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ABSTRACT

The transmission dynamics of a pertussis-pneumonia co-infection model is analyzed. The model takes into account
temporary immunity of infected infants and includes a maternally derived immunity compartment. The basic
reproduction number of the co-infected model is obtained using the next generation matrix, and stability analysis is carried
out. The model exhibits four equilibria, namely, the pertussis-free equilibrium, the pneumonia-free equilibrium, the co-
infection-free equilibrium and co-infection endemic equilibrium. Subsequently, the local stability of the co-infection-free
equilibrium is analyzed and is shown to be locally asymptotically stable. Similarly, by constructing a suitable Lyapunov
function, the co-infection endemic equilibrium is shown to be globally asymptotically stable. Numerical simulations are
carried out to illustrate the validity of these results.

Keywords: Childhood respiratory diseases; common quadratic Lyapunov function; global stability; maternally derived
immunity; pertussis-pneumonia co-infection

ABSTRAK

Analisis dinamik penularan model jangkitan bersama batuk kokol-radang paru-paru dijalankan. Model ini mengambil
kira imuniti sementara bayi yang dijangkiti dan merangkumi ruang imuniti yang berasal daripada ibu. Nombor pembiakan
asas model yang dijangkiti bersama diperoleh menggunakan matriks generasi berikutnya dan analisis kestabilan
dilakukan. Model ini menunjukkan empat keseimbangan, iaitu, keseimbangan bebas batuk kokol, keseimbangan bebas
radang paru-paru, keseimbangan bebas jangkitan dan keseimbangan endemik jangkitan bersama. Selepas itu,
kestabilan tempatan keseimbangan bebas jangkitan dianalisis dan terbukti ia stabil secara asimptot. Begitu juga dengan
membina fungsi Lyapunov yang sesuai, keseimbangan endemik jangkitan bersama terbukti stabil secara asimptot.
Simulasi berangka dijalankan untuk menggambarkan kesahihan hasil ini.

Kata kunci: Fungsi kuadratik umum Lyapunov; imuniti terbitan ibu; jangkitan bersama batuk kokol-radang paru-paru;
kestabilan global; penyakit respiratori kanak-kanak

INTRODUCTION of respiratory diseases (NCI 2018). Different infectious
agents may infect the host immune system as co-infection
involves a variety of pathogens affecting the co-infected
host. There are various types of pathogens that tend to

infect humans. These include fungi, viruses, bacteria,

Respiratory diseases which affect the lungs as well as
other parts of the respiratory system is a major cause
of ill health for children (Gouveia & Fletcher 2000).
Childhood respiratory disease may be caused by infection,

exposure to second-hand smoke, radon, asbestos, and
other forms of air pollution. Asthma, chronic obstructive
pulmonary disease, pneumonia, pulmonary fibrosis,
pertussis, and lung cancer are amongst the various types

protozoa, and helminths which tend to co-occur within
individuals. Improved understanding of co-infection
dynamics is required because co-infecting pathogens can
interact directly with one another, or indirectly via the
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infectious agents being harbored by host or host immune
system (Clay et al. 2020; Cox 2001; Glidden et al. 2021;
Griffiths et al. 2011). The interaction within the hosts
could change the transmission, clinical progression and
control of multiple infectious diseases (Birger et al.
2015; Griffiths et al. 2011; Pinky & Dobrovolny 2016).

Clinical research findings show the coexistence of
pertussis and pneumonia in patients (Cheon et al. 2015;
Jiang et al. 2021; Zouari et al. 2012). It was noted also that
pertussis, or known as whooping cough causes a small
fraction of severe pneumonia cases among hospitalized
children (1-59 months of age) from the low and middle-
income African and Asian countries (Barger-Kamate et
al. 2016; Chang et al. 2019). Among these pneumonia
cases in which pertussis was detected in infants less
than 6 months old, 3.7% lead to in-hospital death
(Barger-Kamate et al. 2016; Muloiwa et al. 2018). Thus,
contending with the engagement of the above studies,
there is a gap in the literature that needs to investigate
the dynamical behaviour of these co-infected respiratory
diseases in infants.

