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ABSTRACT

The Lee-Carter (LC) model led to the development of many prominent mortality models. This study aims to 
modify the generalised linear model (GLM) (Poisson, negative binomial, and binomial) framework of the LC model by 
incorporating factors that affect mortality into the model. The top three factors which affect the mortality for each of 
the 14 countries studied were selected using the random forest recursive feature elimination (RF-RFE) method which 
eliminates the least important factors based on the correlation of the predictors with the log-mortality rate. These selected 
factors were integrated in the form of additional bilinear variates to the GLM models and compared to their original 
counterparts. The RF-RFE method is effective in selecting the best determinants of mortality by avoiding multicollinearity 
among predictor variables. The inclusion of the time-factor modulation based on the factors selected improved the 
model adequacy significantly. Vast improvement was evident in the Poisson and binomial settings. Furthermore, the 
modified GLM version fits short-base-period data well. This study shows that the inclusion of exogenous determinants 
of mortality improves the performance of the model significantly. 
Keywords: GLM; Lee-Carter model; mortality; random forest; recursive feature elimination 

ABSTRAK

Model Lee-Carter (LC) telah membawa kepada perkembangan banyak model mortaliti yang menyerlah. Kajian ini 
bertujuan mengubah suai kerangka model linear teritlak (GLM) (Poisson, binomial negatif dan binomial) model LC 
dengan menggabungkan faktor yang mempengaruhi kematian ke dalam model. Tiga faktor teratas yang mempengaruhi 
kematian bagi setiap 14 negara yang dikaji, dipilih dengan menggunakan kaedah penghapusan ciri rekursif hutan rawak 
(RF-RFE) yang berfungsi menyingkirkan faktor yang kurang penting berdasarkan korelasi peramal dengan kadar log 
kematian. Faktor yang dipilih telah diintegrasikan dalam bentuk bilinear tambahan yang bervariasi dengan model GLM 
dan kajian perbandingan dengan versi model GLM yang asli telah dijalankan. Kaedah RF-RFE berkesan dalam memilih 
penentu kematian terbaik dan mengelakkan multikolineariti di antara pemboleh ubah peramal. Modulasi faktor masa 
yang dimasukkan berdasarkan faktor yang dipilih telah meningkatkan kecukupan model dengan lebih bererti. 
Peningkatan yang besar dapat dibuktikan pada model Poisson dan binomial. Tambahan pula, versi model GLM yang 
diubah suai turut sesuai digunakan untuk data jangka masa yang pendek. Kajian ini juga mendedahkan bahawa penggunaan 
penentu kematian luaran telah meningkatkan prestasi model dengan lebih bererti.
Kata kunci: GLM; hutan rawak; kematian; Model Lee-Carter; penghapusan ciri rekursif

INTRODUCTION

Mortality models are important in describing the 
demographic structure and health status of a population. 
The main challenges faced by developed countries 

are longevity risk and increased correlation between 
closely related populations such as gender, race, states 
and countries (Nor et al. 2021). The Lee-Carter (LC) 
(1992) model which was constructed to fit and predict 
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mortality rates for the United States of America has been 
a benchmark in modelling and forecasting mortality 
for many countries since its introduction. This model 
estimates the period trend using a one-factor stochastic 
model and explains mortality trends in a stochastic 
framework by fitting past mortality data and modelling 
the time trend as a stochastic process (Selecka et al. 2017).
Some of the popular extensions of the LC model include 
the Lee-Miller (2001), Booth-Maindonald-Smith (2002), 
Renshaw-Haberman (2006), and Hyndman-Ullah 
(2007) variants. These led to various modifications and 
improvisations. Hyndman and Shang (2009) improved 
the functional principal component by Hyndman and 
Ullah (2007) by using weighted principal component 
regression which assigns higher weights for more 
recent data. Hansen (2013) generated mortality table 
time trajectories and compared the performance of 
five mortality models, including the LC model and its 
extensions.  The aforementioned models do not have 
a straightforward setting in parameter estimation and 
incorporating exogenous determinants into these models 
which is the aim of this study will be a daunting task. 
To achieve this aim, the generalised linear model (GLM) 
framework of the LC model will be of good use.

