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ABSTRACT

The Lin and Tu (LT) optimization scheme which is based on mean squared error (MSE) objective function is the 
commonly used optimization scheme for estimating the optimal mean response in robust dual response surface 
optimization. The ordinary least squares (OLS) method is often used to estimate the parameters of the process location 
and process scale models of the responses. However, the OLS is not efficient for the unbalanced design data since this 
kind of data make the errors of a model become heteroscedastic, which produces large standard errors of the estimates. To 
remedy this problem, a weighted least squares (WLS) method is put forward. Since the LT optimization scheme produces 
a large difference between the estimates of the mean response and the experimenter actual target value, we propose a 
new optimization scheme. The OLS and the WLS are integrated in the proposed scheme to determine the optimal solution 
of the estimated responses. The results of the simulation study and real example indicate that the WLS is superior when 
compared with the OLS method irrespective of the optimization scheme used. However, the combination of WLS and 
the proposed optimization scheme (PFO) signify more efficient results when compared to the WLS combined with the 
LT optimization scheme. 
Keywords: Optimization; robust design; unbalanced data; weighted least squares

ABSTRAK

Skema pengoptimuman Lin dan Tu (LT) yang berdasarkan fungsi objektif min kuasadua ralat (MSE) sering digunakan 
dalam skema pengoptimuman bagi menganggarkan min gerak balas optimum dalam pengoptimuman permukaan berganda 
teguh. Kaedah kuasadua terkecil biasa (OLS) sering digunakan untuk menganggarkan parameter model proses lokasi 
dan model proses skala bagi gerak balas. Walau bagaimanapun, kaedah OLS tidak cekap bagi data reka bentuk yang 
tak seimbang kerana data yang begini membuatkan ralat model menjadi heteroskedastik dan menghasilkan penganggar 
ralat piawai besar. Untuk mengatasi masalah ini, kaedah kuasadua terkecil berpemberat (WLS) dicadangkan. Kami 
mencadangkan skema pengoptimuman baru disebabkan skema pengoptimuman LT menghasilkan perbezaan yang besar 
antara penganggar min gerak balas dan nilai sebenar sasaran penyelidik. Kaedah OLS dan WLS digabungkan dalam 
skema yang dicadangkan bagi menentukan penyelesaian optimum bagi gerak balas yang dianggarkan. Keputusan kajian 
simulasi dan contoh sebenar menunjukkan bahawa kaedah WLS mengatasi kaedah OLS tanpa mengira skema 
pengoptimuman yang digunakan. Walau bagaimanapun, gabungan WLS dan skema pengoptimuman yang dicadang 
(PFO) menunjukkan keputusan yang lebih cekap apabila dibandingkan dengan WLS yang digabungkan dengan skema 
pengoptimuman LT.  
Kata kunci: Data tak seimbang; kuasadua terkecil berpemberat; pengoptimuman; reka bentuk teguh

INTRODUCTION

Quality characteristics of customer interest must be 
well defined to design a qualitative product that satisfies 

customer requirement. These characteristics may include 
several variables such as production cost, product quality, 
production time, and production dimension and or any 



	

other important product characteristics specified by a 
customer. The application of robust design optimization 
is used to solve real life industrial problems. This 
attracts the attention of design expert to seek the best 
approach that can achieve the target of the experimenter 
with small response variation. A Japanese engineer 
known as Genich Taguchi in 1980’s first introduced 
this method (Taguchi & Wu 1980). The purpose of 
robust design is to secure excellence performance and 
promotes product quality and procedures in industries 
such as engineering, biotechnology, chemical, and 
agriculture among others. The primary objective of robust 
design optimization is to find the best solution that can 
reduce response variation while achieving a specific 
output. Despite the application of Taguchi method in 
industries, the approach encountered a load of criticism 
from practitioners and researchers about its statistical 
and optimization techniques. For example, a panel of 
practitioners and researchers edited by Nair et al. (1992) 
discussed the implementation of Taguchi method. Other 
researchers including Kackar (1985), Vining and Myers 
(1990) and Myers and Montgomery (1995) highlighted 
a number of shortcomings attached to Taguchi method 
in robust design method. In view of the weaknesses 
of Taguchi method, Box and Draper (1987) developed 
response surface methodology (RSM) to find the optimal 
factor settings for the input variables which can either 
maximize or minimize the given response functions. 
The traditional method emphasizes on optimizing the 
mean response by assuming the variance of the response 
is constant. However, in real situation, this assumption 
may not be achieved. In this situation, both the mean 
and the standard deviation of the response should be 
considered when determining the optimum conditions 
for the input variables. Continuous research in this 
area leads to the development of dual response surface 
optimization (DRSO) proposed by Vining and Myers 
(1990), which attempts to optimize both the mean and 
standard deviation of the response. Lin and Tu (1995) 
pointed out that the Vining and Myers (1990) approach 
(VM) does not guarantee global optimal due to restriction 
of the constraint to a specific value. In this respect, Lin 
and Tu (1995) proposed LT optimization scheme, which 
is based on mean squared error (MSE) objective function 
that allows a small bias. The objective function consists 
of the bias and variance. The LT optimization scheme is 
the most popular scheme used in solving dual response 
and multiple response problems (Boylan & Choo 2013; 
Geothels & Cho 2011; Park & Cho 2003; Park & Leeds 
2016). Park et al. (2017) used the LT optimization 
scheme with robust location and scale estimators of the 