The primary objective of this study was to
investigate the co-dynamics of pertussis and pneumonia
co-infection in infants with maternally derived immunity
using a deterministic approach of mathematical model.
The importance and necessity of formulating and
analyzing the mathematical models of co-infectious
diseases cannot be over emphasized. Recent studies on
the mathematical models of co-infectious diseases have
presented interesting dynamics on the epidemiology of
the respective co-infectious diseases (see for instance,
Aggarwal 2020; Okosun et al. 2019; Omame et al.
2020; Shah et al. 2020). Similarly, some studies have
related the co-dynamic effect of pneumonia (a severe
respiratory disease in infants) with other disease, such
as, co-infection of pneumonia and influenza (Cheng
et al. 2017; Mbabazi et al. 2018), and co-infection of
pneumonia and meningitis (Tilahun 2019). However,
it is glaring and becoming apparent when engaging the
existing literature that there is an absolute gap in the
studies concerning the join effect of co-infection with
pneumonia in infants using mathematical modeling.
This provides a literature gap and a contribution to the
field of knowledge. Therefore, the novelty of this study
stalk on the introduction of the maternally derived
immunity into the SIR model as MSIR, and a response
to the reality checks and objective of the study. This
model is an amplified version of the MSEIR model
developed by Hethcote (2000). According to Hethcote
(2000), uncovered the model for a population without

age structure but exponentially changing population
size and that with continuous age structure. Conversely,
the dynamics on MSIR model by Bichara et al. (2014)
and Yakubu et al. (2020) on the global dynamics of
multi-strains SIS, SIR, and MSIR model and dynamical
analysis on the transmission of pertussis with maternally
derived immunity was considered for this particular study
which incorporate some important epidemiological
features with regards pertussis and pneumonia.

In addition, this paper presents a mathematical model
for the co-dynamics of pertussis and pneumonia co-
infection. To the best of our knowledge, this mathematical
investigation on the co-infection of pertussis and
pneumonia has not been given the scholarly attention
it deserves. The narratives for the model steers on the
transmission dynamics of these co-infectious diseases
in infants. At birth, the infants are assumed to have
natural immunity obtained from the transfer of maternal
antibodies through the placenta (Barger-Kamate et al.
2016; Muloiwa et al. 2018), and thus the maternally
derived immunity compartment (M) is infused into
the model, thereby, making the model an MSIR model.
Unlike the model of Bichara et al. (2014) and Yakubu
et al. (2020), the co-infectious model extends to having
more infected and recovered compartments because it
involves co-infection of two diseases. Subsequently, the
global stability of the model is analysed and numerical
simulations are presented to observe the dynamic
behaviour of the model.

DESCRIPTION OF THE MODEL

The model is based on the models of Bichara et al.
(2014), Hethcote (2000), and Yakubu et al. (2020). The
pertussis-pneumonia co-infection model consists of eight
mutually exclusively compartments. The total population
at time (f) denoted as N(7) is given by

N =M@ +SO+1,.(0)+1,(0)+1,._,(0)+
R,.()+R,(1)+R,_, (1)

(D

The eight compartments are the maternally derived
immunity M(t), susceptible S(¢) , pertussis-only infected
I (1), pneumonia-only infected Ip(t), pertussis-pneumonia
co-infected 1,..(0), pertussis-only recovered R (%),
pneumonia-only recovered Rp(t) pertussis-pneumonia
recovered Rm_p(t) populations. The subscripts (wc),
(p) and (wc-p) represents pertussis (whooping cough),
pneumonia and pertussis-pneumonia coinfection,
respectively. Figure 1 presents the schematic flow chart



on the transmission of the co-infectious disease model.
It illustrates the behavior of individuals going in and
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out of the eight compartments as the transmission of the
diseases has been biologically described (Kilgore et al.
2016; Tilahun 2019).
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FIGURE 1. The flowchart of the co-infection model

In formulating the co-infection model, it is
assumed that AIT is the total proportion of immunized
individuals, where Ais the maternally immunized
infants against infection and IT per capita birth rate,
and the non-immunized individuals is (1-A)IT. The
susceptible population increases from individuals
that suffer waning of vaccine efficiency ¢, and sub-
classes of pertussis-only recovered, pneumonia-only
recovered and pertussis-pneumonia recovered by
losing their temporary immunity at the rate J,_, o »
and 0,, ,, respectively. Individuals in the susceptible
population can contract pertussis-only with the force
of infection 4, =p,.c,.,+I,_ ), where B, is
the pertussis transmission rate and ¢, denotes the
contact rate to join the [ compartment. Similarly,
pneumonia-only can be contracted with the force of
infection ﬂp = ﬁpcp 04 » +1 Wc_p) where B, denotes the
transmission rate of pneumonia and €, is the contact
rate, thereby joining the /, compartment. Pertussis-only
infected infants have the tendency of getting infected
with pneumonia with the force of infection 4, and
join the co-infected compartment (/,,. ,), and also the
co-infected compartment increases when infants with
pneumonia get infected by pertussis with the force of

