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Comparison of Three Water Indices for Tropical Aquaculture Ponds Extraction 
using Google Earth Engine

(Perbandingan Tiga Indeks Air untuk Pengekstrakan Kolam Akuakultur Tropika menggunakan Google Earth Engine)
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ABSTRACT

Information on the spatial distribution of aquaculture ponds, especially the inland brackish aquaculture, is crucial 
for effective and sustainable aquaculture management. Google Earth Engine (GEE) has been utilized to quickly map 
aquaculture ponds in different parts of the world, but the application is still limited in tropical regions. Selection of 
an optimal water index is essential to accurately map the aquaculture ponds from the Landsat 8 satellite images that 
are available in GEE. This study aims to evaluate the capability of three different water indices, namely Normalized 
Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI) and Automated Water 
Extraction Index (AWEI), in mapping of the aquaculture ponds in Sungai Udang, Pulau Pinang, Malaysia. The results 
show that MNDWI is the best index for aquaculture ponds extraction in Sungai Udang, with an accuracy of 81.87% and 
Kappa coefficient of 0.61. Meanwhile, the accuracy of NDWI and AWEI as compared to the digitized aquaculture ponds 
are 58.21 and 61.60%, and Kappa coefficient of 0.33 and 0.36, respectively. Then, MNDWI was applied to calculate the 
spatial changes of aquaculture ponds from 2014 to 2020. The result indicates that the area of aquaculture ponds has 
expanded by 26.16% since the past seven years.
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ABSTRAK

Maklumat ruang kolam akuakultur terutamanya kolam akuakultur air payau pedalaman adalah penting dalam 
keberkesanan pengurusan akuakultur yang lestari. Google Earth Engine (GEE) telahpun dimanfaatkan dalam pemetaan 
kolam akuakultur di beberapa negara, namun aplikasinya di kawasan tropika masih kurang. Pemilihan indeks air yang 
sesuai boleh memetakan kolam akuakultur dengan tepat daripada imej Landsat 8 dengan menggunakan GEE. Kajian 
ini bertujuan untuk menilai kemampuan tiga jenis indeks air yang bernama Normalized Difference Water Index 
(NDWI), Modified Normalized Difference Water Index (MNDWI) dan Automated Water Extraction Index (AWEI) dalam 
pemetaan kolam akuakultur di Sungai Udang, Pulau Pinang. Hasil daripada kajian ini, MNDWI menunjukkan ketepatan 
yang paling tinggi dalam memetakan kolam akuakultur di Sungai Udang, dengan ketepatan sebanyak 81.87% dan 
nilai pekali Kappa 0.61. Manakala bagi NDWI dan AWEI pula, ketepatan kedua-dua indeks air ini adalah 58.21 dan 
61.60%, serta nilai pekali Kappa 0.33 dan 0.36 sahaja. Dengan ini, MNDWI telah diguna untuk memperoleh perubahan 
ruang kawasan kolam-kolam akuakultur di Sungai Udang dari tahun 2014 sehingga 2020. Hasilnya menunjukkan 
kawasan kolam-kolam ini telah berkembang sebanyak 26.16% dalam masa tujuh tahun.
Kata kunci: Akuakultur; Google Earth Engine; Landsat; Malaysia; tropika 

INTRODUCTION

The Food and Agricultural Organization (FAO 2020) 
reported that the fish consumption has increased 
significantly from 5.2 kg/capita in 1961 to 19.4 kg/capita in 
2017 due to the expansion of fish production and imports. 

In fact, Malaysia is one of the highest consumers of fish 
in the world, with 59 kg/capita in 2016 (Khor et al. 2020). 
Due to the decline in marine-capture fish production, 
aquaculture has become a crucial source for supplying 
protein to human beings in the future. The rapid expansion 
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of aquaculture ponds has led to significant harm to the 
surrounding environment and ecosystems. However, 
information on the aquaculture pond’ distribution and 
pattern are still incomplete in many countries, including 
Malaysia. Therefore, remote sensing and Geographical 
Information System (GIS) play a vital role in providing 
the basic geospatial information of aquaculture ponds for 
effective and sustainable aquaculture management.