The application of regression methods on the LC 
model is not straightforward since the model is not 
in the regression form (Currie 2013) and not easily 
identifiable. To achieve this, identifiable constraints 
must be set. The difficulty in estimating the parameters 
arises from the bilinear term  used in the LC model (see 
equation 1). Thus, the use of constraints imposed on the 
individual terms forming the bilinear term are required 
to overcome the identifiability issue. The weighted least 
squares and maximum likelihood estimation approaches 
parameterise the model and overcome the homoscedastic 
error limitation of the LC model (Wilmoth 1993). This led 
to the Poisson log-bilinear (Brouhns et al. 2002), binomial 
(Wang & Lu 2005) and the negative binomial (Delwarde 
et al. 2007) variants. Cairns et al. (2009) compared 
eight stochastic models explaining improvements in 
mortality rates in England and Wales and in the USA. 
Currie (2016) described these models in the standard 
model terminology of GLM and Gaussian network 
model (GNM). Pitt et al. (2018) extended the GLM model 
by using Lagrange methods and P-splines to improve 
mortality projection.

In this study, it is of interest to examine the 
effects of exogenous determinants in improving the 
adequacy of mortality models. This is achievable by 
incorporating exogenous determinants of mortality 
such as macroeconomic factors, health determinants 

and so on as predictor variables in the GLM framework. 
Furthermore, the parameter estimation process for this 
setting is straightforward as it uses the MLE method. 
Hanewald et al. (2011) established a link between 
macroeconomic fluctuations and the mortality index of 
the LC model to develop a dynamic asset liability model. 
Hanewald (2011) studied the impact of macroeconomic 
fluctuations in the LC model. French (2014) suggested that 
mortality in different populations may be related based 
on economic literature on technology and knowledge 
diffusion. Gross domestic product (GDP), health spending 
as well as lifestyles factors such as alcohol, cigarette, 
fruit, vegetable, and fat consumption are good factors 
to be considered in studying mortality rates (French & 
Ohare 2014). Rasoulinezhad et al. (2020) discovered 
that mortality could be accounted for by variations in the 
concentration of carbon dioxide emissions. Poor mental 
health (Yeh et al. 2019) and diabetes (Chen et al. 2020) 
also contributed to higher mortality rates. Tulu et al. 
(2020) used negative binomial regression to predict and 
compare HIV mortality rates in Thailand. These factors 
will be considered as exogenous factors to improve the 
accuracy of the improved model.

The selection of proper exogenous determinants 
to improve the performance of a mortality model is 
essential. Random Forest (RF) is a popular ensemble 
learning approach that has been applied in classification 
and regression problems (Fawagreh et al. 2014). The RF 
method identifies strong predictors with the presence of 
correlation between predictors via the RF-RFE feature by 
decreasing the estimated importance scores of correlated 
variables (Darst et al. 2018). The recursive feature 
elimination algorithm is effective in selecting relevant 
predictors which affect mortality. It ranks features by 
models, eliminates the least significant features and keeps 
the best features which help in prediction. 

This study aims to modify and improve the adequacy 
of the GLM mortality model by incorporating economic 
and health-related factors which have an influence on 
mortality and were selected using the RF-RFE approach 
for each of the 14 countries studied (United States of 
America (USA), Spain, Japan, Australia, Netherlands, 
United Kingdom (UK), Sweden, Canada, Belgium, 
Taiwan, Italy, Chile, South Korea, and Germany). So 
far, no work from the GLM perspective on mortality 
modelling has used the RF-RFE approach to select the 
best exogenous determinants for mortality modelling. 
This method will be useful in preventing the use of 
highly correlated variables in the model, and the best 
predictors (with low correlation) representing exogenous 
determinants shall be included to further enhance the 
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performance of the model. This paper is organised as 
follows: Next section discusses the data and methods 
used, subsequent section reviews the results and the last 
section concludes the findings.

MATERIALS AND METHODS

THE DATA SET

In this paper, the mortality data for USA, Spain, Japan, 

Australia, Netherlands, UK, Sweden, Canada, Belgium, 
Taiwan, Italy, Chile, South Korea, and Germany were 
obtained from the Human Mortality Database (HMD 
2020). The data includes central mortality rates and mid-
year populations by individual years up to 110 years of 
age. In this study, ages above 85 were grouped as 85+ 
to avoid erratic rates for these ages. Table 1 shows the 
periods used to study mortality for different countries.

TABLE 1. Total period mortality data for each country

Country Year

USA 1970-2016

Spain 1971-2016

Japan 1970-2016

Australia 1971-2016

Netherlands 1972-2016

UK 1970-2016

Sweden 1970-2016

Canada 1970-2016

Belgium 1970-2016

Taiwan 1970-2014

Italy 1970-2014

Chile 2000-2016

South Korea 2003-2016

Germany 1992-2016

The period for the mortality data for each country 
was determined based on the availability of factors 
contributing to mortality in that country. The factors that 
affect mortality of each country such as GDP, alcohol 
and tobacco consumption, health expenditure, fruit 
and vegetable consumption, fat supply, carbon dioxide 
emissions, and crude rates (diabetes mellitus, mental and 
behavioural disorders, and accidents) were obtained from 
National Account Data (2020), OECD (2020), Our World 
in Data (2020), and World Bank (2020).