infection A,.. The population suffers a natural death
at the rate x4 and also disease-induced death caused by
pertussis-only and pneumonia-only at the rate o,./,,
and 0,1, respectively. In a similar way, the co-infected
infants suffer a disease-induce death caused by severity
of pertussis infection at the rate o,./,., or severity in
pneumonia infection at the rate 9,/.,. Pertussis-only
infected infants recover from the disease at the rate 7,
and join the pertussis-only recovered compartment. In a
similar way, the pneumonia-only infected infants recover
and join the pneumonia-only compartment at the rate
7. The co-infected infants recover at the rate ). They
either recover only from pertussis and join the pertussis-
only recovered compartment with probability #,., or
recover from pneumonia and join the pneumonia-only
compartment with probability n,(1-n,,), or recover
from both diseases and join the co-infection recovered
compartment with probability (-n,)(1-n,) thereby
having n, +n,(1-n,)+1-n,)1-n,)=1. From the
above description and the flow chart shown in Figure 1,
the following system of non-linear differential equations
for the pertussis-pneumonia co-infection model is
derived:
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The system (2) satisfies the following conditions:

we—p (t)9 ch (t)ﬂ Rp (t)’ chfp (t) 2 0

Considering the basic co-infection model, it can be seen
that

M(@), S@), 1,.(1), 1,(0), 1

dN am ds dr, dl, dl,., drR,6 dR, dR

— = — e Py + +—L+

dt dt dt dt dt dt dt dt dt
<H-puM+S+1,+1,+1, ,+R +R +R. ) (3)

-0, +1 )—o-p(lp+l

we we—p we—p )'

we—p

Suppose that there is no death due to disease, that is

(0,.=0,=0), then (3) becomes
dN
? < H _luN_O-wc(]wc +Iwc—p)_o-p(lp +Iwcfp)

<II-uN,

so that N SE. The feasible region for the system (2) is
defined as #

ch—p = {(M,S,[WC,IP,I meprch,p) E]Ri 0<M+

we—p?

S+[wc +[p +[wc—p we—p

+R,.+R,+R SE}
H

EQUILIBRIUM SOLUTIONS

The equilibrium solution of the model (2) is obtained
by equating the system to zero, i.c.,

aM ds di, dl, dl, ., 6  dR drR, dR,._,

At At dt dt dt dt dr dt

Solving for the compartments, the following equilibria
are obtained:

1. In the absence of pneumonia disease:

E =M°S .1,

we?

0,0,R;

we

0,0)

This gives rise to the endemic equilibrium point of
pertussis disease given by

e = AL , 50 =LutOu i

a+u B

P ] By, (aATT+(a +w)¢) - pla+ )y, +0,.+ 1) ]

B+ )] 7ot + (3, + 1) (0, + 1) ]
w [ B.cCuc (@Al +(a + 1)f) = p(a+ )7, + 0, + 1) |
Bolo(a+ )] ¥yott+ (8, + 1) (0, + 1) |

2. Inthe absence of pertussis, that is the pertussis-free
disease state:

E;=(M,,S;,0,1,,0,0,R;,0)
This gives rise to the endemic equilibrium point of

pneumonia disease given by:

Me:AH Se:}/p+ap+ﬂ
a+u 7 Be,
Jo_ G, Be, (aAT+(@+ ) - ue+ p)y, 0, + 40 |

’ Bie,a+ )| 7,u+(5,+ 1), + 1)

>

R;:LI;,
S, +u

3. At a complete co-infection-free state,

E/_=M’,8,0,0,0,0,0,0)

we—p

This gives rise to the pertussis-pneumonia free
equilibrium point given by

M- ATT ’Sf:aAH+(a+y)(1—A)H’
a+p p(a+p)
Iv/vc :Ipf :]éc—p:Ry{)c = R}{ = R;Cc—p :O

4. In the presence of both pertussis and pneumonia co-
infection state,

E, ,=(M".S,I

sLyes

* * *

L. R

we—p 2~ twe?

* *
R,.R,. ,)
This gives rise to the pertussis-pneumonia endemic

equilibrium state given by.

o AT e (@A, A8 e,
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Where 8y = CZAH+((Z +/l)¢3 gwc = j/wc +O—wc + lu’ gp = 7p
to,+H, &, ,=V*0,+0,+1 and ¢=(1-A)II. The
superscripts f, e and * represent disease-free, endemic
and co-infection endemic equilibrium states.

