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ABSTRACT

A spatial outlier refers to the observation whose non-spatial attribute values are significantly different from those of 
its neighbors. Such observations can also be found in water quality data at monitoring stations within a river network. 
However, existing spatial outlier detection procedures based on distance measures such as the Euclidean distance 
between monitoring stations do not take into account the river network topology. In general, water quality levels in 
lower streams will be affected by the flow from the upper streams. Similarly, the water quality at some tributaries may 
have little influence on the other tributaries. Hence, a method for identifying spatial outliers in a river network, taking 
into account the effect of river flow connectivity on the determination of the neighbors of the monitoring stations, is 
proposed. While the robust Mahalalobis distance is used in both methods, the proposed method uses river distance instead 
of the Euclidean distance. The performance of the proposed method is shown to be superior using a synthetic river 
dataset through simulation. For illustration, we apply the proposed method on the water quality data from Sg. Klang 
Basin in 2016 provided by the Department of Environment, Malaysia. The finding provides a better identification of 
the water quality in some stations that significantly differ from their neighbouring stations. Such information is useful 
for  the authorities in their planning of the environmental monitoring of water quality in the areas.
Keywords: Euclidean distance; river distance; robust multivariate; spatial outlier; water quality

ABSTRAK

Reruang terpencil merujuk kepada cerapan dengan nilai atribut reruang berbeza secara signifikan berbanding daripada 
nilai kejiranannya. Cerapan ini boleh dikesan daripada data kualiti air yang dikumpul di stesen-stesen dalam jaringan 
sungai. Walau bagaimanapun, kaedah semasa untuk mengenal pasti pencilan reruang menggunakan jarak yang diukur 
antara stesen seperti jarak Euclidean tidak mengambil kira aspek topologi jaringan sungai. Secara umumnya, aras 
kualiti air pada hilir jaringan sungai dipengaruhi oleh aliran daripada hulu sungai. Begitu juga, kualiti air pada sesuatu 
jaringan sungai mungkin mempengaruhi sedikit kualiti air pada jaringan sungai yang berbeza. Kaedah dalam mengenal 
pasti reruang terpencil dalam jaringan sungai dengan mengambil kira kesan terhadap hubung kait aliran sungai bagi 
menentukan kejiranan sesebuah stesen dicadangkan. Walaupun penganggar kukuh jarak Mahalanobis digunakan dalam 
kedua-dua kaedah, tetapi kaedah yang dicadangkan ini menggunakan jarak aliran sungai dan bukannya jarak 
Euclidean. Berpandukan kaedah simulasi set data sungai sintetik, prestasi kaedah yang diperkenalkan ini terbukti 
lebih baik. Sebagai ilustrasi, kaedah yang diperkenalkan ini diterapkan pada data kualiti air yang diperoleh daripada 
Sg. Klang pada tahun 2016 yang disediakan oleh Jabatan Alam Sekitar, Malaysia. Keputusan daripada hasil kajian 
dapat membantu mengenal pasti kualiti air di beberapa buah stesen yang jauh lebih baik daripada stesen berdekatan. 
Maklumat ini sangat berguna kepada pihak berwajib dalam merancang pemantauan kualiti air di kawasan sekitarnya. 
Kata kunci: Jarak aliran sungai; jarak Euclidean; kualiti air; penganggar multivariat; reruang terpencil

INTRODUCTION

The occurrence of outlying observations in spatial data 
may lead to unexpected, exciting and implicit information. 

A spatial or local outlier is a term used to describe a spatial 
point different in non-spatial attributes from its neighbors 
(Cressie et al. 2006; Haslett 1992). Previous studies have 
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shown that the identification of spatial outliers in spatial 
data sets may lead to significant interpretations such as 
climate changes, tornadoes, and hurricanes (Kelleher & 
Braswell 2021). In medicine, a number of works can also 
be found in identifying abnormal shapes such as tumors 
and infected tissues in the medical images (Baur et al. 
2021; Liu et al. 2017). In public health, an emergency 
call in an area may have a good response rate but differ 
significantly if compared to the surrounding areas. 
Therefore, these anomaly patterns should be considered 
to improve health care standards and patient survival rates 
(Azimi et al. 2021). Recently, spatial outlier detection 
helped to determine the unusual correlation between 
COVID-19 cases and crime rates in Chicago (Yang et 
al. 2021). The detection of spatial outliers needs to 
be performed locally in the neighborhood in order to 
accommodate the spatial dependence between the spatial 
objects. In general, a spatial outlier does not follow 
a common feature of spatial data, notably the spatial 
dependency with its neighboring points (Filzmoser et 
al. 2014).

In water quality data, the spatial point is essentially 
the river location while the non-spatial attributes of each 
spatial point explain the water quality characteristics in 
the area. In practice, we assume that a positive spatial 
autocorrelation occurs at adjacent river locations, which 
means a neighboring river location with high non-
spatial values is surrounded by locations with high 
non-spatial values as well. However, as river water flows 
from the upper to lower stream, water quality at the 
lower stream may be affected by river water quality at 
the upper stream, but rarely otherwise. Similarly, there is 
no causal relationship between the water quality levels 
of any two different tributaries. Hydrologic pathways 
are routes along which water moves from when it is 
received as precipitation until it is delivered to the 
most downstream point in a river basin. Water quality 
degradation in upstream parts can negatively affect 
downstream throughout a watershed (Peters & Meybeck 
2000). Hence, in this paper, we proposed a method to 
identify multivariate spatial outliers that take into 
account the river network topology. 