THE LEE-CARTER MODEL

The LC model (1992) is given by:

(1)

where μx,t is the central mortality rate, calculated as the 
ratio between the number of people aged x who died in 
year t and the exposure to death for age x in year t. ax is 
the average age-specific mortality, and bx is a deviation 
in mortality due to changes of kt. The parameter kt 

𝑙𝑙𝑙𝑙(𝜇𝜇𝑥𝑥,𝑡𝑡) = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑒𝑒𝑥𝑥,𝑡𝑡 



2240	

represents the index of the level of mortality at time t. ex,t 
is the residual at age x and time t and ex,t ~ N(0,σe

2 ). Lee 
and Carter (1992) estimated ax as the average of ln (μx,t) 
over time, and the bx and kt are estimated by singular 
value decomposition. The constraints

                                     and                                     (2)

were used to obtain a unique solution. kt is re-estimated 
so that the observed number of deaths coincide with the 
estimates. The adjusted kt is extrapolated by using the 
ARIMA (0,1,0) model.

(3)

where θ is the drift parameter and et are the normally 
distributed error terms with mean 0 and variance 𝜎𝜎𝑘𝑘2. . 

THE MODIFIED GLM LC MODEL

Before converting (1) to the GLM framework, the LC 
model is modified with the inclusion of additional 
bilinear predictor structures representing the exogenous 
determinants used as follows:’

(4)

where 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) allows for a difference between the rate 
of change in death rates implied by the ith factor where 
i =1, 2, 3. The three most important factors affecting 
mortality for each country are selected by using the RF-
RFE method. A GLM model is written as:

(5)

where the random component is Y, the systematic 
components are β0 + β1 x1 + β2 x2 + ⋯ + βκ xκ and the link 
function is g(E(Y)) (McCullagh & Nelder 1989). Suppose 
Y = Dx,t  is the number of deaths, let η = ax  + bx kt  + 
𝑐𝑐𝑥𝑥𝑖𝑖 𝑑𝑑𝑡𝑡

𝑖𝑖   be the systematic components and ln (.)  as the link 
function. Equation (4) can be worked on, using the GLM 
framework (Currie 2016):

(6)

In equation (6), ax is a linear covariate while bx kt and  
𝑐𝑐𝑥𝑥𝑖𝑖 𝑑𝑑𝑡𝑡

𝑖𝑖   form bilinear covariates. Thus, the LC model in 
the GLM framework is a regression model with the 
presence of the bilinear terms, bx kt and  𝑐𝑐𝑥𝑥𝑖𝑖 𝑑𝑑𝑡𝑡

𝑖𝑖  (Denuit 
et al. 2019).

Let l(a,b,k,c,d) be the corresponding log-likelihood 
function of Dx,t. Then, the parameters of the LC model 
can be estimated by maximizing l(a,b,k,c,d) with respect 
to ax, bx, kt, cx and dt, specifically by solving the score 
equation; U(θi) = 

𝜕𝜕
𝜕𝜕𝜃𝜃𝑖𝑖

  log l(θi) = 0, where i =1,2,3,4,5 and 
θ1= ax, θ2 =bx, θ3 = kt, θ4 = cx, θ5 = dt .

The parameter estimation for the GLM framework 
in the gnm package (Turner & Firth 2020) in the R 
software is based on the iteratively reweighted least 
squares (IRLS) algorithm that uses the Newton scheme. 
The implementation of this algorithm enables a bilinear 
model to be linearised at each step of the algorithm as 
it fixes the current values of the parameters and revises 
the estimates of other parameters. Hence, if either one of 
the bilinear terms, bx or kt, and cx or dt are known, then, 
the modified LC model is in the GLM framework (Denuit 
et al. 2019). 