response variables. Chelladurai et al. (2021) suggested 
using the RSM and the analysis of variance technique to 
optimize the process parameters in various manufacturing 
processes. However, as already mentioned, the RSM has 
its weakness whereby it only focused on optimizing the 
mean response and assuming that the variance of the 
response is constant which is not valid in practice. Kim 
and Lin (1998) pointed out that the objective function of 
LT   does not take into account the measure of the violation 
of the constraint, and it places no restriction on how large 
the estimated mean value might deviate from the target 
value. The modification of MSE method called the WMSE 
was introduced by Ding et al. (2004) to further reduce the 
influence of variance by introducing some weight on the 
MSE optimization scheme. The idea behind this approach 
is to determine the weight in such a way that it can reduce 
the effect of the bias and the variance in determining the 
optimal setting conditions. The major shortcoming of 
this approach as mentioned in Jeong et al. (2005) is that 
it does not consider the interest of the decision maker in 
the determination of the weight functions. Hence, the 
estimated optimal mean response based on the WMSE 
will be affected particularly for unbalanced data. It is now 
evident that achieving equal number of replicates of the 
response variables at each designed point may be difficult 
when something goes incorrect during the experimental 
process. The problem may lead to collection of an 
unbalanced designed data at the end of the experiment, 
which normally violates the usual assumption of balanced 
design data. In such case, the ordinary least squares (OLS) 
method which is the commonly used method to estimate 
the parameters of multiple linear regression may not be 
a good estimation method due to the presence of unequal 
variation in the response observations that may give rise 
to heteroscedasticity problem (Midi et al. 2021; Rana et 
al. 2012). The problem affects the estimates of standard 
error (making it large), and inference problems such as 
test of hypothesis. To overcome this shortcoming, Cho 
and Park (2005) applied the weighted least squares (WLS) 
to estimate the parameters of the mean and variance 
model. Subsequently, Cho and Park (2005) also used 
LT optimization scheme to find the optimal setting 
condition that can achieve the target with small variance 
and unequal replications in the response. Although the 
LT optimization work well for experimental data, it can 
be a burden to process engineers when dealing with 
large number of experiments. Lee et al. (2018) noted 
that the LT optimization is not practical for large volume 
of operational data such as data from manufacturing 
lines. Then, Lee et al. (2018) proposed an optimization 
scheme based on data mining approach for operational 
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data. However, in this paper, our study is limited to 
experimental data and also focus on LT optimization 
scheme in determining the optimal setting conditions 
as studied by many previous researchers since it is the 
widely used method.  Nonetheless, the LT optimization 
scheme is suspected not to be that efficient since it does 
not achieve the target with minimal bias in the estimated 
mean response due to some little bias introduced in its 
formulation. The weakness of LT method has motivated 
us to propose a new optimization scheme based on penalty 
function and call it penalty function optimization (PFO) 
scheme. In this paper, we combine the PFO with the WLS 
method. The WLS is employed to rectify the problems 
of heteroscedasticity for unbalanced data and the PFO 
is used to offer substantial improvements over the LT 
method.

This paper is organized as follows. The development 
of the mean and the variance functions for multiple 
response problem is presented in the next section. The 
derivation of the weighted least squares method for 
balanced and unbalanced design data is described in 
the following section. Subsequently, the mathematical 
proof that the biases and variances of the proposed PFO 

is less than the LT optimization scheme is discussed. 
The simulation procedures and numerical example are 
presented in the subsequent section. The last section 
summarizes the conclusion of the study.