The importance of studies involving water quality 
within a river network has been highlighted in the 
literature. For example, the level of dissolved oxygen 
in river water is more directly affected by upstream-
downstream relations and the river network (Mainali & 
Chang 2021). According to the data studied by Lachhab 
et al. (2021), the physical and chemical changes to 
the streams from the dams are affecting the biological 
communities in the downstream watercourse. In 

addition, Hasib and Othman (2020) studied that the 
criteria for determining pollution sources are when 
the pollution sources should be upstream while the 
monitoring station is downstream of the river.  Hence, 
the spatial outlier detection method has been adopted to 
identify the changes in the water and help the decision-
makers evaluate the effects of specific water quality 
measures (Talagala et al. 2019; Zheng et al. 2017). 

Graphical representations such as the variogram 
cloud (Cressie 1993) and the Moran scatterplot (Anselin 
1995) are useful to identify spatial outliers for univariate 
data. In addition, several algorithms were proposed based 
on the idea of how close the non-spatial attributes of 
a spatial point to the point estimate of its neighboring 
non-spatial attributes using summary statistics, namely, 
mean, median, weighted mean and average difference 
(Chen et al. 2008; Kou 2006; Kou et al. 2006; Lu et al. 
2003; Shekhar et al. 2003). It has also been shown that 
the weighted mean and weighted average difference 
algorithms that use weighted average with inverse 
distance as the weights performed better than the mean 
and median algorithms (Kou 2006; Kou et al. 2006; Peter 
2011). For multivariate cases, these outlier detection 
algorithms were extended using the Mahalanobis distance 
to calculate the outlier scores of the multiple attributes, 
assuming that the scores follow the multivariate normal 
distribution. Likewise, Cai et al. (2009) also applied 
Mahalanobis distance on the multiple outlier scores 
after normalizing the non-spatial attributes. The location 
quotient (LQ) algorithm was recently proposed by 
Alok Kumar and Lalitha (2018), using the proportion 
of attributes in a neighborhood over the proportion of 
attributes in a larger reference neighborhood. The LQ 
algorithm performs better in the simulation study than the 
mean and median algorithms for multiple attributes data.
With the increasing number of multiple attributes, 
outlier detection in multivariate data tends to suffer from 
the swamping and masking effects (Wang & Serfling 
2018). Several robust estimation methods, such as the 
minimum covariance determinant (MCD) (Rousseeuw 
& Van Driessen 1999), have been recommended to deal 
with these problems (Sajesh & Srinivasan 2013; Wang 
& Serfling 2018). Filzmoser et al. (2014) introduced an 
exploratory tool to identify outliers in a local spatial 
neighborhood based on pairwise robust Mahalanobis 
distances between the observations. The robustness 
of the methods comes from both the robust mean and 
covariance estimates used in computing the Mahalanobis 
distances. The determination of the distribution of 
these pairwise distances results in measuring the local 
outlyingness of the observation. The local behavior of 
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the method has been regulated by changing the size of 
the neighborhood. Additional robustness for identifying 
local outliers is included by tolerating a small percentage 
of similar neighbors, which occurs just by chance. By 
increasing this percentage, the method can be used to 
find locally homogeneous regions. Despite these notable 
works on the methods of detecting spatial outlier, none 
of these methods considers river network topology in 
the formulation.

The nearest neighbor concept is important in spatial 
outlier detection as neighboring points’ characteristics 
will impact the spatial outlier identifications. Euclidean 
distance is the most common distance metric used for 
the choice of neighbors in developing algorithms for 
spatial outlier detection (Filzmoser et al. 2014; Shekhar 
et al. 2003). Some works in modeling river data used 
Euclidean distance to describe the spatial autocorrelation 
for geostatistical water quality studies (Cressie et al. 
2006; Peterson & Urquhart 2006; Tortorelli & Pickup 
2006). However, such an approach is not suitable 
for river network data sets (Money et al. 2009a). 
Alternatively, the river distance, which is the shortest 
distance along the river, is proposed when studying the 
spatial autocorrelation among river monitoring sites. The 
river distance (Cressie et al. 2006; Money et al. 2009b) 
is also known as the hydrologic distance (Peterson et al. 
2006) or stream distance (Ver Hoef et al. 2006). Both the 
river distance and the river flow direction between river 
points is considered as essential features to develop the 
correlation matrix structure for river data that represents 
autocorrelation amongst river points (Anselin 1995; 
Cressie et al. 2006; de Fouquet & Bernard-Michel 2006; 
Jat 2017; Money et al. 2011; Ver Hoef & Peterson 2010; 
Ver Hoef et al. 2006). 

This paper aims to develop an improved spatial 
outlier detection method for multivariate spatial river 
data. We considered a pairwise robust Mahalanobis 
distance between river locations and a new k nearest 
neighbor method that incorporates both the river 
distance and flow of connectivity between river points 
to identify neighbors of a given location. In the next 
section, we discussed the river network concept and 
illustrated an example of multivariate spatial outliers 
for river data, and introduced the proposed method and 
its properties. Next, we presented the simulation results 
to investigate the performance of the proposed method. 
Then, we applied the method to an actual Malaysian water 
quality dataset, followed by a discussion and a conclusion.