The IRLS algorithm gives estimates of parameters 
with random parameterization due to random initial 
values assigned if not stated. To get the estimates of bx and 
kt subject to the constraints (2), Currie (2016) provided 
the following equations:

Let Let 𝑏̂𝑏𝑥𝑥,𝑅𝑅 and 𝑘̂𝑘𝑡𝑡,𝑅𝑅 be the estimates returned by the algorithm and 𝑏̂𝑏𝑥𝑥 and 𝑘̂𝑘𝑡𝑡 be the estimates 

subject to equation (2). Let 𝑘𝑘𝑡𝑡,𝑅𝑅 = ∑ 𝑘̂𝑘𝑡𝑡,𝑅𝑅/𝑛𝑛𝑦𝑦𝑡𝑡  and 𝑏𝑏𝑥𝑥,𝑅𝑅 = ∑ 𝑏̂𝑏𝑥𝑥,𝑅𝑅/𝑛𝑛𝑎𝑎𝑥𝑥 .  
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Then,  and  can be re-estimated as follows:

(7)

(8)

where na is the length of ages, ny is the length of years 
and 1𝑛𝑛𝑦𝑦  is the vector of 1's of the length ny. 

THE BINOMIAL BILINEAR LC MODEL

The binomial bilinear LC model (Wang & Lu 2005) was 
extended by incorporating factors that potentially affect 
mortality. Let rx,t be the number of people aged x at the 
beginning of year t, qx,t be the probability of deaths of 
these rx,t on the condition that it is a closed group, then 
the number of deaths Dx,t can be assumed to follow the 
binomial distribution with parameters n = rx,t and p = qx,t.
qx,t is expressed as follows:

(9)

for x = x1, …, xm  and t = t1, …, tn.. Hence, it follows that:

(10)
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and  𝑐𝑐𝑥𝑥 or 𝑑𝑑𝑡𝑡 are known, then the modified LC model is in the GLM framework (Denuit et al. 181 

2019).  182 

The IRLS algorithm gives estimates of parameters with random parameterization due 183 

to random initial values assigned if not stated. To get the estimates of 𝑏𝑏𝑥𝑥 and 𝑘𝑘𝑡𝑡 subject to the 184 

constraints (2), Currie (2016) provided the following equations: 185 

Let 𝑏̂𝑏𝑥𝑥,𝑅𝑅 and 𝑘̂𝑘𝑡𝑡,𝑅𝑅 be the estimates returned by the algorithm and 𝑏̂𝑏𝑥𝑥  and 𝑘̂𝑘𝑡𝑡  be the estimates 186 

subject to equation (2). Let 𝑘̅𝑘𝑡𝑡,𝑅𝑅 = ∑ 𝑘̂𝑘𝑡𝑡,𝑅𝑅𝑡𝑡 /𝑛𝑛𝑦𝑦 and 𝑏̅𝑏𝑥𝑥,𝑅𝑅 = ∑ 𝑏̂𝑏𝑥𝑥,𝑅𝑅𝑥𝑥 /𝑛𝑛𝑎𝑎.  187 

Then, 𝑏̂𝑏𝑥𝑥 and 𝑘̂𝑘𝑡𝑡 can be re-estimated as follows: 188 

𝑏̂𝑏𝑥𝑥 = 𝑏̂𝑏𝑥𝑥,𝑅𝑅/(𝑛𝑛𝑎𝑎𝑏̅𝑏𝑥𝑥,𝑅𝑅) (7) 

𝑘̂𝑘𝑡𝑡 = 𝑛𝑛𝑎𝑎𝑏̅𝑏𝑥𝑥,𝑅𝑅 (𝑘̂𝑘𝑡𝑡,𝑅𝑅 − 𝑘̅𝑘𝑡𝑡,𝑅𝑅1𝑛𝑛𝑦𝑦) (8) 

where 𝑛𝑛𝑎𝑎 = length of ages, 𝑛𝑛𝑦𝑦 = length of years and 1𝑛𝑛𝑦𝑦 =vector of 1′𝑠𝑠 of the length 𝑛𝑛𝑦𝑦. 189 

 190 

THE BINOMIAL BILINEAR LC MODEL 191 

The binomial bilinear LC model (Wang & Lu, 2005)  was extended by incorporating factors 192 

that potentially affect mortality. Let 𝑟𝑟𝑥𝑥,𝑡𝑡 be the number of people aged 𝑥𝑥 at the beginning of 193 

year 𝑡𝑡, 𝑞𝑞𝑥𝑥,𝑡𝑡 be the probability of deaths of these 𝑟𝑟𝑥𝑥,𝑡𝑡 on the condition that it is a closed group, 194 

then the number of deaths 𝐷𝐷𝑥𝑥,𝑡𝑡  can be assumed to follow the binomial distribution with 195 

parameters 𝑛𝑛 = 𝑟𝑟𝑥𝑥,𝑡𝑡 and 𝑝𝑝 = 𝑞𝑞𝑥𝑥,𝑡𝑡. 196 

𝑞𝑞𝑥𝑥,𝑡𝑡 is expressed as follows: 197 

𝑞𝑞𝑥𝑥,𝑡𝑡 =  1 −  exp ( − exp ( 𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )) (9) 

for 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚  and 𝑡𝑡 = 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. Hence, it follows that: 198 
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with the log-likelihood function: 