MATERIALS AND METHODS

DEVELOPMENT OF MEAN AND VARIANCE MODEL FOR 
MULTIPLE RESPONSE PROBLEMS

Suppose that an experimenter is interested in identifying 
influential control setting or study the effect of some 
control factors for a given experimental design problem. 
Consider a design system, where the characteristics 
of interest y  depend upon a set of control variables 

),,( 1 pxxX = where p is the number of predictor 
variables. Let ijy  denotes the response variable at the ith 
design point (i = 1,2,…n) and the jth replicate, where j = 
1,2,…m. . Table 1 which is known as balanced data, gives 
the summary of the experimental format for multiple 
responses, where iyX , and 2

is  represent a set of control 
factor settings, sample mean and sample variance of the 
responses, respectively.

TABLE 1. Experimental format for multiple responses
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From Table 1, the mean and variance estimators for each 
design point for i = 1, 2, …, n can be estimated using the 
following formulas: 

(1)

and

(2)

The estimate of the mean and variance functions 
are then formulated based on the estimated means and 
estimated variances of the response variables. The OLS 
method is then applied to the mean and the variance 
functions. The general steps to obtain the optimal 
response are summarized as follows:

Step1: Given the set of control factors ),,( 1 pxxX =
Step 2: For each run, there are m responses
Step 3: Compute the mean and the variance 2

is of the 
response variables yij for i = 1, 2, …,n, j = 1, 2, …, m 

𝑦̅𝑦𝑖𝑖 =  1
𝑚𝑚 ∑ 𝑦𝑦𝑖𝑖𝑖𝑖

𝑚𝑚

𝑗𝑗=1
 (1)

𝑠𝑠𝑖𝑖
2 =  1

𝑚𝑚 − 1 ∑(𝑦𝑦𝑖𝑖𝑖𝑖 −  𝑦̅𝑦𝑖𝑖)2
𝑚𝑚

𝑗𝑗=1
(2)



	

Step 4:  Determine the fitted mean and the fitted variance 
response functions by regressing yi against the control 
factors X and regressing s2

i  against the control factors X 
using the OLS method.
Step 5: Determine the optimal setting condition 

),,( **
1 ipi xxX =

Step 6: Determine the estimated optimal mean response  
by substituting the optimal settings ),,( **

1 ipi xxX =
into the obtained fitted mean and variance functions in 
Step 4. 

PROPOSED OPTIMIZATION SCHEME FOR DUAL 
RESPONSE FUNCTION

In this section, a dual response surface optimization 
technique based on the penalty function approach is 
derived, specifically for our proposed PFO method. The 
penalty function method convert a series of constrained 
optimization into unconstrained optimization problem 
whose optimum solution are also true solution of the 
formulated function and the original objective function. 
The unconstrained objective function is formulated 
by adding a penalty parameter to the real objective 
function which includes the penalty term multiply by the 
measure of violation of the constraints equation (Dong 
2006; Shin et al. 1990; Wan et al. 2009). To derive the 
objective function, we first consider the general form of 
the constrained optimization problem defined by                                               
 Minimize f (x)

    (3)
  	                    

By applying the method of penalty function, one can 
determine the solution of Equation (3) from the following 
objective function 

 (4)

where f (x) is the original objective function to be 
minimized, hi and gj are set of the inequality and equality 
constraints function, respectively. This article, specifically 
focuses on a quadratic penalty function defined by;

(5)

where μ is called the penalty parameter that penalizes the 
equality constraints when the constraints relations are not 
satisfied. For simplicity, we substitute ℎ𝑖𝑖 =  [𝑚̂𝑚(𝑥𝑥) − 𝑇𝑇] and 𝑓𝑓(𝑥𝑥) = 𝑣̂𝑣(𝑥𝑥) 
and ℎ𝑖𝑖 = [𝑚̂𝑚(𝑥𝑥) − 𝑇𝑇] and 𝑓𝑓(𝑥𝑥) =  𝑣̂𝑣(𝑥𝑥)  in Equation (5) and then write the 
following quadratic unconstrained minimization problem 
as;

                                           (6)

where min𝐹𝐹(𝑥𝑥 𝜇𝜇, ) = 𝑣𝑣(𝑥𝑥) + 𝜇𝜇
2 [𝑚̂𝑚(𝑥𝑥) − 𝑇𝑇] 2 is the estimated mean response,min𝐹𝐹(𝑥𝑥 𝜇𝜇, ) =  𝑣𝑣(𝑥𝑥) + 𝜇𝜇