MATERIALS AND METHODS

Spatial outlier detection can be used to identify stations 

where the values of non-spatial attributes measured are 
different from its neighboring station. To improve the 
spatial outlier detection in a river network, a river flow 
distance measure is considered instead of the Euclidean 
distance. The determination of the neighboring stations 
using Euclidean distance might increase the error when 
detecting spatial outliers. Thus, identifying spatial outliers 
in a river network requires a river flow distance measure 
to determine the pairs of neighboring stations. Then, 
the Mahalanobis distance and the pairwise Mahalanobis 
distance with river flow distance are used to identify the 
spatial outlier in the river network.

RIVER NETWORK AND FLOW DIRECTION

Notation for a river network used in Cressie et al. (2006) 
and Ver Hoef et al. (2006) is closely followed in this 
paper. The river network S in the Euclidean space denotes 
the collection of a finite number of river segments, each 
segment is depicted as a straight line as illustrated in 
Figure 1. Each segment or straight line is connected at 
the junctions of the river and whose union constitutes the 
river network (Peiman et al. 2015). The whole network 
has a single most-downstream segment that splits up into 
other segments as going upstream. Upstream endpoints 
are called sources, and the downstream endpoint is the 
outlet of the mouth of the river network. Any station 
or point on the river network can be connected by a 
continuous line to the lowest station in that network.

For a station or point zi ∈ S on the ith segment, 
we let 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   ⊆ S denote the index set of river segments 
downstream of zi, including the ith segment. In Figure 1, 
two stations z1 and z2 are said to be flow connected on a 
river network, written as z1→ z2 when the river segments 
downstream are connected and are denoted as 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   ∩ 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3    
= 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   or 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  . In contrast, two stations z2 and z3 are flow 
unconnected, written as z2 ↛ z3 when the river segments 
downstream are not connected, 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   ∩ 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   ≠ 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   or 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  .  
If zj is upstream of zi, that is, 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   ⊂ 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , then we denoted 
the set of segments between zj and zi, inclusive of the jth 

but exclusive of the ith segment, by B𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   = 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   \𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  . If 
zj is downstream of zi, then B𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   = 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  \𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  . In the case 
that zi and zj are on the same segment, that is, 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   = 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , 
we have B𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   = ∅. The river network and flow direction 
methodology will generate simulated data and calculate 
the river distances in the next section.

RIVER DISTANCE

The distance from a station to the lowest station in the 
river network is considered the river’s arc length along 
the curve paths. We approximated the arc length by a 



914	

succession of a significant enough number of chords. 
In other words, the river distance between two arbitrary 
stations zi and zj on the river network S is calculated 
by dividing the curve between the two stations into r 
segments, say zi1, ..., zir-1 where zi0 = zi and zir-1 = zj. The 
distances between the successive stations are calculated 
using the Euclidean distance

where X and Y are the X-coordinate and Y-coordinate 
corresponding to the kth point zik. Then, the sum of these 
shortest distances between two stations zi and zj along 
the route gives the river distance between the stations. 
Following Rouquette et al. (2013), the river distance can 
be simply written as

(1)

after considering the directionality of the river network.

SPATIAL NEIGHBORHOOD DETERMINATION

The spatial neighborhood for the river data is 
determined using the nearest neighbor algorithm based 

on the river distance and flow of the water along the 
river stream network. The neighbors for a point must 
lie on the same stream, from the upper stream to the 
downstream of the river network. For the river network in 
Figure 4, there are twelve sources of river flow, which are 
the most upstream of the river network and a single most 
downstream.  A station located at the most downstream 
is connected to all stations located at the upper stream. 
Meanwhile, a station at the uppermost stream is connected 
only to the stations on the corresponding streamflow. 
Thus, the k neighbors for each station are determined 
according to their respective groups of the river flow 
streams. A matrix of the river network distance between 
every station and every other station is therefore obtained. 
Then the neighbor of each station is sorted according 
to the ascending order of the river distance values. A 
matrix of all sorted neighbors of each station is called a 
neighborhood matrix.

ILLUSTRATION OF SPATIAL OUTLIERS IN RIVER 
NETWORK

In this section, we used an artificial data set to illustrate 
the global and local outliers. We simulated z = 50 stations 
with two sets of geographical coordinates on the river 
network and two sets non-spatial attributes. The plot 

 
FIGURE 1. River network with three stations z1, z2 and z3

𝑑𝑑(𝑧𝑧𝑖𝑖𝑖𝑖, 𝑧𝑧𝑖𝑖𝑖𝑖−1) = √(𝑋𝑋[𝑧𝑧𝑖𝑖𝑖𝑖] − 𝑋𝑋[𝑧𝑧𝑖𝑖𝑖𝑖−1])2 + (𝑌𝑌[𝑧𝑧𝑖𝑖𝑖𝑖] − 𝑌𝑌[𝑧𝑧𝑖𝑖𝑖𝑖−1])2, 

𝑑𝑑(𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗)  ≡ {|𝑧𝑧𝑖𝑖  − 𝑧𝑧𝑗𝑗|                if 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑗𝑗 are flow connected,
 0                                                                    otherwise,  

 

𝑑𝑑(𝑧𝑧𝑖𝑖, 𝑧𝑧𝑗𝑗)  ≡ {|𝑧𝑧𝑖𝑖  − 𝑧𝑧𝑗𝑗|                if 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑗𝑗 are flow connected,
 0                                                                    otherwise,  
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in Figure 2(a) shows the bivariate data, which follow a 
normal distribution. The ellipse corresponds to values of 
the chi square of the robust Mahalanobis distance based 
on FAST-MCD. All the stations outside the ellipse are 
identified as a global outlier. Figure 2(b) shows the spatial 
X- and Y- coordinates of the stations on a river network. 
There are three selected stations with filled symbols. We 
chose k = 6 nearest neighbors along the river streams for 
each selected station, and these stations are drawn with 
the corresponding open symbols. Similar symbols are 
used in Figure 2(a); thus, we can see the relation between 
the values in the variable space and the coordinate space. 
The filled square corresponds to the global outlier since 
its neighbors’ values are located outside the ellipse on 
the variable space. The filled triangle is a global outlier 
but not its neighbors. Meanwhile, the filled circle is in 

the ellipse of the variable space, but its neighbors are 
very different. Therefore, the filled square is identified 
as a global outlier; the filled triangle is a global and local 
outlier, while the filled circle is identified as a local outlier.