BASIC REPRODUCTION NUMBER

The basic reproduction number, denoted as R, is a
threshold parameter that plays a vital role in studying
the dynamical behaviour of a model. It is the average
number of secondary infections produced by an index
case of completely uninfected population (Diekmann
& Heesterbeek 2000; Diekmann et al. 1990). Note that
when R, <1, then, it implies that probability of new cases
of co-infectious disease to persist in the population is
insufficient for an outbreak to occur, and when, R, >1,
then the disease will become endemic and cause a drastic
decline in the uninfected population of infants (Burrell
et al. 2016). The next generation method (Diekmann et
al. 1990; Siddik et al. 2020) is used to obtain the basic
reproduction defined by R, = p(FV ™), where p is the
spectral radius and

B.enS” 0 Bues

_ r r
F= 0 B, Be,ST |
0 0 0
(Ve + O+ 10) 0 0
V= 0 (r,+o,+u) 0
0 0 (r+0,. +0,+u)
Thus,
f
ﬂwCCWL‘S 0 0
Ve TOw T H
c 8’
Fr'= 0 7'8” L 0
7,to,tu
0 0 0
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The dominant eigenvalue of FV™' is given by

R, = p(FV™")=max{R,,.R,,}|

] Buul@h s (@ ) fre (e wh)]
@+ ), + 0, + 1) p(a+u)(y, +0,+ 1) @

STABILITY ANALYSIS

In this section, the global stability for pertussis-only and
pneumonia-only diseases is studied for the equilibrium
points obtained, while local and global stability analysis
of the co-infectious disease in model (2) is examined to
observe the behavior of the model.

GLOBAL STABILITY OF E/ (M’,S/ 1! [0,0,R/ ,0,0)

AT PERTUSSIS-FREE EQUILIBRIUM
Theorem I The pertussis-free equilibrium is globally
asymptotically stable if R, <1.
Proof The globally asymptotically stability of the
pertussis-free equilibrium is proved using the
Lyapunov function method (Vargas-De-Leon 2009).

Let the Lyapunov function V,  be defined such that

_ L . Taking the time derivative of ¥
" 7/WC + GWC + ILI
gives
dav,. 1 dl,.
= (&)

dt  (y,,+0, +u) di

dl,,

Substituting the value of as in (2) into (5), noting

that there is absence of pneumonia and thus no co-
infection, this gives

dec _ (ﬂwccwcSIwc — (7/W(J + O-wc + Iu)lwc)
dt (ywc + O-wc +Iu)
yi
= dV _ ﬂw C S we

we c_we

dt —(}/WC+O-W’C+#)_

_ V. S(  Co(GATL+ (@ + 1)) IJ I
i\ @+ )Y+ 0,0+ 1)

we

we

v,
= —2 (R, —DI
d[ ( Owe )

Y o if R,,, <1
dt
and also, .. —o if 7,,=0 or R, =1.Thus, the

The above analysis shows that

dt
pertussis-free equilibrium is globally asymptotically
stable if R, <I.
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GLOBAL STABILITY OF Ep’ M7, Sl{ ,0, I,{ ,0,0, R,{ ,0)
PNEUMONIA-FREE EQUILIBRIUM

Theorem 2 The pneumonia-free equilibrium is globally

asymptotically stable if R,, <1

Proof The Lyapunov function method is used to prove

the globally asymptotically stability of the pneumonia-

free equilibrium (Vargas-De-Ledn 2009).

Let the Lyapunov function V, be defined such that
I, . The time derivative is given by

=
]/D+O'D+,U

av, dl
po— 1 ©)
e (y,+o,+uw) dt

Substitute the value ﬂ as in (2) into (6), noting that that
t
there is absence of pertussis and thus no co-infection,
this gives
dL _ B,c,SI,
dt (y,+o,+u)
av, Be,SI,
dr (]/p +to,+u)
- % < B,c,(aM1+(a+ u)p) =
dt  \ mla+u)y,+o,+un)

—(}/p +O',,+,U)],,

P

dv,
:>7ﬁ(R0p —1)1

P

<0. Slmllarly,

It is observed that d;P <0 if R, =0
dt

if 7,=0 or R, =1 Therefore, by the LaSalle’s Principle
(LaSalle 1976), the pneumonia-free equilibrium is
globally asymptotically stable if R,, <1. The local
stability of the pertussis-pneumonia-free co-infection
model is investigated in the next theorem, thereafter the
global stability of the endemic state is analysed.
Theorem 3 The co-infection-free equilibrium point
is locally asymptotically stable if R, <1, otherwise
unstable.

Proof'The Jacobian of the model (2) at co-infection-free
equilibrium (E/ ) is calculated and yields

! —
J(E,, )=
~(@+u) 0 0 0 0 0 0 0
cg, (B.c.+Bc)g, N .
o a Pes _Bes B b, 5 5 5
pla + ) pla+ ) pla + )
0 o Llt o 0 Lot 0 0 0
e+ p) pla+ )
0 0 0 A g Bes 0 0 0
pla + ) e+ )
0 0 0 0 -g,., 0 0 0
0 0 7, 0 . (8 +u) 0 0
0 0 0 v yn,(1=n_) 0 (8, + ) 0
0 0 0 0 y(=n)1=n) 0 0 (8, + 1)

The eigenvalues of the Jacobian matrix (J(Eufw)) is
given by

ﬂ‘l:_:u<09 12:_(“+ﬂ)<0’ A‘}:_gwcfp<07 14:

