replicated LFRM in which the cut-off values and formula will be derived.

For balanced replicated LFRM, the ratio of statistic is suggested by a slightly different

procedure. The proposed procedure is based on the determinant of the asymptotic covariance

of the parameters from (8). Although the is the determinant of the covariance matrix𝐶𝐶𝐶𝐶𝐶𝐶| | 

for a full data set, the is obtained by deleting ith observation of every group and this𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

*|||
|||

observation is repeated with the mean of every group to make balanced replication of all

sample groups. The use of mean substitution may be based on the fact that the mean is a

reasonable guess of a value for a randomly selected observation from a normal distribution

(Acock 2005). This is given by

(9)𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

− 1| | = 𝐶𝐶𝑂𝑂𝑉𝑉| |

𝐶𝐶𝑂𝑂𝑉𝑉
−𝑖𝑖( )

*|||
|||

where is a determinant of the covariance matrix by the proposed method. Any𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

*|||
|||

with observation exceeds the cut-off points will be considered as an𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
−𝑖𝑖( )

− 1| |
outlier. As mentioned earlier, for the balanced replicated LFRM, the cut-off points are

obtained through the simulation studies by following the idea from (Ghapor et al. 2014;

Mamun et al. 2019).

where 𝑥̅𝑥𝑖𝑖. =
∑𝑥𝑥𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

, 𝑦̅𝑦𝑖𝑖. =
∑𝑦𝑦𝑖𝑖𝑖𝑖
𝑚𝑚𝑖𝑖

 and ∆̂𝑖𝑖=
𝑚𝑚𝑖𝑖
𝜎̂𝜎2 +

𝑚𝑚𝑖𝑖𝛽̂𝛽2
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The asymptotic covariance matrix of and is the bottom right minor of orderσ
^ 2

, τ
^2

, α
^

 β
^

of the inverse of matrix F which is our main interest. From the theory of partitioned4×4

matrices (Graybill 1961), this is given by,
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⎢
⎣

⎤
⎥
⎦

It can be shown that for is as follows:𝐷𝐷 − 𝐸𝐸𝑇𝑇𝐵𝐵−1𝐸𝐸( )
−1
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In particular, we have the following results:
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.

COVRATIO STATISTIC FOR BALANCED REPLICATED LFRM

The COVRATIO statistic has been used in detecting the outliers in the linear regression

model and also in unreplicated LFRM (Belsley et al. 1980; Ghapor et al. 2014). The idea of

COVRATIO statistic is based on the determinantal ratio between determinant of the

covariance matrix for a full data set and a reduced data set (Belsley et al. 1980). This is given
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TABLE 1. Values of sample size, group and elements

Sample size, n Group, p Elements, m

20 4 5

40 5 8

60                 6 10

80 8 10

100 10 10

132 11 12

180 12 15

300 15 20

DETERMINATION OF CUT-OFF POINTS FOR COVRATIO 
STATISTIC

We carried out a simulation study to obtain the 
cut-off points of COVRATIO statistic for balanced 
replicated LFRM. Eight different sample sizes, n = 
20,40,60,80,100,132,180  and 300 are used according to 
the division of sample size in Table 1.

Furthermore, five values of τ2 = 0.2,0.4,0.6,0.8, and 
1.0, respectively, are used. For each sample of size n 
and τ2, a set of normal random errors are generated from 
the normal distribution with mean 0 and variance τ2, 
respectively. By adopting the steps suggested by Ghapor 
et al. (2014), the procedure of COVRATIO statistic 
in Step 6 was slightly modified to accommodate for 
balanced replicated LFRM. The steps are listed down in 
detail: 
Step 1 Generate a fixed  Xi = 10𝑋𝑋𝑖𝑖 = 10 (𝑖𝑖𝑝𝑝)  of size p, with i = 
1, 2, … , p where p is the number of groups. Without 
loss of generality, the intercept, slope and error variance 
parameters of balanced replicated LFRM are fixed at α 
= 1, β = 1 and σ2 = 1, respectively. Step 2 Generate two 
random error terms δij and εij from N(0,σ2) and N(0,τ2), 