THE PROPOSED METHOD

We defined zi for i = 1, 2,…n as the spatial point or station 
on the river network S. For each zi, observations are 
consisting of non-spatial attributes x1, x2, ..., xp. In river 
water quality study, zi correspond to the ith monitoring 
station while xj takes the water quality parameter such 
as dissolving oxygen and biochemical oxygen demand 
which will be explained in the application section. Thus, 
we had a function f𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  ∶ W𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   → Rp, where Rp denotes the p 
dimensional variable space such that, attribute function 
W𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3   represents the attribute values of stations zi. For      

                      FIGURE 2a. Plot of the bivariate data                                         FIGURE 2b. Plot of spatial data                                                                   

simplicity, we used the notation W𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , W𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , ..., W𝑊𝑊𝑧𝑧𝑛𝑛   for 
the sample values on the stations and considered the 
samples following a normal distribution Np (μ, Σ) with μ 
∈ Rp and Σ is a p × p symmetric positive definite matrix. 
The global outliers in multivariate data are detected 
using the robust Mahalanobis distance given by

(2)

where the center μ and covariance Σ are estimated from 
the data. The robust  minimum covariance determinant 
(FAST-MCD) introduced by Rousseeuw and Van Driessen 
(1999) is considered for estimating the mean, μ and 
covariance, Σ, to deal with the influence of outlying 
observations. The global outliers are determined when 
the values of the robust distance are more significant 
than the cut-off value. Here the cut-off value is the square 
root of 97.5% quantile of the chi square distribution  𝑀𝑀𝑀𝑀𝜇𝜇,𝛴𝛴(𝑊𝑊𝑧𝑧𝑖𝑖)  = √(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇)𝑡𝑡𝛴𝛴−1(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇), (2) 
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with p degrees of freedom, √𝜒𝜒𝑝𝑝;0.9752 .  However, the 

distance measured in (2) does not account for the spatial 
dependence among the stations as it only identifies the 
observations that differ from the majority of the data. 
Thus, the local outlier detection method adopted from 
Filzmoser et al. (2014) was constructed based on pairwise 
robust Mahalanobis distance between the observations at 
two stations, zi and zi, given by 

(3)

The robust covariance FAST-MCD estimate, Σ, is 
then plugged into (3) and zj ⊂ 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  . Now, we want to 
choose a subset of 𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , which can be considered as the 
neighbors of zi. It can be achieved by considering the 
k nearest neighbor method but using the river network 
distance as described by (1). All the neighbors are then 
sorted to the ascending order of the distance values. 
Once a spatial point is identified to be different from most 
of its k neighbors, then it is a potential local outlier. A 
local outlier is then determined by the degree of isolation 
of a spatial point from a fraction of its neighbors denoted 
as α(i)-quantile given by

(4)

The pairwise squared Mahalanobis distance on 
the right-hand side in (4) is a non-central chi square 
distribution with p degree of freedom. The non-centrality 
parameter of the squared Mahalanobis distance is 
represented on the left-hand side in (4). The neighbors 
of a spatial point zi are denoted as  𝜒𝜒𝑝𝑝;𝛼𝛼(𝑖𝑖)

2 (𝑀𝑀𝑀𝑀2(𝑊𝑊𝑧𝑧𝑖𝑖)) =  𝑀𝑀𝑀𝑀2 (𝑊𝑊𝑧𝑧𝑖𝑖, 𝑊𝑊𝑧𝑧(⌈𝑛𝑛(𝑖𝑖)∙𝛽𝛽⌉))  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛.   (4) 

 

 where n(i) is 
the number of neighbors, k; while β denotes a fraction 
of neighbors. The cut-off point is determined by β-value. 
If α(i) is significantly larger than β, observation zi 
considered as a local outlier. In this study, a local outlier 
was detected when α(i) is greater than 10% (Filzmoser 
et al. 2014).  

The proposed algorithm of the detection of spatial 
outliers is presented as follows. Given a spatial data set 
z = {z1, z2,..., zn}, 

1.  Set the attribute function (non-spatial attribute), a 
number of k nearest neighbors, n(i) and a fraction of 
neighbors, β.

2.  Calculate the robust covariance matrix Σp for the non-
spatial attributes. 

3.  Compute 𝑀𝑀𝑀𝑀𝜇𝜇,∑(𝑊𝑊𝑧𝑧𝑖𝑖)  = √(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇)𝑡𝑡𝛴𝛴−1(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇). If 𝑀𝑀𝑀𝑀 ≥ √𝜒𝜒𝑝𝑝;0.975 
2 , 

𝑀𝑀𝑀𝑀𝜇𝜇,∑(𝑊𝑊𝑧𝑧𝑖𝑖)  = √(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇)𝑡𝑡𝛴𝛴−1(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇). If 𝑀𝑀𝑀𝑀 ≥ √𝜒𝜒𝑝𝑝;0.975 
2 ,   then zi is a global outlier.