—(u+06,)<0, A4 =—(u+9,,)<0,

Buco (a1 +(a+m)d)
ula+u)

B¢, (a1 +(a+ u)g)
ula+u)

=_(1u+5WL p)<0’ 17 =

gwc’ 2’8 =

_p’

The first six eigenvalues show that the co-infection-
free equilibrium is stable, however A, and A, must be
negative for this equilibrium state to be stable, that is,

B.Co (@M1 + (a + p1)¢) B,c, (Al +(a+ pu)p)
wlatu) ula+p)
- g, <0, hence re-writing this gives BuCuc (ZAIL+ (@ + 1))
pla+p)
B (A I+(@+ 1)) | Note
u(a+p)
_Bucn (e +(a+1)9)

that R
alarp)
that R, <land in a similar way, it is seen that R, , <l

Thus, CFE is locally asymptotically stable if and only if
RO = max{ROwc’ R()p}

-8, <0 and

< &ue, which implies that

, therefore it means

Owe

GLOBAL STABILITY OF
vesloo L s Ry R LR, ) CO-INFECTION
ENDEMIC EQUILIBRIUM

Theorem 4 The co-infection endemic equilibrium of the
basic model (2) is globally asymptotically stable.
Proof Using the common quadratic Lyapunov function
method as in Shah et al. (2020) and Vargas-De-Leon
(2009). Let the Lyapunov function be given by

GWM,S, 1,11 R, R,R

we? T p2 T we—p2 T twe? we— p)

E' =M",5",1

%[(M—ME>+<S—S“)+<IW—I;J

U, =)+ Uy, = )+ (R~ R
+R,~ROHR,._, — R,

The time derivative of the Lyapunov function (G) is
given by

dG e e
o —=[(M-M)+(S-8)+,. - L[,)+U,— 1)+ 7
( )+(R, -

we-p wc P we uc )

re ydM ds di,  dl
R, -R)*+R,., — R I— —etr

dt dz dt dt
dl, ., dR, dR, dR,
ey P4 P
dt dt dt dt

+



Substituting (3) into (7) yields

dG e e e e
E=[(M—M )HES =8+, - L)+, - 1)+
(]wc—p _I:ic—p)-{—(ch _R::c) (8)

+R, ~R)HR,._,~R

we—p we—p

N -p(M +S+1,,+1,+

Iwc—p + ch + Rp + ch—p )]

given that 1= p(M*+S*+ 15, +I5+1,_, + RS, + RS+
R ) then (8) becomes

i—f:[(M—Me)+(S—Se)+(]WC —I)+ (I, -1+
(]wcfp _[:zc—p) + (ch _szc)-'—(Rp _R;)
R, ~ RS I = p((M = M) +(S=S5) +

(L =)+, = 1)+, = 1,.,)

we we—p

+(R,, ~R)+(R,-R)+(R,. ,~R:, )]

=—u[ (M -M*)+(S=8)+(, ~L;)+,~1})

+(,._ I

we—p wc—p) + (ch - Rvic)
e e 2
+R,~R)+(R,,_, - RM,H,)]

<0
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Here,i—G < 0. Note also that i,—G=0 ifand if M =M°,

t t
— Q€ _7J€ _ 7€ _ g€ _ pe _
§=8 > Iwc - Iwc’ Ip - Ip’ Iwz‘fp - Iwcffﬂch - ch’ Rp -
R, R, , =R, . Itisseen that by the common quadratic

Lyapunov method, the co-infection endemic equilibrium
is globally asymptotically stable.

SENSITIVITY ANALY SIS

A sensitivity analysis is carried out on some basic
parameters of the model. This analysis helps to ascertain
the robustness of parameters that have great influence
on the basic reproduction number R,. Following
LaSalle (1976) and Tilahun (2019), the normalized
forward sensitivity index on the parameters that appear
in R, are estimated. The sensitivity index is defined

by 2R =B K ere. K i .
y Xk ok "R, where, k is any parameter in R,.

Considering that R, =max{R,,R,,}, the sensitivity
analysis of the parameters involved are obtained
separately. For example, the sensitivity index of R,
with respect to the pertussis transmission rate is given by

_oR, B _

7 __Culatp-MID) @+, +0,. +H) 50
P 0B, R, (@+u)(y,. 0, +u)

¢, (a+ u(— M)

R _

.. , Ry, Ry, . Ry,
Other indices y,", }(C”‘:”, Z}’»S:C’ ;(5““, )(GZ‘ and

R R ) L

;(2"” s Xe s XL X ;(j“” are obtained in the same
» P P, P .

manner and evaluated using parameter values in Table 1.