2 [𝑚̂𝑚(𝑥𝑥) − 𝑇𝑇] 2 is the 
estimated variance response surface function and T is the 
desired target selected by the decision maker. If μ = ∞ 
the solution of (6) is exact. For the quadratic function in 
Equation (6), we may use nonlinear optimization package 
in any programming software to determine the optimal 
setting condition of the estimated mean response. In this 
paper, a statistical software package in R programming 
Language (Rsolnp) introduced in Ghalanos and Theussl 
(2012) and Ye (1989) are used to compute the approximate 
optimum solution for the newly formulated and existing 
optimization schemes. Our goal is to find the optimum 
value so that the estimated mean response will be equal to 
or varies to the target value T, while making the variance 
small. The optimization scheme proposed is superior 
over the existing approaches. Firstly, the proposed 
approach takes into account the measure of violation of 
the constrained function, while LT optimization functions 
are minimized without given concern to the effect of the 
violation of the constrained. Secondly, the penalty term 
in Equation (6) pushes min𝐹𝐹(𝑥𝑥 𝜇𝜇, ) = 𝑣𝑣(𝑥𝑥) + 𝜇𝜇

2 [𝑚̂𝑚(𝑥𝑥) − 𝑇𝑇] 2 to be equal or close
to zero so that it can achieve the target of the decision 
maker. These two properties make the proposed method 
more efficient and reliable to estimate the  mean and the 
variance functions for approximation of the optimum 
settings conditions. In the next section, we will prove 
that the PFO method produces smaller variance than the 
LT method. 

THE WEIGHTED LEAST SQUARES AND OPTIMIZATION 
PROCEDURES

In the presence of heteroscedasticity in the response 
observations, the usual assumption of constant variance 
in linear regression model may not hold in many real 
life problems. The OLS regression assumed that the 
observed response Y come from a normal distribution 
function with mean Xβ and variance σ2  I where X is a 
data matrix of containing the predictor variables, β is 
a vector of estimated coefficients, and I is an identity 
matrix. The summary of the OLS assumption can be 
express as:

y ~ N(Xβ, σ2 I)

Suppose that the distribution of the errors have non 
constant variance whose constant of proportionality ki 
are known, then the variance of regression errors ε1, …, 
εn  is given as: 

ip

ip

                                           Subject to  𝑔𝑔𝑗𝑗(𝑥𝑥) ≤ 0, 𝑗𝑗 = 1, 2, … ,𝑚𝑚  (3)

                   ℎ𝑖𝑖(𝑥𝑥) = 0, 𝑖𝑖 = 1, 2, … , 𝑛𝑛 

     𝐹𝐹(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) +  ∑ 𝜇𝜇 (𝑔𝑔𝑗𝑗(𝑥𝑥))𝑚𝑚
𝑗𝑗=1 + ∑ 𝜇𝜇(ℎ𝑖𝑖(𝑥𝑥))𝑛𝑛

𝑖𝑖=1                

𝐹𝐹(𝑥𝑥, 𝜇𝜇) = 𝑓𝑓(𝑥𝑥) +  𝜇𝜇
2 ∑ (ℎ𝑖𝑖(𝑥𝑥))2𝑛𝑛

𝑖𝑖=1

min𝐹𝐹(𝑥𝑥 𝜇𝜇, ) =  𝑣𝑣(𝑥𝑥) + 𝜇𝜇
2 [𝑚̂𝑚(𝑥𝑥) − 𝑇𝑇] 2
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Var(ε) = ki σ
2 , for i = 1,…, n, in matrix form is given as; 

y ~ N(Xβ,σ2 V) where V = diag[c1, …cn ].  Therefore we 
can express

ε = y- Xβ ~ N (0, σ2 V) (7)