respectively. Step 3 Calculate the observed values of 
xij and yij and also the value of Yi using (1). Step 4 Fit 
the generated data to balanced replicated LFRM and 
estimate parameters using (3), (4) and (5), respectively. 
Step 5 Find the variance-covariance matrix and 
calculate the |COV| for all data. Step 6 Delete the ith 
row of every group and replicate with the mean for 
observation in every group from the generated sample 
of both xij and yij where i = 1, 2, …, p and j = 1, 2, 
…, m. Repeat steps 4 till steps 6 to obtain |COV(-i)|. 
Step 7 Calculate (COVRATIO(-i) and find the value of 
|COVRATIO(-i)-1| for all i. Step 8 Specify the maximum 
value of |COVRATIO(-i)-1|.

These steps are repeated for 5000 times for each 
combination of sample size n and τ2. Then, the 5% upper 
percentiles of the maximum values of |COVRATIO(-i)-1| 
is calculated. This upper percentile is used as the cut-
off points in identifying the outliers for the balanced 
replicated linear functional relationship model. Table 2 
shows the value of 5% upper percentiles of each value of 
n and τ2, respectively. From this table, the cut-off points 
show a monotonic decreasing function of sample size n. 

TABLE 2. The 5% upper percentile points of   |COVRATIO(-i)-1| at τ2 = 0.2, 0.4, 0.6, 0.8 and 1.0

Sample size, n 0.2 0.4 0.6 0.8 1.0

20 1.1321 1.9974 2.5915 2.8700 3.0111

40 1.3591 1.2633 1.3131 1.3179 1.3985

60 0.9804 0.9529 0.9281 0.9078 0.8913

80 0.9625 0.9158 0.8807 0.8498 0.8227

100 0.9401 0.8797 0.8322 0.7931 0.7632

132 0.8967 0.8086 0.7491 0.7049 0.6705

180 0.8245 0.7139 0.6431 0.5977 0.5613

300 0.6741 0.5412 0.4719 0.4288 0.3969
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The arithmetic mean of the values for the respective  
n are calculated and the best fit is obtained by using the 
least squares method as in Figure 1. For 5% significant 
level, we obtain the equation of the series trend line line 
y = 9.6293n -0.526. This trend line will be used as a cut-off 
point in detecting the outliers. The next step of the study 
is to determine the power performance of the proposed 
method.

POWER OF PERFORMANCE FOR COVRATIO STATISTIC

Again, a Monte Carlo simulation method is used to 
investigate the performance of |COVRATIO(-i)-1| in 
identifying the outlier in the balanced replicated LFRM. 
Four different sample sizes of 40, 80, 100, and 180 
are considered in this study by using the procedures 
described earlier to generate the data set. The power of 
performance |COVRATIO(-i)-1| are tested when correctly 
detecting the outlier. To determine the performance of the 
COVRATIO statistic, contamination is randomly applied; 
for example at observation c, where yc is contaminated 
as follows:

yc = α + βXC + φC

where yc and XC are the value of the cth observation of 
both variables y and X, respectively, after contamination 
and φC is error taken from a normal distribution with 

mean zero and different variances of 6,8,10,12,14, and 
16, respectively (Ghapor et al. 2014; Mamun et al. 
2019). The generated data are refitted and the maximum 
of |COVRATIO(-i)-1|  statistic is specified. This procedure 
has correctly identified the outlier in the data set if the 
values of |COVRATIO(-i)-1| is maximum and exceed the 
stated cut-off point. The process is repeated 5000 times 
and the power of performance is then examined by 
calculating the percentage of the correct detection of 
the contaminated observation at cth position. Figure 
2 shows the power of performance of |COVRATIO(-i)-1| 
statistics for n = 80 (8×10) for τ2 = 0.2,0.4,0.6,0.8, 
and 1.0. From this plot, it can be concluded that as τ2 

decreases, the power of performance in detecting the 
correct outlier increases. 

Figure 3 shows the power of performance of  
||COVRATIO(-i)-1| statistics for τ2 = 0.2. We can say that 
the power of performance is independent of the sample 
size by looking at both plots as shown in Figures 2 and 3.