TABLE 1. Parameter value

Parameter Value Source
A 0.35 Kilgore et al. (2016)
II 0.095 Kilgore et al. (2016)
a 0.25 Nithiiri et al. (2015)
B.. 1.513 Nthiiri et al. (2015)
B, 1.013 Tilahun (2019)
Cove 0.5-1 Estimated
c, 0.5-1 Pesco et al. (2015)
0, 0.06 Kilgore et al. (2016)
o, 0.05 Pesco et al. (2015)
S 0.07 Estimated
H 0.00313 Estimated
O 0.0309 Pesco et al. (2015)
o, 0.0206 Tilahun (2019)
e 0.18 Cheon (2015)
Vive 0.0205 Pesco et al. (2015)
7 0.0195 Pesco et al. (2015)
n,. 0.5-1 Estimated
n,(1-n,.) 0.5-1 Estimated
d-n,)1-n,) 0.5-1 Estimated
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Table 2 shows the summary of the sensitivity
analysis. This sensitivity index is a local estimate of the
best way to reduce R;.An increase in a more sensitive
parameter while keeping other parameters constant will
increase the value of the basic reproduction number,

thereby causing an increase in the endemicity of the
disease since they are positive indices. Note that in
examining sensitivity analysis, it is not biologically
appropriate to suggest that human mortality (4, ©,,., 7,)
be increased in order to control the spread of disease.

TABLE 2. Sensitivity indices

Parameters

Sensitivity indices

R

Owe

+ve

+ve

+ve

+ve

+ve

NUMERICAL SIMULATIONS

Numerical simulation has been performed for the
pertussis-pneumonia co-infection model using the
Mathematica software package. The numerical
simulation supports the analytic results of the pertussis-
pneumonia co-infection model obtained in previous
sections. The behaviour of infant population in the
different compartments is observed. The parameter
values in Table 1 are used for the simulation. Figure 2
illustrates a time series graph of the co-infection model
which is partitioned with respect to the single discase
only and co-infection of the disease, in order to have a
clearer insight on the behaviour of each compartment
in relation to the co-infection dynamics. The phase
portrait of the pertussis-pneumonia co-infection model is
presented in Figure 3 which shows the stability behaviour
the infected infant population.

Figure 2 shows the time series solution of the co-
infection model, where it is seen how the healthy infant
population which have temporary immunity decreases
due to contact with the disease. The graph also shows
a relatively high increase in the population of infants
with co-infection of both diseases as observed in Figure
2(d). This signifies the effect of infants with pertussis
been exposed to the pneumonia infected populace. The
stability of the co-infection endemic equilibrium is seen
in the phase portrait as shown in Figure 3.

The trajectories of the equilibrium state are
illustrated in Figure 3 which presents the graph of (a)
susceptible and pertussis-only infected, (b) susceptible
and pneumonia-only infected while (c) susceptible and
pertussis-pneumonia co-infected infant population.
The vaccine efficiency parameter is varied to observe
its implication on the stability of the system, noting



that it is a significant parameter of the model (2). The
increased variation in the vaccine efficiency parameter
relates that more infants with strengthened immune
system will remain in a susceptible state for a longer
period before becoming infected due to waning of the
vaccine. However, it is observed from Figure 3(a)-3(c)
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that susceptible infants show a high risk of becoming
co-infected with pertussis and pneumonia as compared
to pertussis-only and pneumonia-only infected infants,
respectively. The figure shows the conditions for stability
has been established even with variation in the vaccine
efficiency parameter and it is globally stable.
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FIGURE 2. Time series plot for the pertussis-pneumonia co-infection model
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RESULTS AND DISCUSSION

In this paper, a model for pertussis-pneumonia co-
infection was developed and the transmission dynamics of
this model in infant was analysed. The model was divided
into eight compartments; maternally derived immunity,
susceptible, pertussis-only infected, pneumonia-only
infected, pertussis-pneumonia co-infected, pertussis-only
recovered, pneumonia-only recovered and pertussis-
pneumonia co-infection recovered. The stability of
the basic model was investigated considering the
co-infection-free and endemic equilibrium states.
In addition, the basic reproduction number was
calculated using the next generation matrix and the
model has a dominant eigenvalue of FV™' given by
R,=p(FV)= max{ROWc,Rop}. R, is a very important
threshold parameter that is used in observing the
dynamic behaviour in disease modelling because it is
a determining factor to whether or not the disease will
persist in the population. Theoretically, the global
stability for co-infection endemic equilibrium was
investigated using the common quadratic Lyapunov
function method which showed that the system was
globally asymptotically stable. Sensitivity analysis
of basic parameters in the basic reproduction of the
co-infection model are analysed in their respective
order. Numerical simulations were carried out to have
a graphical illustration on the behaviour of the infant
populace with respect time as seen in Figure 2. Though
the disease infected infant (single and co-infected)
population attains a stable equilibrium point, the
population does not go extinct which could result in the
reinfection of the disease if not given adequate clinical
attention. Similarly, from the basic model (2), considering
the Theorem 4 with parameter values as seen in Table
1, the system exhibits global stability as illustrated in
Figure 3. The variation in the vaccine parameter did not
alter the stability behaviour of the system, however, it
is seen that infant with strengthened immune system
remain susceptible for a longer period, however, they
show a relatively high risk of becoming co-infected with
pertussis and pneumonia.