Applying the symmetric diagonal matrix, 
𝑊𝑊

1
2 = daig [1 √𝑐𝑐1, …⁄ , 1 √𝑐𝑐𝑛𝑛⁄ ], note that 𝑊𝑊 = 𝑊𝑊

1
2𝑊𝑊

1
2 = 𝑉𝑉−1,  daig 𝑊𝑊

1
2 = daig [1 √𝑐𝑐1, …⁄ , 1 √𝑐𝑐𝑛𝑛⁄  ], note that 𝑊𝑊 = 𝑊𝑊

1
2𝑊𝑊

1
2 = 𝑉𝑉−1, note that 𝑊𝑊

1
2 = daig [1 √𝑐𝑐1, …⁄ , 1 √𝑐𝑐𝑛𝑛⁄ ], note that 𝑊𝑊 =  𝑊𝑊

1
2𝑊𝑊

1
2 = 𝑉𝑉−1, 

𝑊𝑊
1
2 = daig [1 √𝑐𝑐1, …⁄ , 1 √𝑐𝑐𝑛𝑛⁄ ], note that 𝑊𝑊 = 𝑊𝑊

1
2𝑊𝑊

1
2 =  𝑉𝑉−1, multiplying both side of equation (7) by 𝑊𝑊

1
2 = daig [1 √𝑐𝑐1, …⁄ , 1 √𝑐𝑐𝑛𝑛⁄ ], note that 𝑊𝑊 = 𝑊𝑊

1
2𝑊𝑊

1
2 = 𝑉𝑉−1, we 

have  

(8)     

For convenience, we rewrite equation (8) as: 

This can be express as:

  ywsl = Xwsl βwsl+ εwsl (9)

Equation (8) is equivalent to the standard regression 
model y = Xβ + ε. Applying the ordinary least squares 
(OLS) method, the transformed model in Equation (8) 
becomes: 
			 

  

 (10)

Incorporating the WLS in Equation (9) into robust 
design approach, we developed the fitted response 
functions for the process mean and variance as:

(11)                                                  

(12)

where 

and			               

Furthermore, this approach work effectively when 
the number of replications is complete for each design 
value, but it may not be suitable for unbalanced data 
when the sample sizes are not equal. Hence, an alternative 
technique which choose weight based on the sample sizes 
at each design point were suggested by Goethals and Cho 
(2011) and Cho and Park (2005). They defined weights 
for mean and variance as Wm = diag[m1, …, mn], Wv = 
diag[m1-1, …, mn-1] where (m1, …, mn)  is the number of 
observation at each design point. More so, applying the 
formulated models for the mean and variance, the MSE 
objective function used in the LT optimization scheme 
is defined as:

(13)

where T is the specified target value, usually selected 
according to the quality characteristic of interest of 
the experimenter and xj is the experimental region of 
the factorial designs with k levels. However, the mean 
squared error model introduced some bias and it does not 
take into account how large the estimated mean response 
should deviate from the actual specify target output 
(Copeland & Nelson 1996). This shortcoming often 
results to large difference between the estimated mean 
response and the target output that may lead to misleading 
conclusion. Therefore, we employ the weighted least 
squares (WLS) combined with the newly proposed PFO 
optimization scheme to obtain the optimal setting of the 
estimated mean response. For convenient, we re-write 
the newly propose optimization scheme (PFO) as follows:

        (14)

Equations (13) and (14) can be used to find the optimal 
setting condition that optimizes the fitted mean and 
variance functions while achieving the target output. The 
PFO optimization scheme is based on the following fact: 

Let 0xxn → as ∞→n .

If 0)(,)( vxvTxm nn →→ as ∞→n

where 0v is the minimum of )( nxv
Then, clearly   [ ]{ } 0

2 )()( vxvTxm nn →+− as

∞→nx .

Also,                                                                 since the
first term approaches zero, where µ  is any positive 

𝑊𝑊
1
2𝜀𝜀 = 𝑊𝑊

1
2(𝑦𝑦 −  𝑋𝑋𝑋𝑋)~ 𝑁𝑁(0, 𝜎𝜎2𝑉𝑉)  

                                        𝑊𝑊
1
2𝑦𝑦 =  𝑊𝑊

1
2𝑋𝑋𝑋𝑋 +  𝑊𝑊

1
2𝜀𝜀 

𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤 = (𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤
′ 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤)−1𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤,  where   𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤 =  𝑊𝑊

1
2, 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤 =  𝑊𝑊

1
2𝑋𝑋, 

𝛽̂𝛽𝑤𝑤𝑤𝑤𝑤𝑤 = [(𝑊𝑊
1
2𝑋𝑋)′𝑊𝑊

1
2𝑋𝑋]

−1
(𝑊𝑊

1
2𝑋𝑋)′𝑊𝑊

1
2𝑦𝑦

= (𝑋𝑋′𝑊𝑊
1
2𝑊𝑊

1
2𝑋𝑋)