APPLICATION

We consider two data sets where both have 10 groups 
and three elements in each group. The first data set is from 
simulated data generated from replicated LFRM by 
setting the parameters α = 0, β = 1, σ2  = 1 and  τ2  = 0.2. 
Next, we contaminated the observation randomly. The 
COVRATIO statistic for each value is calculated and the 

FIGURE 1. Graph of the power series in finding the general formula for the cut-
off point at 5% significant level
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TABLE 3. The COVRATIO statistic for simulated data

Index COVRATIO(-i)-1| Index COVRATIO(-i)-1| Index COVRATIO(-i)-1|
1 0.9726 11 0.3911 21 0.4404
2 0.9760 12 0.4826 22 0.7032
3 0.9781 13 0.0230 23 0.6234
4 0.8263 14 0.2483 24 0.6850
5 0.1331 15 0.2449 25 0.9171
6 0.7490 16 0.0253 26 0.9071
7 0.3807 17 0.0068 27 0.9234

8 7.2855 18 0.0121 28 0.9686
9 0.4360 19 0.4510 29 0.9709
10 0.3444 20 0.2116 30 0.9635

FIGURE 3.  Power of performance for |COVRATIO(-i)-1| when τ2 = 0.2

FIGURE 2. Power of performance for |COVRATIO(-i)-1|  for n = 80
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results are given in Table 3. Based on the formulation as 
given in Table 2, the cut-off point for  is calculated and the 
value 1.609 obtained as the cut-off point at 5% significant 
level. Figure 4 clearly shows that the COVRATIO value 

for 8th observation is 7.286 which exceeds the cut-off 
points of 1.609. Hence, the developed test statistic and 
the cut-off points correctly detect the 8th observation as 
an outlier in the simulated data set.

FIGURE 4. The graph of the |COVRATIO(-i)-1| statistic for simulated data

 

 

 

Next, we consider another dataset taken from 
Altman and Bland (1999). We use a subsample of the 
original data containing 30 observations. The data set 
measures the systolic blood pressure which simultaneous 
measurements were made by two experienced observers 
denoted as J and R. In this case, we have 10 groups (or 
subjects) and each group have three sets of readings that 
were made in quick succession. Since there is no outlier 
in the original data, we insert the outlier randomly into 

the original data by following Kim (2000) and Imon and 
Hadi (2008). The COVRATIO statistic for each value is 
calculated and the results are given in Table 4. The cut-
off point for n = 30 is 1.609 obtained as before at 5% 
significant level. From Figure 5, we observe that the value 
of  |COVRATIO(-i)-1| for the 11th observation is 1.849, which 
exceeds the cut-off point value of 1.609 at 5% significant 
level. To conclude, our cut-off point correctly identifies 
that the 11th observation as an outlier in this data set.

TABLE 4. The COVRATIO statistic for real data

Index |COVRATIO(-i)-1| Index |COVRATIO(-i)-1| Index |COVRATIO(-i)-1|

1 0.2170 11 1.8490 21 0.5978
2 0.1225 12 0.1424 22 0.0106
3 0.0987 13 1.0353 23 0.0406
4 0.0029 14 0.3322 24 0.0604
5 0.0246 15 0.3566 25 0.5508
6 0.0130 16 0.8987 26 0.0136
7 0.9255 17 0.4328 27 0.3087
8 0.9635 18 0.9015 28 0.0358
9 0.9572 19 0.8729 29 0.3755
10 0.0083 20 0.0130 30 0.1895
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CONCLUSION

We extend the idea of COVRATIO statistics for detecting 
a single outlier because it is a new topic and has not been 
explored in balanced replicated LFRM. The COVRATIO 
statistic is used because it is a simple procedure, widely 
used and easy to implement to conform with balanced 
replicated LFRM. In adopting the COVRATIO procedure to 
balanced replicated LFRM, we need to determine the cut-
off point and measure the power of performance as well 
as a slight modification to COVRATIO to accommodate 
the replicates of the model. Using simulation studies, 
we identified the cut-off point for this statistic and have 
shown that this statistic performs well in identifying an 
outlier. A practical example is illustrated with real data 
set. As an implication, this study provides empirical 
evidence that COVRATIO can be utilized for detecting 
outliers on balanced replicated LFRM; thus providing a 
better understanding to the approach in outlier detection 
in the model.
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