4.  Calculate the distance between two pairs of 
observation zi and zj, where i ≠ j. If the pairs of points 
are flow-unconnected, zi ↛ zj, then the distance between 
these two points are equal to zero.

5.  Determine and sort the k nearest neighbor for each 
spatial point. The first nearest neighbor has the smallest 
distance value with the candidate of spatial outlier and 
they are flow-connected.

6.  Then, compute the degree of outlier for each spatial 
point by using  𝜒𝜒𝑝𝑝;𝛼𝛼(𝑖𝑖)

2 (𝑀𝑀𝑀𝑀2(𝑊𝑊𝑧𝑧𝑖𝑖)) =  𝑀𝑀𝑀𝑀2 (𝑊𝑊𝑧𝑧𝑖𝑖, 𝑊𝑊𝑧𝑧(⌈𝑛𝑛(𝑖𝑖)∙𝛽𝛽⌉))  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛.   

7.  Sort the value of the degree of isolation. If the degree of 
isolation is significantly larger than 10%, then we classify 
the observation as a local and global outlier when MD ≥ 

𝑀𝑀𝑀𝑀𝜇𝜇,∑(𝑊𝑊𝑧𝑧𝑖𝑖)  = √(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇)𝑡𝑡𝛴𝛴−1(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝜇𝜇). If 𝑀𝑀𝑀𝑀 ≥ √𝜒𝜒𝑝𝑝;0.975 
2 ,  (step 3). Otherwise, the observation is classified 

as a local outlier only.
The algorithm of the river distance and the Euclidean 
distance above are summarized by a flowchart as 
presented in Figure 3.

SIMULATION STUDY

The performance of the proposed method was studied via 
simulation. For this purpose, we generated a synthetic 
river data set using an R package known as SSN (Ver 
Hoef et al. 2014) to resemble the actual river network. 
We then compared the proposed method with the 
method found in Filzmoser et al. (2014) in terms of 
their capability to detect outliers in the flow-connected 
river data.

DATA SIMULATION

A synthetic river data set is constructed by a spatial 
stream network package, a built-in R package known as 
SSN (Ver Hoef et al. 2014). The construction of the data 
set involves two steps. Firstly, we created a river network 
and secondly, we simulated auto-correlated variables 
on the river network. A river network is generated 
randomly like tree structures. For the formulated data 
set, such as in Figure 4, we used the iterative TreeLayout 
function, producing a more realistic network and not 

 𝑀𝑀𝑀𝑀∑
2(𝑊𝑊𝑧𝑧𝑖𝑖, 𝑊𝑊𝑧𝑧𝑗𝑗)  = (𝑊𝑊𝑧𝑧𝑖𝑖 − 𝑊𝑊𝑧𝑧𝑗𝑗)𝑡𝑡𝛴𝛴−1(𝑊𝑊𝑧𝑧𝑖𝑖 − 𝑊𝑊𝑧𝑧𝑗𝑗).   (3) 

 

 𝜒𝜒𝑝𝑝;𝛼𝛼(𝑖𝑖)
2 (𝑀𝑀𝑀𝑀2(𝑊𝑊𝑧𝑧𝑖𝑖)) =  𝑀𝑀𝑀𝑀2 (𝑊𝑊𝑧𝑧𝑖𝑖, 𝑊𝑊𝑧𝑧(⌈𝑛𝑛(𝑖𝑖)∙𝛽𝛽⌉))  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛.   (4) 

 

𝜒𝜒𝑝𝑝;𝛼𝛼(𝑖𝑖)
2 (𝑀𝑀𝑀𝑀2(𝑊𝑊𝑧𝑧𝑖𝑖)) =  𝑀𝑀𝑀𝑀2 (𝑊𝑊𝑧𝑧𝑖𝑖, 𝑊𝑊𝑧𝑧(⌈𝑛𝑛(𝑖𝑖)∙𝛽𝛽⌉))  𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … , 𝑛𝑛. 

Σ

for

for
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creating any self-interactions (Ver Hoef & Peterson 
2010). The stations’ locations are generated and 
determined using binomialDesign function. Here, we 
randomly generated z = 30 stations on the constructed 
river network, with each of them consisting of coordinate 
values, X- and Y- coordinate, and distance values from a 
station to station at the lowest downstream of the river 
network. All of this information is known as spatial 
attributes. For the second step, we simulated the non-
spatial attributes, W𝐷𝐷𝑧𝑧𝑖𝑖  𝐷𝐷𝑧𝑧𝑗𝑗  𝐷𝐷𝑧𝑧1  𝐷𝐷𝑧𝑧2  𝐷𝐷𝑧𝑧3  , on each station. Gaussian normal 
data sets are created for this simulation based on the 

correlation models: the Exponential.tailup function and 
the Exponential.taildown function (see details in Ver Hoef 
& Peterson (2010)). 

SIMULATION FOR PERFORMANCE MEASURE

In this section, we use a synthetic data set as described 
before to investigate the performance of the proposed 
method. First, we randomly chose 4 stations on the river 
network and set a point as the global outliers and the rest 
as the local outliers. The synthetic data set properties are 
shown in Table 1. 