−1
𝑋𝑋′𝑊𝑊

1
2𝑊𝑊

1
2𝑦𝑦

= (𝑋𝑋′𝑊𝑊𝑊𝑊)−1𝑋𝑋′𝑊𝑊𝑊𝑊

𝛽𝛽𝑤𝑤𝑤𝑤𝑤𝑤 = (𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤
′ 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤)−1𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤, where 𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑊𝑊

1
2, 𝑋𝑋𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑊𝑊

1
2𝑋𝑋,

𝛽̂𝛽𝑤𝑤𝑤𝑤𝑤𝑤 =  [(𝑊𝑊
1
2𝑋𝑋)′𝑊𝑊

1
2𝑋𝑋]

−1
(𝑊𝑊

1
2𝑋𝑋)′𝑊𝑊

1
2𝑦𝑦 

=  (𝑋𝑋′𝑊𝑊
1
2𝑊𝑊

1
2𝑋𝑋)

−1
𝑋𝑋′𝑊𝑊

1
2𝑊𝑊

1
2𝑦𝑦 
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number. The parameter µ  plays a key role to manage 
the convergence rate of limit. Therefore, we consider 
the function (14) instead of (13) because it will tend to 
produce less bias and less variability.  

SIMULATION STUDY

In this section, we consider two simulation studies. 
The first objective of the simulation study is to show 
that our proposed PFO method is more efficient than 
some existing methods in this study. As per Midi and 
Aziz (2019), Lee et al. (2007) and Park and Cho (2003) 
simulation studies, at each control factor setting xi = 
(xi1, xi2, xi3), i = 1, . . . , 27, five responses (yi1, yi2, yi5)  
are randomly generated from a normal distribution 

with mean, m(xi) = 500 + (x1+ x2 + x3)
2   + x1 +  x2 + 

x3 and variance,  v(xi) = 100 + (x1+ x2+ x3)
2 + x1+ x2+ 

x3 where the target value, T equals 500. The VM, LT,
WMSE, and PFO were then applied to the data and we 
considered 1000 simulation runs. The estimated mean of 
the optimal mean response, computed over m iterations 
are given by 𝜇̂𝜇 =   ∑ (𝜇̂𝜇𝑚𝑚

𝑖𝑖=1 /𝑚𝑚), Bias =𝜇̂𝜇 − 500, and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇̂𝜇) = ∑ (𝜇̂𝜇 − 𝜇̂𝜇)2/𝑚𝑚𝑚𝑚
𝑖𝑖=1 .Bias 𝜇̂𝜇 = ∑ (𝜇̂𝜇𝑚𝑚

𝑖𝑖=1 /𝑚𝑚), Bias =𝜇̂𝜇 − 500, and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇̂𝜇) = ∑ (𝜇̂𝜇 − 𝜇̂𝜇)2/𝑚𝑚𝑚𝑚
𝑖𝑖=1 . and

𝜇̂𝜇 = ∑ (𝜇̂𝜇𝑚𝑚
𝑖𝑖=1 /𝑚𝑚), Bias =𝜇̂𝜇 − 500, and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇̂𝜇) =  ∑ (𝜇̂𝜇  −  𝜇̂𝜇)2/𝑚𝑚𝑚𝑚

𝑖𝑖=1 . . The mean squared error 
(MSE) is written as MSE (µ) = (Bias)2 + var(µ). The 
results are exhibited in Table 2. It is interesting to 
observe that the proposed PFO is the most efficient 
method as it has the smallest bias, SE, and RMSE, 
followed by the LT, WMSE and VM methods.  Hence, we 
will consider the PFO and the LT in the next objective.

TABLE 2.  Bias, standard error (SE) and RMSE of the optimal mean response

Method Bias SE RMSE

VM 1.30 4.41 4.52

LT 1.46        3.73 4.01

WMSE 1.47 3.78 4.06

PFO 0.07 0.23 0.24

The second objective of the simulation study 
is to show that the PFO combined with the WLS 
methods is more efficient than the LT combined with 
the WLS methods for unbalanced data. The VM and 
the WMSE were not considered in this study because 
both methods do not perform very well based on the 
results of the first objective. Moreover, as already 
mentioned in the introduction section, these methods 
have some drawbacks. Following the simulation 
technique developed by Cho and Park (2005) and Park 
and Cho (2003),  32 factorial design with two factors 
and 3 levels represented by the digits (-1, 0, +1) were 
considered. The responses (yi1, yi2, …,yim) are generated 
from a normal distribution with mean m(xi ) = 50 + 
10( 𝑥𝑥12   𝑥𝑥22 + 𝑥𝑥12   𝑥𝑥22 ) and variance v(xi ) = 100 + 25(𝑥𝑥12   𝑥𝑥22 + 𝑥𝑥12   𝑥𝑥22 ).
For each factor settings xi = (xi1, xi2) for i = 1,2,…,9 , the 
response variables are replicated for a specific number 
represented in a circle as shown in the simulation scheme 
given in Figure 1. The customer target value is assumed 
to be 50, i.e. T = 50 and a total of 1000 iteration were 
considered. 