(11)

THE POISSON BILINEAR LC MODEL

The number of deaths Dx,t is assumed to follow the 
Poisson distribution (Brouhns et al. 2002), with its mean 
equals to the product of exposure-to-risk, ex,t, and the 
death rate, μx,t  which is as follows:

(12)

The corresponding log-likelihood function is

(13)

THE NEGATIVE BINOMIAL BILINEAR LC MODEL

In this section, the negative binomial bilinear LC 
model (Delwarde et al. 2007) was extended to cater 
macroeconomic variables. The Poisson bilinear model 
(Brouhns et al. 2002) assumes that the mean and variance 
are equal where

(14)

This equidispersion assumption may not be hold in all 
cases as the number of deaths varies inconsistently by 
ages and years. For a higher accuracy, a random effect 
term τx,t can be incorporated into the Poisson model (12) 
when modeling the number of deaths. Thus, a mixed 
Poisson model will be obtained. Now, Dx,t is assumed to 
follow a Poisson distribution with mean ex,t exp (ax + bx 

kt + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) + τx,t) and the variance,

                       where 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

                          (15)

If exp (τx,t) follows a gamma distribution, Dx,t follows a 
negative binomial distribution with the log-likelihood 
function: 

(16)

ν in (15) represents the dispersion parameter. The Poisson 
distribution is a special case of the negative binomial 
distribution where ν = 0.

𝑞𝑞𝑥𝑥,𝑡𝑡 =  1 −  𝑒𝑒𝑒𝑒𝑒𝑒 ( − 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )) (9) 

 

for 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚  and 𝑡𝑡 = 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. Hence, it follows that: 

𝐷𝐷𝑥𝑥,𝑡𝑡~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑟𝑟𝑥𝑥,𝑡𝑡, 𝑞𝑞𝑥𝑥,𝑡𝑡)  with 𝑞𝑞𝑥𝑥,𝑡𝑡 = 1 −  𝑒𝑒𝑒𝑒𝑒𝑒 ( − 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )), (10) 

 

with the log-likelihood function:  

𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘) = ∑ ∑((𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝐷𝐷𝑥𝑥,𝑡𝑡) 
𝑥𝑥𝑡𝑡

𝑙𝑙𝑙𝑙 (1 − 𝑞𝑞𝑥𝑥,𝑡𝑡) + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝑞𝑞𝑥𝑥,𝑡𝑡) )  +  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (11) 

 

𝑞𝑞𝑥𝑥,𝑡𝑡 =  1 −  𝑒𝑒𝑒𝑒𝑒𝑒 ( − 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )) (9) 

 

for 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚  and 𝑡𝑡 = 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. Hence, it follows that: 

𝐷𝐷𝑥𝑥,𝑡𝑡~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑟𝑟𝑥𝑥,𝑡𝑡, 𝑞𝑞𝑥𝑥,𝑡𝑡)  with 𝑞𝑞𝑥𝑥,𝑡𝑡 = 1 −  𝑒𝑒𝑒𝑒𝑒𝑒 ( − 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )), (10) 

 

with the log-likelihood function:  

𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘) = ∑ ∑((𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝐷𝐷𝑥𝑥,𝑡𝑡) 
𝑥𝑥𝑡𝑡

𝑙𝑙𝑙𝑙 (1 − 𝑞𝑞𝑥𝑥,𝑡𝑡) + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝑞𝑞𝑥𝑥,𝑡𝑡) )  +  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (11) 

 

𝐷𝐷𝑥𝑥,𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒𝑥𝑥,𝑡𝑡𝜇𝜇𝑥𝑥,𝑡𝑡)   where   𝜇𝜇𝑥𝑥,𝑡𝑡 =𝑒𝑒𝑒𝑒𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) . (12) 

The corresponding log-likelihood function is 

𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘)

=  ∑(𝐷𝐷𝑥𝑥,𝑡𝑡(𝑎𝑎𝑥𝑥
𝑥𝑥,𝑡𝑡

 +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) − 𝑒𝑒𝑥𝑥,𝑡𝑡𝑒𝑒𝑥𝑥𝑥𝑥(𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ))