 

FIGURE 3. Flowchart of methodology of the spatial outlier detection
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Second, we calculate the degree of isolation for each 
station using (4). We then rank the station according to 
the degree of isolation. Station with degree of isolation 
greater than the cut-off point β is identified as a local 
outlier. Third, we summarized the results in a confusion 

matrix as shown in Table 2. True positive rate (TPR) is 
the ratio between true positive and the summation of true 
positive and false negative, while false positive rate (FPR) 
is the ratio between false positive and the summation of 
false positive and true negative. The overall performance 

can be depicted by the plot of the true positive rate 
against the false positive rate. The plot is also known 
as the Receiver Operating Characteristic (ROC) curve 
which represents the trade-off between the TPR and 
FPR. The area under the ROC curve, also known as AUC, 
has been widely used in measuring the performance of 
outlier detection methods, and the value will always be 
between 0 and 1. A larger AUC value indicates a better 
classification performance (Fawcett 2006).

 

FIGURE 4. A synthetic river network generated with 30 stations

TABLE 1. Synthetic data set properties

Type

Station, z Variables, W 
Regular 

observations
Global outlier Local outlier

Synthetic Data     30 2 26 1 3

SIMULATION RESULTS

We used the simulation procedure above to compare the 
performance of the spatial outlier detection methods. The 
experiment was repeated 500 times for different k =1,…, 
30, β = 0.05, 0.1, 0.2 and sample size nsim=50, 100, 
500. The results are reported in Table 3 and Figure 5.

From Table 3, the maximum and average values 
of AUC for the river distance method are greater than 
that for the Euclidean distance method. Moreover, 
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as we expect, the mean value of AUC increases with 
the increasing number of simulations from 50 to 100. 
However, the results for nsim=100 and 500 do not 

TABLE 2. Confusion matrix

Positive
Predicted Label

Total
Negative

Actual
Label

Positive
True Positive

(TP)
False Negative

(FN)
TP+FN

Negative
False Positive

(FP)
True Negative

(TN)
FP+TN

Total TP+FP FN+TN
TP+FP+
FN+TN

differ much. The overall results can be better seen when 
presented graphically as shown in Figure 5. It is observed 
that the proposed method performs better when β = 0.05 

and β = 0.1. However, the results are almost the same for 
β = 0.2.  We also note that the mean AUC value for the 
river distance method is higher for a greater k. Hence, we 
may conclude that the river distance method provides a 
good alternative when working with data within a river 
network. Other results of the performance study are 
available from the authors upon request.

APPLICATION TO REAL DATA

We demonstrate the proposed method of identifying 
spatial outliers using Sg. Klang data set for the year 
2016. The data is obtained from the Department of 
Environment, Malaysia. Sg. Klang Basin is located 
within the states of Selangor and Kuala Lumpur in 
Malaysia. The river drains 1288 km2 from the steep 

TABLE 3. The performance of the outlier detection methods 

Methods
AUC

nsim = 50 nsim = 100 nsim = 500
Mean sd mean sd mean sd

0.05

River
distance
method

0.38 ±0.02 0.39 ±0.02 0.41 ±0.02

Euclidean
distance
method

0.27 ±0.09 0.29 ±0.09 0.31 ±0.08

0.1

River
distance
method

0.41 ±0.09 0.41 ±0.04 0.44 ±0.03

Euclidean
distance
method

0.35 ±0.09 0.36 ±0.09 0.37 ±0.09

0.2

River
distance
method

0.25 ±0.09 0.25 ±0.07 0.25 ±0.06

Euclidean
distance
method

0.20 ±0.07 0.22 ±0.06 0.24 ±0.06
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mountain rainforests of the main centre of Peninsular 
Malaysia to the river mouth in Port Klang. There are 16 
water quality stations located along the rivers, as shown 
in Figure 6. The basin consists of the main Sg. Klang 
and 11 tributaries, including Sg. Gombak, Sg. Kerayong, 
Sg. Penchala and Sg. Damansara. Stations 1 to 7 are 
located along Sg. Klang, Stations 9 to 10 are along Sg. 

Penchala while Stations 12 to 14 are along Sg. Gombak. 
Stations 8 and 11 are located along Sg. Damansara and 
Sg. Kerayong, respectively. The river flow connectivity 
between the stations are summarized in Table 4.  It can 
be seen that Station 8 does not connect to any other 
station in the river flow direction. Besides, since Station 
1 is located at the most river downstream, it connects 

 
FIGURE 5.  Average AUCs value versus the number of neighborhood for the river 

distance method and the Euclidean distance method for β = 0.05,0.1,0.2

 
FIGURE 6. Location of stations of Sg. Klang Basin
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to all stations upstream except Station 8 and has the 
highest connectivity percentage. The topography of Sg. 
Klang basin is given in Figure 6 with the higher ground 
indicated by darker color. We can see that Station 7 is 
located at the most upstream of Sg. Klang while Stations 
8, 9, 11, 14 and 16 are the most upstream of their own 
tributaries. These stations are generally on the higher 
ground in Sg. Klang basin. Station 1 is located nearest 

to the mouth of Sg. Klang. Good water qualities are 
expected at Stations 7 and 14 since they are located near 
the water source. 