𝜇̂𝜇 = ∑ (𝜇̂𝜇𝑚𝑚
𝑖𝑖=1 /𝑚𝑚), Bias =𝜇̂𝜇 − 500, and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇̂𝜇) = ∑ (𝜇̂𝜇 − 𝜇̂𝜇)2/𝑚𝑚𝑚𝑚

𝑖𝑖=1 .

For each of the four simulation scheme in Figure 
1, we can compute the bias, variance and mean squares 
error (MSE) of the optimum mean response in order to 
evaluate the performance of the OLS and WLS based 
on LT optimization function and compared the results 
based on our proposed PFO optimization scheme given 
in Equation (14). Tables 3 and 4 reported the estimated 
bias, variance and MSE of the optimum mean response, 
based on LT and PFO optimization function, respectively. 
The results of Tables 3 and 4 show that the WLS method 
is superior to the OLS method irrespective of the 
optimization scheme used; LT or PFO. However, it is 
interesting to see that by comparing the results of Tables 
3 and 4, the WLS based on our proposed (PFO) method 
is better than the WLS based on the LT method evident 
by having smaller values of bias, SE, and RMSE. Due to 
space constrained, in this paper we only consider 33 (first 
simulation) and 32 (second simulation) factorial designs. 
It is important to note that factorial design with different 
factors and levels may be considered. However, the results 
are consistent. 

𝜇̂𝜇 = ∑ (𝜇̂𝜇𝑚𝑚
𝑖𝑖=1 /𝑚𝑚), Bias =𝜇̂𝜇 − 500, and 𝑣𝑣𝑣𝑣𝑣𝑣(𝜇̂𝜇) = ∑ (𝜇̂𝜇 − 𝜇̂𝜇)2/𝑚𝑚𝑚𝑚

𝑖𝑖=1 .
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TABLE 3. Estimated bias, variance and MSE of the optimal mean response for the various simulation scheme with LT

Scheme OLS WLS

Bias SE RMSE Bias SE RMSE

(a) 3.24 5.55 16.94 3.20 4.86 15.13

(b) 3.01 4.02 13.14 2.97 3.80 12.59

(c) 2.17 3.35 11.62 2.53 2.76 9.18

(d) 2.39 5.92 11.61 2.36 4.97 10.55

TABLE 4. Estimated bias, variance and MSE of the optimal mean response for the various simulation scheme with PFO

Scheme OLS WLS

Bias SE RMSE Bias SE RMSE

(a) 1.19 2.85 4.26 1.17 2.63 4.01

(b) 1.08 2.41 3.58 0.96 1.76 2.70

(c) 0.94 1.70 2.58 0.86 1.43 2.16

(d) 1.55 4.35 6.77 1.20 1.20 4.89

FIGURE 1. Simulation Scheme of Cho and Park (2005)



	

NUMERICAL EXAMPLE

Considering the case study data reported in Cho and Park 
(2005), suppose that an injection modeling company is 
given the responsibility of producing silicon wafers for 
Motor Corporation. Tables 5 reported the experimental 
data obtained from the development of silicon wafers, 
where x1 and x2 are factors variable representing the mold 
temperature and injection flow rate and the response yij 
represent the coating thickness of the wafers with target 
value of T = 50, respectively. The weight for the mean 
and variance function obtained from the data based on mi  
and mi-1 is given by Wm = diag[3, 5, 3, 5 7, 5, 3, 5, 3] and 
Wv = diag[2, 4, 2, 4, 6, 2, 4, 2]. The estimated coefficients 

of the fitted mean response function, 𝑚̂𝑚(𝑥𝑥)    𝑣̂𝑣(𝑥𝑥) and the fitted 
variance response function, 𝑚̂𝑚(𝑥𝑥)     𝑣̂𝑣(𝑥𝑥)  using OLS and WLS 
methods are exhibited in Table 6. The OLS and WLS 
with LT optimization scheme and the newly proposed 
PFO optimization scheme were applied to the data. The 
results of the OLS method based on LT optimization and 
WLS method based on our proposed PFO optimization 
scheme are presented in Table 7. It can be observed 
from Table 7 that the WLSLT is more efficient compared 
to  OLSLT  which have smaller bias, variance, and RMSE. 
Nevertheless, it is interesting to observe that our proposed 
WLSPFO is superior and more reliable compared toWLSLT.