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

(13) 

 

𝐷𝐷𝑥𝑥,𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒𝑥𝑥,𝑡𝑡𝜇𝜇𝑥𝑥,𝑡𝑡)   where   𝜇𝜇𝑥𝑥,𝑡𝑡 =𝑒𝑒𝑒𝑒𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) . (12) 

The corresponding log-likelihood function is 

𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘)

=  ∑(𝐷𝐷𝑥𝑥,𝑡𝑡(𝑎𝑎𝑥𝑥
𝑥𝑥,𝑡𝑡

 +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) − 𝑒𝑒𝑥𝑥,𝑡𝑡𝑒𝑒𝑥𝑥𝑥𝑥(𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ))

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

(13) 

 

𝐷𝐷𝑥𝑥,𝑡𝑡 ~ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑒𝑒𝑥𝑥,𝑡𝑡𝜇𝜇𝑥𝑥,𝑡𝑡)   where   𝜇𝜇𝑥𝑥,𝑡𝑡 =𝑒𝑒𝑒𝑒𝑝𝑝 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) . (12) 

The corresponding log-likelihood function is 

𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘)

=  ∑(𝐷𝐷𝑥𝑥,𝑡𝑡(𝑎𝑎𝑥𝑥
𝑥𝑥,𝑡𝑡

 +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) − 𝑒𝑒𝑥𝑥,𝑡𝑡𝑒𝑒𝑥𝑥𝑥𝑥(𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ))

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.

(13) 

 

=  ∑(𝐷𝐷𝑥𝑥,𝑡𝑡(𝑎𝑎𝑥𝑥  + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) − 𝑒𝑒𝑥𝑥,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ))
𝑥𝑥,𝑡𝑡

+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. (13) 

 
=  ∑(𝐷𝐷𝑥𝑥,𝑡𝑡(𝑎𝑎𝑥𝑥  + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥

(𝑖𝑖)𝑑𝑑𝑡𝑡
(𝑖𝑖) ) − 𝑒𝑒𝑥𝑥,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥

(𝑖𝑖)𝑑𝑑𝑡𝑡
(𝑖𝑖) ))

𝑥𝑥,𝑡𝑡
+ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. (13) 

 

𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝑒𝑒𝑥𝑥,𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒(𝑎𝑎𝑥𝑥  + 𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) ) (14) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

TABLE 2. The link functions and the random components for the variants of the modified GLM LC model

Model Link function 
g(E(Y))

Random component 
(Y)

Binomial Logit Dx,t

ex,t

Poisson Log Dx,t

Negative Binomial Log Dx,t

THE RANDOM FOREST RECURSIVE FEATURE 
ELIMINATION (RF-RFE) METHOD FOR THE SELECTION 

OF FACTORS THAT AFFECT MORTALITY

RF is a supervised learning technique that assembles 
hundreds of decision trees into a single model. It consists 
of multiple independent decision trees that operate as 
an ensemble. Bagging, which is an ensemble algorithm, 
fits multiple models on different subsets of a training 
dataset. The predictions from all models are then 

combined. Bagging improves the stability and accuracy of 
predictions in the RF algorithm by reducing the variances 
of the decision trees to prevent overfitting in the training 
dataset (Arif 2020). In RF, each node of a decision tree 
is considered as a different subset of randomly selected 
predictors (Darst et al. 2018). 

Each tree is built using a different random bootstrap 
sample which consists of approximately 70% of the total 
observations and is used as a training set to predict the 

𝑞𝑞𝑥𝑥,𝑡𝑡 =  1 −  𝑒𝑒𝑒𝑒𝑒𝑒 ( − 𝑒𝑒𝑒𝑒𝑒𝑒 ( 𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )) (9) 

 

for 𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚  and 𝑡𝑡 = 𝑡𝑡1, … , 𝑡𝑡𝑛𝑛. Hence, it follows that: 

𝐷𝐷𝑥𝑥,𝑡𝑡~ 𝐵𝐵𝐵𝐵𝐵𝐵(𝑟𝑟𝑥𝑥,𝑡𝑡, 𝑞𝑞𝑥𝑥,𝑡𝑡)  with 𝑞𝑞𝑥𝑥,𝑡𝑡 = 1 −  𝑒𝑒𝑒𝑒𝑒𝑒 ( − 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑎𝑎𝑥𝑥  +  𝑏𝑏𝑥𝑥𝑘𝑘𝑡𝑡  + 𝑐𝑐𝑥𝑥
(𝑖𝑖)𝑑𝑑𝑡𝑡

(𝑖𝑖) )), (10) 