Parameters measured at each station include 
dissolving oxygen (DO), biochemical oxygen demand 
(BOD), chemical oxygen demand (COD), suspended solids 
(SS), ammoniacal nitrogen (NH3NL), temperature, and 
pH. For example, DO levels in waterfalls are typically 

TABLE 4. The percentage of the flow connectivity
 

The ith Station, 
(zi)

River
Percentage of 

connectivity to 
other stations

The ith Station, 
(zi)

River
Percentage of 

connectivity to 
other stations

1 Sg. Klang 0.93 9 Sg. Penchala 0.13

2 Sg. Klang 0.8 10 Sg. Penchala 0.13

3 Sg. Klang 0.73 11 Sg. Kerayong 0.13

4 Sg. Klang 0.73 12 Sg. Gombak 0.4

5 Sg. Klang 0.53 13 Sg. Gombak 0.4

6 Sg. Klang 0.4 14 Sg. Gombak 0.4

7 Sg. Klang 0.4 15 Sg. Ampang 0.4

8 Sg. Damansara 0 16 Sg. Ampang 0.4

higher than those in pools and slower-moving stretches. 
The process of respiration consumes oxygen in water by 
aquatic animals, decomposition, and various chemical 
reactions. Wastewater from sewage treatment plants 
often contains organic materials that are decomposed by 
microorganisms. The amount of oxygen consumed by 
these organisms in breaking down the waste is known 
as BOD. The COD measures the amount of oxygen 
required to oxidize the organic material present in water 
chemically. Thus, the BOD and COD measure the total 
amount of oxygen removed from water biologically 
or chemically in a specified time and at a specific 
temperature. The SS is a measure of suspended particulate 
matter produced by anthropogenic sources such as urban 
development, road building, land clearing, and agriculture 
(NOA 2020). Ammonium is an ionized form of ammonia. 
The measurement of ammonium indicates the potential 
to form ammonia or ammoniacal nitrogen pollutants 
in rivers when pH and temperature change (Ibrahim et 
al. 2015). The hydrolysis of organic nitrogen can form 

ammoniacal nitrogen and enter the river system directly 
from industrial or sewage effluent. These parameters are 
essential to assess the quality status of river water, known 
as the water quality index (WQI).  The determination of 
WQI for each location also permits the categorical class 
based on the National Water Quality Standard (NWQS). 
The scores WQI ranges from 0 to 100, where the state 
of the river varies between polluted to clean, where 0 to 
59 scores are polluted rivers, 60 to 80 scores are slightly 
polluted, and 81 to 100 scores are considered clean rivers. 
Table 5 provides overall values of summary statistics of 
the water quality parameters of Sg. Klang basin in 2016. 
We can see that mean values of DO range from 3.9 to 
8.5 mg/L, indicating moderate to high DO levels in the 
river water. The maximum BOD and NH3NL levels are 
considerably high, which are 18.9 mg/L and 8.6 mg/L, 
respectively, and might contribute to bad water quality. 
The mean COD level is 30.3 mg/L indicating that most 
stations are polluted at different degrees. In addition, some 
stations have significantly high TSS value which is more 
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than 300 mg/L. Overall, the WQI status of Sg. Klang data 
ranges between 39.8 and 65.8, indicating different water 
quality at stations in Sg. Klang basin.

In order to continue with the local outlier detection 
method, the neighbors are constructed based on the spatial 
location for each station. Again, the set of neighbors for 

TABLE 5. Summary statistics of river water quality parameters

Variables      DO mg/L                        BOD mg/L COD mg/L TSS mg/L pH NH3NL mg/L Temp (°C) WQI

Min 3.9 5.5 16.1 11.21 7.0 0.1 25.9 39.8

Max 8.5 18.9 52.8 580.5 7.7 8.6 30.8 65.8

Mean 5.3 10.6 30.3 81.6 7.4 4.4 29.2 50.4

Std. dev 1.5 3.6 10.1 138.0 0.2 3.0 1.1 8.0

the monitoring station may differ for the river distance and 
Euclidean distance methods because the river distance 
method considers the effect of river flow within the 
river network topology. We then apply the two methods 
to the data. Three crucial results are observed. Firstly, 
the Mahalanobis distance for each monitoring station 
is computed and plotted in Figure 7. There are four 
monitoring stations with distances greater than 𝜒𝜒𝑝𝑝;0.975 

2 .  
They are Stations 1, 2, 8, and 14 and are classified as 
global outliers. Other stations are referred to as regular 
observations. Secondly, we identify local outliers 
among the regular observations based on the degree of 
isolation as tabulated in Table 6. We found different sets 

of local outliers for both methods, that station with the 
degree of isolation exceeding 10%. Station 11 has the 
highest degree of isolation in the river distance method, 
followed by Stations 10, 6, 9, 15, and 7. Meanwhile, for 
the Euclidean distance method, Station 9 has the highest 
degree of isolation, followed by Stations 6, 7, and 11. 
Thirdly, we also calculate the degree of isolation for the 
global outliers. The results are tabulated in the first few 
rows of Table 6. Both methods identify Station 14 as the 
only global and local outlier. We summarize the results 
in Table 7.

Table 8 tabulates the parameter values of water 
quality for the identified spatial outliers. The overall 

 
FIGURE 7. Plot of Mahalanobis distance for identifying global outliers
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mean values for each parameter are given in the second 
row. We can see that some of the parameter values are 
much higher or lower than the overall means indicating 
the correct identification of these stations as spatial 
outliers. For example, Stations 1, 2, and 8 are situated 
downstream of the basin. We observed that Station 8 has 
an extremely high reading of SS but a shallow reading 
NH3NL. As for Station 2, the SS reading is also very high, 
while Station 1 has the lowest reading of DO. On the other 
hand, Station 14, located upstream of the river, recorded 
the best water quality in the river basin.

Moreover, we can observe that the stations identified 
as a local outlier by both methods have some parameter 

values that differ from their neighboring stations. Stations 
6 and 7 are neighbors and separated from other stations, 
but with different readings of NH3NL, which is much 
lower than their neighbors, resulting in different water 
quality classes. Hence, they are identified as local outliers. 
As for Station 11, its neighbors are Stations 1 and 2, 
which are global outliers. A similar argument stands for 
Station 9.