CONCLUSION

A system of eight ordinary differential equations
which incorporates the maternally derived immunity
compartment is developed and analyzed. The model
exhibits four equilibria; namely, the pertussis-free
equilibrium, the pneumonia-free equilibrium, the co-
infection-free equilibrium and co-infection endemic
equilibrium. Using the Lyapunov function technique,

the endemic equilibria were shown to be globally
asymptotically stable. The sensitivity analysis was carried
out and showed the sensitivity of each parameter as
seen in Table 2. An increase in the dominant parameter
while keeping other parameters constant will increase
the value of the basic reproduction number, thereby,
increasing the tendency of endemicity of the disease.
Numerical simulations were also carried out which shows
the global dynamics of the system to be well established.

ACKNOWLEDGEMENTS

The authors are indebted with insightful comments
from the editor and anonymous reviewers. This
research was supported by the School of Mathematical
Sciences Graduate Fund and Bridging Grant Scheme
304-PMATHS-6316285 from Research Creativity and
Management Office (RCMO) USM. The authors would
also like to thank School of Mathematical Sciences for
providing computing and research assistance.

REFERENCES

Aggarwal, R. 2020. Dynamics of HIV-TB co-infection with
detection as optimal intervention strategy. International
Journal of Non-Linear Mechanics 120: 103388.

Barger-Kamate, B., Deloria Knoll, M., Kagucia, E.W., Prosperi,
C., Baggett, H.C., Brooks, W.A., Feikin, D.R., Hammitt,
L.L., Howie, S.R., Levine, O.S. & Madhi, S.A. 2016.
Pertussis-associated pneumonia in infants and children
from low-and middle-income countries participating in
the PERCH study. Clinical Infectious Diseases 63(4):
187-196.

Bichara, D., Iggidr, A. & Sallet, G. 2014. Global analysis of
multi-strains SIS, SIR and MSIR epidemic models. Journal
of Applied Mathematics and Computing 44(1-2): 273-
292.

Birger, R.B., Kouyos, R.D., Cohen, T., Griffiths, E.C., Huijben,
S., Mina, M.J., Volkova, V., Grenfell, B. & Metcalf, C.J.E.
2015. The potential impact of coinfection on antimicrobial
chemotherapy and drug resistance. Trends in Microbiology
23(9): 537-544.

Burrell, C.J., Howard, C.R. & Murphy, F.A. 2016. Fenner and
White s Medical Virology. 5th ed. Massachusetts: Academic
Press. p. 604.

Chang, L.F.,, Lee, P.I., Lu, C.Y., Chen, J.M., Huang, LM. &
Chang, L.Y. 2019. Resurgence of pertussis in Taiwan
during 2009-2015 and its impact on infants. Journal of
Microbiology, Immunology and Infection 52(4): 542-548.

Cheng, Y.H., You, S.H., Lin, Y.J., Chen, S.C., Chen, W.Y.,
Chou, W.C., Hsieh, N.H. & Liao, C.M. 2017. Mathematical
modeling of post coinfection with influenza. A virus
and Streptococcus pneumoniae, with implications for
pneumonia and COPD-risk assessment. International
Journal of Chronic Obstructive Pulmonary Disease 12:



1973.

Cheon, M.K., Na, H., Han, S.B., Kwon, H.J., Chun, Y.H.
& Kang, J.H. 2015. Pertussis accompanying recent
mycoplasma infection in a 10-year-old girl. Infection &
Chemotherapy 47(3): 197-201.

Clay, P.A., Duffy, M.A. & Rudolf, V.H. 2020. Within-host
priority effects and epidemic timing determine outbreak
severity in co-infected populations. Proceedings of the
Royal Society B 287(1922): 20200046.

Cox, F.E.G. 2001. Concomitant infections, parasites and
immune responses. Parasitology-Cambridge 122: 23-38.

Diekmann, O. & Heesterbeek, J.A.P. 2000. Mathematical
Epidemiology of Infectious Diseases: Model Building,
Analysis and Interpretation. 1st ed. John Wiley and Sons.
p. 303.

Diekmann, O., Heesterbeek, J. & Metz, J.A. 1990. On the
definition and the computation of the basic reproduction
ratio R o inmodels for infectious diseases in heterogeneous
populations, Journal of Mathematical Biology 28(4): 365-
382.