TABLE 5. Case study data from Cho and Park (2005)

index x1 x2 yij

1  1 -1 84.30 57.00 56.50 65.93 253.06

2 0 -1 75.70 87.10 71.80 43.80 51.60 66.00 318.28

3 1 -1 65.59 47.90 63.30 59.03 94.65

4  1  0 51.00 60.10 69.70 84.80 74.74 68.06 170.35

5 0  0 53.10 36.20 61.80 68.60 63.40 48.60 42.5 53.46 139.89

6 1  0 46.50 65.90 51.80 48.40 64.40 55.40 83.11

7  1  1 65.70 79.80 79.10 74.87 63.14

8 0  1 54.40 63.80 56.2 48.00 64.50 57.38 47.54

9 1  1 50.70 68.30 62.90 60.63 81.29

TABLE 6. Estimated coefficients of the fitted mean response function, and the fitted variance response function, 
using OLS and WLS methods 

Coefficients
OLS WLS

 55.61 160.65 55.08 154.26

 -5.63  -37.92 -5.76 -39.34

  0.32  -79.00 -0.52 -93.09

  5.04  -44.30 5.51 -38.31

  5.00   11.88 5.47 17.87

-1.84   44.14 -1.84 44.14

y 2
is

( )xm̂ ( )xv̂ ( )xm̂ ( )xv̂Coefficients OLS WLS
( )xm̂ ( )xv̂ ( )xm̂ ( )xv̂

0̂ 55.61 160.65 55.08 154.26

1̂ -5.63 -37.92 -5.76 -39.34

2̂ 0.32 -79.00 -0.52 -93.09

11̂ 5.04 -44.30 5.51 -38.31

22̂ 5.00 11.88 5.47 17.87

12̂ -1.84 44.14 -1.84 44.14
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TABLE 7. Estimated optimum settings, Bias, Variance and RMSE of the optimum mean response with OLS and WLS methods

Method Optimal Settings Bias Var RMSE

(1.00, 1.00) 8.45 55.45 11.30

(1.00,0.94) 7.98 56.12 10.96

(1.00, 1.00) 7.93 45.66 10.42

(1.00,0.99) 7.89 45.59 10.39

Method Optimal Settings Bias Var RMSE
LTOLS  (1.00, 1.00) 8.45 55.45 11.30

PFOOLS (1.00,0.94) 7.98 56.12 10.96

LTWLS (1.00, 1.00) 7.93 45.66 10.42

PFOWLS (1.00,0.99) 7.89 45.59 10.39

Method Optimal Settings Bias Var RMSE
LTOLS (1.00, 1.00) 8.45 55.45 11.30

PFOOLS (1.00,0.94) 7.98 56.12 10.96

LTWLS  (1.00, 1.00) 7.93 45.66 10.42

PFOWLS (1.00,0.99) 7.89 45.59 10.39

Method Optimal Settings Bias Var RMSE
LTOLS (1.00, 1.00) 8.45 55.45 11.30

PFOOLS (1.00,0.94) 7.98 56.12 10.96

LTWLS  (1.00, 1.00) 7.93 45.66 10.42

PFOWLS (1.00,0.99) 7.89 45.59 10.39

Method Optimal Settings Bias Var RMSE
LTOLS (1.00, 1.00) 8.45 55.45 11.30

PFOOLS (1.00,0.94) 7.98 56.12 10.96

LTWLS  (1.00, 1.00) 7.93 45.66 10.42

PFOWLS (1.00,0.99) 7.89 45.59 10.39

CONCLUSION

The problem of unbalanced design data lead to non-
constant error variances in the response observation. The 
method of least squares combined with LT optimization 
scheme (OLSLT)   gives less efficient results in solving 
these problems, while the integration of WLS concepts 
into robust design with LT optimization (WLSLT) has 
improved the estimated mean response. However, the 
overall results show that incorporating the WLS with our 
proposed PFO optimization scheme  (WLSPFO) provide 
the most efficient results as it has the smallest bias, SE, 
and RMSE. Hence, the newly proposed scheme can be a 
good alternative method in dealing with robust design 
optimization problem with unbalanced data points.
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