 

with the log-likelihood function:  

𝑙𝑙𝐵𝐵𝐵𝐵𝐵𝐵(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘) = ∑ ∑((𝑟𝑟𝑥𝑥,𝑡𝑡 − 𝐷𝐷𝑥𝑥,𝑡𝑡) 
𝑥𝑥𝑡𝑡

𝑙𝑙𝑙𝑙 (1 − 𝑞𝑞𝑥𝑥,𝑡𝑡) + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝑞𝑞𝑥𝑥,𝑡𝑡) )  +  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   (11) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 

 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡 + 𝜈𝜈𝛿𝛿𝑥𝑥,𝑡𝑡
2  ≥ 𝐸𝐸(𝐷𝐷𝑥𝑥,𝑡𝑡) = 𝛿𝛿𝑥𝑥,𝑡𝑡, where 𝜈𝜈 = 𝑉𝑉𝑎𝑎𝑟𝑟(𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡) ). (15) 

 

If 𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒 (𝜏𝜏𝑥𝑥,𝑡𝑡)  follows a gamma distribution, 𝐷𝐷𝑥𝑥,𝑡𝑡 follows a negative binomial distribution with the log-

likelihood function:  

𝑙𝑙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑎𝑎, 𝑏𝑏, 𝑐𝑐(𝑖𝑖), 𝑑𝑑(𝑖𝑖), 𝑘𝑘, 𝜈𝜈) = ∑ (∑𝑙𝑙𝑙𝑙
𝑁𝑁

𝑗𝑗=1
𝑙𝑙𝑙𝑙 (1

𝜈𝜈 + 𝐷𝐷𝑥𝑥,𝑡𝑡 − 𝑗𝑗) )
𝑥𝑥,𝑡𝑡

 

 

− 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝐷𝐷𝑥𝑥,𝑡𝑡!)  − (𝐷𝐷𝑥𝑥,𝑡𝑡 − 1
𝜈𝜈) 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (1 + 𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥)  + 𝐷𝐷𝑥𝑥,𝑡𝑡 𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 (𝜈𝜈𝛿𝛿𝑥𝑥𝑥𝑥) .

(16) 

 



2242	

data in the remaining testing set. The recursive feature 
elimination (RFE) approach calculates the importance 
based on the random forest importance criteria after 
running each subset of features recursively (Kuhn & 
Johnson 2013). A control object used to specify the 
details of the feature selection algorithm based on the 
cross-validation method with n resampling iterations 
was created. The RF-RFE method eliminates predictors 
in the mortality rate datasets, one at a time, until the 
desired number (the top three factors are selected for 
our case) of features is achieved. These features are later 
incorporated into the GLM mortality models. It works by 
searching a subset of features from the original training 
dataset, ranking the variables by their importance scores, 
omitting the least important ones, and refitting the model 
until a specific number of features is achieved (Brownlee 
2020). The randomForest (Liaw & Wiener 2002), caret 
(Kuhn 2020), dbplyr (Wickham et al. 2021) and mlbench 
(Leisch & Dimitriadou 2010) packages in R were used 

to perform RF-RFE on our data to select the top three 
factors which affect mortality in the 14 countries studied.

 
RESULTS AND DISCUSSION

The three GLM frameworks of the LC model as well as 
their modified versions which incorporated factors that 
potentially affect mortality were applied to the mortality 
data of USA, Spain, Japan, Australia, Netherlands, UK, 
Sweden, Canada, Belgium, Taiwan, Italy, Chile, South 
Korea, and Germany. The factors affecting mortality 
for each country are given in Table 3. The top three 
factors with the highest correlation with mortality for 
each country were selected via the RF-RFE method and 
integrated with the three GLM models. This method 
shortlists the highly influential factors towards mortality 
even when the predictors are strongly correlated (see 
Table 4 for the correlation values of the top three factors 
selected). Multicollinearity was also considered in 
the selection process. Hence, some highly correlated 
variables had to be eliminated.