Google Earth Engine (GEE) is a powerful cloud-
based platform for processing very large amounts of 
over 40 years’ satellite images, without the need of high-
performance computer systems and huge data storage 
devices (Gorelick et al. 2017). In particular, GEE users 
manage to search millions of individual images and 
select the most appropriate images based on user-defined 
spatial, spectral and temporal criteria. GEE has become 
popular since 2013 (Tamiminia et al. 2020), focusing in 
the applications of land use change detection (Ghorbanian 
et al. 2020; Zurqani et al. 2018), forest mapping 
(Koskinen et al. 2019), disaster reduction (DeVries et 
al. 2020), crop monitoring (You & Dong 2020) and water 
management (Worden & de Beurs 2020).

Visual interpretation is commonly used to extract 
the aquaculture ponds from satellite imagery. Several 
researchers have applied an automated extracted 
approach to utilize the GEE in aquaculture pond 
mapping. Xia et al. (2020) automatically extracted 
the aquaculture ponds from 2016 to 2019 in Shanghai, 
China, using GEE. A similar study has been conducted 
by Duan et al. (2020) in Jiangsu province for a longer 
time period of 1988 to 2018. With the help of GEE, 
Duan et al. (2019) conducted a national scale GEE-based 
aquaculture ponds mapping for the east coast China and 
reported the total aquaculture land area of about 15632.64 
km2. However, the application of GEE in extracting the 
spatial distribution of aquaculture ponds is still limited 
in tropical regions.

To improve the detection of aquaculture ponds, 
the outcomes from different data sources, classification 
methods or water indices can be firstly compared for 
selecting the optimal inputs and methods. Water index 
plays a critical role to detect and delineate surface 
water by emphasizing the spectral characteristics of 
water features using band math. For instance, Worden 
and de Beurs (2020) found the modified Normalized 
Difference Water Index (MNDWI) performed better than 
the Automated Water Extraction Index (AWEI) and the 
Normalized Different Water Index (NDWI) (McFeeters 
1996) for extracting surface water in the Caucasus. A 

further investigation on identifying a suitable water 
index is needed for extracting tropical aquaculture ponds 
under the GEE platform. 

This study aims to compare three water indices, 
MNDWI, NDWI, and AWEI, in aquaculture pond mapping 
using GEE. Then, the optimal water index was used to 
detect the spatial distribution of aquaculture ponds in 
Sungai Udang that were located in southwestern part of 
Pulau Pinang from 2014 to 2020. The findings of this 
study can be used as a reference for developing better 
water indexes to extract aquaculture ponds in tropical 
regions.

MATERIALS AND METHODS

STUDY AREA

Sungai Udang is located in the south-western part of 
Penang, Malaysia, between longitudes of 100°23’49.6”E 
and 100°28’01.8”E and latitudes of 5°07’13.1”N and 
5°11’31.5”N, was selected as study site. This area belongs 
to the tropical monsoon climate which receives high 
amounts of precipitation and sunlight throughout the 
year. Lying along the seaside and the river mouth, the 
topography of the study area is flat, with the majority of 
the land cover type of agriculture (Tew et al. 2019), making 
Sungai Udang a geographically and environmentally 
suitable place for inland aquaculture activities. Sungai 
Udang is a Chinese fishery village and famous local 
seafood wholesale market in Penang (Lim 2015). Figure 
1 shows the aquaculture ponds are usually in rectangular 
shape to raise different type of fishes, prawns, cuttlefish 
and crabs.

DATA COLLECTION

Landsat 8 is the eighth satellite in the Landsat program 
under the American Earth observation satellite that 
launched on 11 February 2013. The Landsat 8 images 
are freely available to the public for studies related to the 
Earth system. Landsat 8 Operational Land Imager (OLI)/
Thermal Infrared Sensor (TIRS) image collection from 
2014 to 2020 in the GEE were used in this study. One of 
the advantages of using satellite images from GEE is to 
obtain cloud-masked images from the collections directly 
with the established GEE algorithms (Aziz et al. 2020). 
The broad spectral range of Landsat 8 enables top-of-
atmosphere radiances for various types of surfaces with 
OLI to show higher response among different bands (Barsi 
et al. 2014). The infrared bands in the sensor enabled 
water pixels’ delineation more explicit. 
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WATER INDEX

Mapping of the earth surface and open water surface 
with remote sensing technology is a common practice 
around the world (Wang et al. 2020b). One of the methods 
for open surface waterbody mapping is through water 
indices (Chen et al. 2020a, 2020b; Wang et al. 2020a), 
because it is easy to implement at low computational 
errors. The three common water indices used in surface 
water extraction are the NDWI, MNDWI and AWEI. 