More importantly, Stations 10 and 15 are also 
identified as local outliers by the river distance method. 
The neighbors of Station 10 under the river network 
(Figure 8(a)) is only Stations 1 and 9 compared to the 
additional neighbors, Stations 2, 3, and 4 under the 

TABLE 6. Degree of isolation for global outliers and local observations

Station Degree of isolation (%)

Global
outliers

River distance
method

Euclidean distance
method

1 6.54 6.54
2 0.00 0.00
8 0.00 0.00
14 14.84 28.70

Regular 
observations

3 0.08 0.08
4 9.64 9.64
5 0.10 0.10
6 19.07 13.06
7 12.38 12.38
9 16.29 16.29

10 25.36 2.78
11 99.99 12.25
12 5.90 5.90
13 6.50 6.50
15 15.41 5.98
16 4.91 4.91

TABLE 7. List of outliers

Types River distance method Euclidean distance method

Global outlier 1, 2, 8, 14 1, 2, 8, 14

Local outlier 6, 7, 9, 11, 10, 15 6, 7, 9, 11

Global and local outlier 14 14
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TABLE 8. Mean parameter values for detected outliers

DO
mg/L

BOD
mg/L

COD
mg/L

SS
mg/L

pH NH3NL
mg/L

TEMP
(°C)

WQI

Overall 
mean 5.30 10.60 30.28 81.55 7.41 4.40 29.17 50.41

Station
(Global outliers)

1 3.93 10.66 31.16 53.33 7.44 4.59 29.27 50.08

2 4.24 10.33 28.70 173.62 6.98 5.15 29.00 45.36

8 7.55 12.25 39.65 580.5 7.54 0.09 30.82 52.86

14 8.45 5.38 18.50 13.08 7.73 0.15 25.92 65.82

Station
(Local outliers)

6 5.57 7.70 22.83 43.37 7.28 2.53 29.09 52.86

7 6.80 5.70 16.08 11.20 7.50 0.42 29.83 64.08

9 7.22 5.45 16.66 23.87 7.51 0.21 28.95 65.10

*10 4.09 15.54 44.79 45.50 7.29 8.26 29.26 43.20

11 4.11 18.87 52.79 31.45 7.36 8.63 30.79 39.84

*15 5.63 13.79 40.12 35.17 7.39 8.35 29.87 44.38

* outliers identified by river distance method

  

 

 

 

 

FIGURE 8a. Local outliers by Euclidean distance method 
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Euclidean distance (Figure 8(b)). However, water quality 
at Station 10 does not differ much from Stations 2, 3, and 
4, so it is not identified as a local outlier by the Euclidean 
distance method. However, the water quality of Station 
10 differs from that of Stations 1 and 9. Hence identified 
as a local outlier by the river distance method. A similar 
argument also holds for Station 15. 

Thus, the proposed method removes the false 
effect of the station on different river flow system 
when identifying the spatial outlier in the river network 
system. This is achieved by considering the neighbors 
which are flow-connected to each other only. Hence, the 
proposed method provides important advantages toward 
improving the accuracy of detecting spatial outlier in 
river network. Here, the results can now be used by the 
authority to monitor river water quality in Sg. Klang 
Basin. For example, the local authority can focus on 
Station 10, located at Sg. Penchala, by implementing 
steps that can improve the water quality in the area. 
Moreover, the concept proposed in this paper can be 
generalized to other real applications such as detecting 
abnormal reading in the gas flow in the piping system to 
avoid explosion and traffic flow data to avoid congestion.

CONCLUSION

In this paper, we have proposed an improved method of 

identifying spatial outliers in a river basin by considering 
the effect of river flow on the determination of neighbors 
of the monitoring stations. We have also analyzed 
the computational structures to determine the spatial 
neighborhoods in river network settings and detect the 
spatial outliers in the multivariate data. Here, we also 
evaluated the performance of the proposed method via 
simulation and compared the results of outlier detection 
between our approach and method in Filzmoser et al. 
(2014). Additionally, we provided experimental results 
from applying our proposed method on water quality 
data of Sg. Klang Basin to show its effectiveness and 
usefulness. Our approach highlighted the importance 
of the river flow distance to determine the degree 
of isolation of an observation. The pairwise robust 
Mahalanobis distance requires the correct definition of its 
neighborhood, especially to analyze the spatial outlier in 
the river data. Incorporating the river flow distance into the 
spatial outlier method provided an advantage in detecting 
the spatial outlier on the river network and decreased 
the error while determining the true outlier. The AUC 
values for the river distance method are slightly higher 
than the existing detection method from the simulation 
results. Thus, the proposed method is suitable for spatial 
attributes on the river network and multivariate data. 
Also, the truth concerning the spatial outlier observations 

FIGURE 8b. Local outliers by the river distance method 
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is unknown, and the outlier detection methods may be 
interpreted in the context (Ernst & Haesbroeck 2017). 
Thus, considering the river flow distance is the right 
decision to enhance spatial outlier detection in the river 
data. However, the performance of the proposed method 
may be further enhanced by increasing the local nature 
of spatial points to estimate the covariance matrix in 
the spatial outlier detection algorithms. In addition, the 
percentage of river flow connectivity between stations 
is another interesting factor that can be considered for 
future work. The proposed framework is useful to be 
applied in other real-life applications that use similar 
river network property.
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