Glidden, C.K., Coon, C.A., Beechler, B.R., McNulty, C.,
Ezenwa, V.O. & Jolles, A.E. 2021. Co-infection best predicts
respiratory viral infection in a wild host. Journal of Animal
Ecology 90(3): 602-614.

Gouveia, N. & Fletcher, T. 2000. Respiratory diseases in
children and outdoor air pollution in Sao Paulo, Brazil:
A time series analysis. Occupational and Environmental
Medicine 57(7): 477-483.

Griffiths, E.C., Pedersen, A.B., Fenton, A. & Petchey, O.L. 2011.
The nature and consequences of coinfection in humans.
Journal of Infection 63(3): 200-206.

Hethcote, H.W. 2000. The mathematics of infectious diseases.
SIAM Review 42(4): 599-653.

Jiang, W., Wu, M., Chen, S., Li, A., Wang, K., Wang, Y., Chen,
Z.,Hao, C., Shao, X. & Xu, J. 2021. Virus coinfection is a
predictor of radiologically confirmed pneumonia in children
with Bordetella pertussis infection. Infectious Diseases and
Therapy 10(1): 335-346.

Kilgore, P.E., Salim, A.M., Zervos, M.J. & Schmitt, H.J. 2016.
Pertussis: Microbiology, disease, treatment, and prevention.
Clinical Microbiology Reviews 29(3): 449-486.

La Salle, J.P. 1976. The Stability of Dynamical Systems. Society
for Industrial and Applied Mathematics.

Mbabazi, F.K., Mugisha, J.Y.T. & Kimathi, M. 2018. Modeling
the within-host co-infection of influenza A virus and
pneumococcus. Applied Mathematics and Computation

2209

339: 488-506.

Muloiwa, R., Wolter, N., Mupere, E., Tan, T., Chitkara, A.J.,
Forsyth, K.D., von Konig, C.H.W. & Hussey, G. 2018.
Pertussis in Africa: Findings and recommendations of the
Global Pertussis Initiative (GPI). Vaccine 36(18): 2385-
2393.

National Cancer Institute 2018. Respiratory Disease. https://
www.cancer.gov/publications/dictionaries/cancer-terms/
def/respiratory-disease Accessed on 16th April, 2019.

Nthiiri, J.K., Lavi, G.O. & Mayonge, A. 2015. Mathematical
model of pneumonia and HIV/AIDS coinfection in the
presence of protection. /nt. J. Math Anal. 9(42): 2069-
2085.

Okosun, K.O., Khan, M.A., Bonyah, E. & Okosun, O.0. 2019.
Cholera-schistosomiasis coinfection dynamics. Optimal
Control Applications and Methods 40(4): 703-727.

Omame, A., Okuonghae, D., Umana, R.A. & Inyama, S.C.
2020. Analysis of a co-infection model for HPV-TB. Applied
Mathematical Modelling 77: 881-901.

Pesco, P., Bergero, P., Fabricius, G. & Hozbor, D. 2015.
Mathematical modeling of delayed pertussis vaccination
in infants. Vaccine 33(41): 5475-5480.

Pinky, L. & Dobrovolny, H.M. 2016. Coinfections of the
respiratory tract: Viral competition for resources. PLoS
ONE 11(5): e0155589.

Shah, N.H., Sheoran, N. & Shah, Y. 2020. Dynamics of HIV-TB
co-infection model. Axioms 9(1): 29.

Siddik, S.B.M., Abdullah, F.A. & Ismail, A.I.M. 2020.
Mathematical model of dengue virus with predator-prey
interactions. Sains Malaysiana 49(5): 1191-1200.

Tilahun, G.T. 2019. Modeling co-dynamics of pneumonia and
meningitis diseases. Advances in Difference Equations
2019(1): 149.

Vargas-De-Leon, C. 2009. Constructions of Lyapunov
functions for classic SIS, SIR and SIRS epidemic models
with variable population size. Foro-Red-Mat: Revista
electronica de contenido matematico 26: 1-12.

Yakubu, A.A., Abdullah, F.A., Md Ismail, A.I. & Yatim, Y.M.
2020. Dynamical analysis on the transmission of pertussis
with maternally derived immunity. Journal of Mathematics
and Statistics 16(1): 104-112.

Zouari, A., Touati, A., Smaoui, H., Brun, D., Kasdaghli, K.,
Menif, K., Jaballah, N.B., Hassen, E.B., Guiso, N. &
Kechrid, A. 2012. Dual infection with Bordetella pertussis
and Mycoplasma pneumoniae in three infants. Infection
40(2): 213-217.

"Corresponding author; email: farahaini@usm.my