Water index is a multispectral band rationing 
technique that reduces a large proportion of the 
topographic effect, making the scattered reflectance 
dependent from light diffusion (Holben & Justice 1981). 
Gao (1996) proposed NDWI that made use of two 
narrow channels cantered near 0.86 and 1.24 μm, which 
is the green and near infrared (NIR) band. Later, Xu 
(2006) introduced a modified version of NDWI by 
substituting the NIR with the middle infrared band (MIR) 
that can be found in band 5 in Landsat TM or band 6 in 
Landsat OLI. MNDWI returns greater differences between 
water, pasture and vegetation surfaces. 

With the recommendation addressed by Ji et al. 
(2009) and Xu (2006), the implementation of NDWI 

threshold should be adjusted to match a reference dataset 
with finer resolution, for example, involving the Short 
Wave Infrared (SWIR) band, in order to map the surface 
water features. As mapping of water pixels adopts 
reflectance in the infrared bands, water classification may 
encounter obstacle on shadow from mountains, buildings 
and roads. Therefore, Feyisa et al. (2014) introduced 
the AWEI that implied five spectral bands to maximize 
separability of water and non-watery pixels through band 
differencing and different coefficients. The equations of 
the water indices are expressed as below:

(1)

(2)

(3)

(4)

where in Landsat 8 imagery, ρgreen equals to the band 3; 
ρNIR equals to band 5; ρSWIR1 equals to band 6 and ρSWIR2 
equals to band 7. 

FIGURE 1. Study area map: (a) location of Sg Udang in Penang; (b) location 
of study area in Peninsular Malaysia; (c) distribution of the aquaculture ponds 

digitized from the GEE

 

NDWI = 
(𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔− 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁)
(𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁) 

MNDWI = 
(𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔− 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1)
(𝜌𝜌𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔+ 𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1) 

AWEInsh = 4 × (ρgreen - ρSWIR1) – (0.25 × ρNIR + 2.75 × ρSWIR2) 

AWEIsh = ρblue + 2.5 × ρgreen - 1.5 × (ρNIR + ρSWIR1) – 0.25 × ρSWIR2 
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According to Feyisa et al. (2014), the two AWEI 
algorithms can be used separately or together. However, 
due to the presence of a highly reflective surface in our 
study area that existed on the zinc rooftop around the 
aquaculture farms (Yu et al. 2020), therefore, only the 
AWEInsh was adopted in this study.

GOOGLE EARTH ENGINE

GEE is a cloud-based platform for large geospatial 
datasets at minimal computing resource access with 
JavaScript (Gorelick et al. 2017). In order to achieve 
openness in geospatial research, the GEE has a big 
research community for result sharing and problem 
discussions. Another advantage of using GEE is the ready-
to-use Earth Engine public data catalogue that enables 
users to retrieve the time series satellite imagery collection 
archive (Amani et al. 2020).

In this study, the cloud-mask Landsat 8 image 
collection function in GEE was used to produce cloud-free 
images. The cloud masking was done in the way that the 
multi-level cloud detection models stored as APIs in 

GEE filtered the cloud contains and automatically ignored 
the pixels that were recognized as cloud and replaced by 
the historical cloud-free dataset (Yin et al. 2020).

The derivation of the band ratios is done within the 
GEE platform with the Earth Engine APIs (Nguyen et al. 
2019) according to the indices that we have identified 
earlier. Spectral filtering was done by setting the threshold 
for masking out pixels with values higher than 0, 
according to the theory of positive values indicating 
water bodies. The extracted water bodies in 2020 were 
then exported for accuracy assessment with geographic 
information system (GIS) software. 

A total of 590 aquaculture ponds that have been 
digitized from Google Earth Pro’s high-resolution satellite 
images were used as references to validate the mapping 
of aquaculture ponds. The consumer accuracy and 
Kappa coefficient approaches were used in the accuracy 
assessment. The consumer accuracy is the percentage of 
correctly classified pixels to the total number of pixels, 
meanwhile the Kappa coefficient is an agreement 
indicator between the classified pixels with the ground 
truth. The methods workflow of this study is shown as in 
Figure 2.

FIGURE 2. Methods flowchart of this study
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RESULTS AND DISCUSSION

PERFORMANCE OF THE WATER INDICES

The threshold for water pixel extraction is set constant 
at 0 for NDWI, MNDWI, and AWEI, as recommended by 
Zhai et al. (2020). Table 1 shows the statistical results of 
the accuracy assessment for all the three water indices. 
Whereas, the band rationing resulted in images shown 
in Figure 3. In general, the performance of MNDWI 

is the best among the evaluated water indices. The 
accuracy of MNDWI in mapping the aquaculture ponds is 
81.87%, with a Kappa coefficient of 0.61, which means 
the result shows a substantial agreement. The superior 
performance of MNDWI in surface water extraction 
was also reported by Ji et al. (2009). Meanwhile, for the 
performance of NDWI and AWEI, the accuracy computed 
was 58.21 and 61.60% and the Kappa coefficient of 0.33 
and 0.36, which showed a fair agreement.

TABLE 1. Performance of each water indices in mapping aquaculture pond of year 2020

Year Parameter Percentage % Kappa Coefficient

2020 NDWI 58.21 0.33

2020 MNDWI 81.87 0.61

2020 AWEI 61.60 0.36

FIGURE 3. Result raster for each water indices: (a) NDWI; (b) MNDWI; (c) AWEI

By looking at the values of the water indices 
separately, AWEI returned a larger water index range 
as compared to NDWI and MNDWI. This large gap 
made the differentiation between water and non-water 
pixels more significant, therefore creating a clearer edge 
boundary than NDWI. However, the aquaculture pond 
characteristics by AWEI were not distinctive compared 
to those with MNDWI.

However, water-containing pixels may be referred 
to vegetation covers as well. For example, the NIR band 
in NDWI was found to extract moisture from vegetation, 
as oil palm is dominant in the study area. Therefore, 
the evapotranspiration from oil palm plantations was 
reflected in the NDWI extracted map. Besides that, NDWI 
showed negative values for mixed water pixels, which 

matches with the results obtained by Ji et al. (2009). For 
instance, the majority of the aquaculture ponds resulted 
in negative values, as shown in Figure 3(a). By contrast, 
the characteristics of MNDWI that are considered the 
Short Wave Infrared 1 (SWIR1) band with a finer spectral 
wavelength can better capture the aquaculture ponds 
due to the lesser interference of evapotranspiration from 
vegetation covers.

According to  Feyisa et  a l .  (2014) ,  AWEI 
demonstrated a good performance in extracting water 
pixels from shadow at high albedo features due to the 
broader range of wavelengths in the band rationing. As 
Sungai Udang is situated near to the river mouth with flat 
terrain (Figure 4(c)), the albedo variation caused by the 
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shadow effect was not high, thus AWEI might not be the 
most suitable index to be used to map our aquaculture 

ponds. In fact, AWEI is more suitable to be applied in 
urbanized regions with a higher albedo variation.

FIGURE 4. (a) The phytoplankton growth in one of the fish ponds; (b) Sungai Udang 
aquaculture farm and (c) location of Sungai Udang as captured from Google Earth

MAPPING OF AQUACULTURE PONDS IN SG UDANG

As MNDWI showed a higher accuracy than other 
tested water indices in extracting the aquaculture pond 
information, the index was applied to the images from 

2014 to 2020 for studying the temporal changes of the 
ponds. Figures 5 and 6 show the spatial and temporal 
changes of the aquaculture ponds in Sungai Udang, 
respectively.

FIGURE 5. (Spatial changes of the aquaculture ponds in Sungai Udang, Pulau Pinang
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There is a significant expansion of the aquaculture 
ponds in the study region from 2014 to 2020 as shown 
in Figures 5 and 6. The expansion of the aquaculture 
ponds are all inland brackish aquaculture types along 
the Sungai Udang. The aquaculture ponds have been 
expanded from 2014 to 2020 by 26.16%, which is 
equivalent to 96300 m2. This expansion can be witnessed 
in all the three clusters of aquaculture ponds.

The expansion of the fishponds is a result from 
Penang’s aquaculture industry advancement drive. In 
2015, Penang’s aquaculture production achieved the 
highest revenue in Malaysia, contributing 97,000 metric 
tons and worth RM1.4 billion of food fish for domestic 
consumption and exports (Vaghefi 2017). The importance 
of the aquaculture industry in Penang, envisioned 
towards sustainable aquaculture that supplies food fish 
and induced job opportunities to the locals has therefore 
created future potential to further increase the production 
in order to meet future market demand. In this case, the 
current challenges in the aquaculture industry such as 
pollution and water quality and natural disasters like 
typhoons and monsoon would need GIS and remote 
sensing technologies aid to manage the aquaculture 
ponds better. For example, stakeholders could utilize 
GIS technology to monitor the water level and quality 
of the ponds as well as recording the species breed in 
each pond to better manage the fish feeding practices. 
Modernization and diversification of agricultural 
production is one of the targeted aims in the Penang2030 
vision that could place Penang as an advanced Green 
Valley and aquaculture industrial zone.

DISCUSSION

The growth of phytoplankton in the aquaculture ponds 
as shown in Figure 4(a) may be one of the reasons that 

contributed to the errors in aquaculture ponds extraction. 
The band ratioing computation that involves the blue-
green reflectance bands is less sensitive towards algal 
concentrations that live with reflectance colour dissolved 
organic matters and total suspended matters that existed 
on the water surfaces (Blondeau-Patissier et al. 2014). 
In other words, the existence of phytoplankton caused 
the wavelength absorption and scattering to be lesser 
than usual, and therefore resulting in lower reflectance 
recorded (Soja-Woźniaka et al. 2020). Water surface 
colour captured by satellite in the study region was not 
the usual colour (Figure 4(c)), where this could somehow 
have resulted in different spectral reflectance values in 
the original images.

The growth of phytoplankton in the study region 
is common because the aquaculture activities induce 
dissolved organic matter into the water from the fish 
feed and the waste excretion by the fishes. Without 
proper waste management and water quality monitoring, 
especially during the Movement Control Order earlier 
this year, algal bloom may increase in the aquaculture 
ponds and affect the ponds extraction using water indices. 
Another major limitation of this study was the medium 
spatial resolution of Landsat images, which is 30 m × 
30 m per pixel. Landsat images unable to capture the 
aquaculture pond precisely as the pond size is usually less 
than one hectare, that covers only a pixel approximately. 
This spatial resolution limitation also causes difficulty 
to extract very fine fishpond boundaries. In order to fill 
this gap, a higher resolution dataset such as Airbus that 
gave spatial resolution at 50 cm should be used instead. 
However, high resolution satellite images are costly and 
sometimes restricted in sharing. 

Besides that, integrating radar images, e.g. Sentinel-1, 
could fill the gap where the broader spectral range and 

FIGURE 6. Temporal changes of the aquaculture ponds in Sungai Udang, 
Pulau Pinang from 2014 to 2020
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finer spatial resolution shall increase the accuracy of the 
aquaculture pond mapping, as demonstrated by Sun et 
al. (2020). The characteristics of radar backscatter that 
captures surface roughness is efficient in mapping water 
bodies through filtering of clustered low backscatter 
values in the image. However, the radar data is only 
available since 3 April 2014, limiting the study of the 
aquaculture ponds changes for a longer period. 

CONCLUSION

Mapping aquaculture ponds with remote sensing 
technology, specifically with band ratioing of 
multispectral bands, can be advantaged for the fast-
growing inland aquaculture industry in Malaysia 
in terms of geospatial data management. This study 
presented the use of Landsat 8 bands in extracting 
aquaculture pond information. The capability of three 
different water indices, namely Normalized Difference 
Water Index (NDWI), Modified Normalized Difference 
Water  Index  (MNDWI)  and  Automated  Water 
Extraction Index (AWEI), in mapping the aquaculture 
ponds in Sungai Udang, Pulau Pinang were compared 
to see the responses of the aquaculture ponds towards 
each band combination. The results show that MNDWI 
is the best index for aquaculture ponds extraction in 
Sungai Udang, with the accuracy of 81.87% and the 
Kappa coefficient of 0.61, followed by AWEI (accuracy 
= 61.60% and Kappa coefficient = 0.36) and NDWI 
(accuracy = 58.21% and Kappa coefficient = 0.33). Then, 
MNDWI was applied to calculate the spatial changes of 
aquaculture ponds from 2014 to 2020. The result indicates 
that the area of aquaculture ponds has expanded by 
26.16% since the past seven years. Further research is 
required to determine the potential spatial distribution 
changes of aquaculture ponds in the future. 
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