TABLE 3. The top three factors were selected via the RF-RFE for each country (see /)

Factors Study

Factors Selected 

USA Spain Japan Australia Netherlands UK Sweden Canada Belgium Taiwan Italy Chile South 
Korea

Germany

Gross Domestic 
Product (GDP)
(per capita)

/ / / / / / /

Alcohol 
Consumption
(Litres per 
capita)

/ / /

Tobacco 
Consumption
(grams per capita 
(15+))

/ /

Health 
Expenditure
(per capita, 
current prices)

/ / / / / / / / / / /

Fruit 
Consumption
(kilos per capita 
per year)

/

Vegetable 
Consumption
(kilos per capita 
per year)

/ / /

Average daily 
per capita dietary 
fat supply (grams 
per capita per 
day)

/ /

Diabetes 
Mellitus
 (crude rates)

/ /

Mental and 
Behavioural 
Disorders
(crude rates)

/ / / / / /

Accident
(crude rates) / / / /

Carbon Dioxide 
Emissions(metric 
tons per capita)

/
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TABLE 4. Top three highly correlated factors with log of death rates

Country Predictor 1 Predictor 2 Predictor 3

USA GDP
(-0.9644)

Healh Expenditure
(-0.7951)

Accident
(0.9559)

Spain GDP
(-0.8752)

Health Expenditure
(-0.3066)

Accident
(0.9187)

Japan Health Expenditure (0.5929)
Mental and Behavioural 

Disorders
(0.7523)

Accident
(0.7979)

Australia GDP
(-0.9182) Tobacco Consumption (0.9649) Health Expenditure

(-0.9678)

Netherlands GDP
(-0.9465)

Health Expenditure
(-0.9602)

Mental and Behavioural 
Disorders
(-0.8663)

UK Tobacco Consumption 
(0.9572)

Health Expenditure
(-0.9945)

Fruit Consumption
(-0.8777)

Sweden Health Expenditure
(-0.9699)

Vegetable Consumption
(-0.9375)

Mental and Behavioural 
Disorders
(-0.9175)

Canada GDP
(-0.9676)

Health Expenditure
(-0.9797)

Health Expenditure
(-0.9253)

Belgium GDP
(-0.9513)

Health Expenditure
(-0.9643)

Mental and Behavioural 
Disorders
(-0.8134)

Taiwan GDP
(0.9617)

Average daily per capita dietary 
fat supply
 (0.8895)

Carbon Dioxide Emissions
(0.8476)

Italy GDP
(-0.9533)

Mental and Behavioural 
Disorders
(-0.9548)

Accident
(0.9539)

Chile Alcohol Consumption (0.6519) Vegetable Consumption
(-0.7232) Diabetes Mellitus (0.4891)

South Korea Health Expenditure
(-0.5479)

Average daily per capita dietary 
fat supply
 (-0.5747)

Diabetes Mellitus (0.7618)

Germany Alcohol Consumption (0.7462) Health Expenditure
(-0.6611) Vegetable Consumption (-0.8726)

Note: Correlation of the factors with the log of death rates are given in parentheses

The adequacy of these models was assessed via 
the plots of standardised residuals vs. fitted number 
of deaths. The residual deviances of the models were 
examined where the model with the lowest deviance gives 
the best fit. Results showed that the negative binomial 

version gives the best fit to the data for cases with and 
without factors affecting mortality. Table 5 shows that the 
residual deviance greatly improved for all three variants 
of the GLM model, with the inclusion of factors that affect 
mortality, especially the Poisson and binomial variants. 
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The standardised residual plots and residual deviances 
show that negative binomial gives the best fit overall for 
all the 14 countries studied.  

The standardised residual plots for the Spanish 
mortality data are displayed in Figures 1 and 2. The 
Spanish data is interesting to be analysed due to the 
presence of extreme values (Azman & Pathmanathan 
2020). The impact of incorporating factors that affect 
mortality shows that the residuals appear to be more 
random. The dispersion parameter in the negative 
binomial model gives it an edge especially when the 
data involves outliers and extreme values. The addition 
of the time-factor modulation 𝑐𝑐𝑥𝑥

𝑖𝑖 𝑑𝑑𝑡𝑡
𝑖𝑖     to the model in (6) 

improves the adequacy especially in the Poisson and 
binomial framework. Interestingly, this model also works 
well for short-base-period data such as Chile (2000-2016), 
South Korea (2003-2016) and Germany (1992-2016). It 
is important to identify the factors affecting mortality 
for each country and this is achieved by using the RF-RFE 
approach. These factors will represent the time-factor 
modulation 𝑐𝑐𝑥𝑥

𝑖𝑖 𝑑𝑑𝑡𝑡
𝑖𝑖     in (6) and play a key role in improving 

the accuracy of the model.
As shown in Table 3, the RF-RFE approach chose 

health spending as the most common factor affecting 
mortality rates in 11 out of 14 countries studied. This 
finding is consistent with Kim and Lane (2013) who claim 
that increased government expenditure on medical 

goods and services is linked to better individual public 
health outcomes. Kim and Lane (2013) discovered a 
negative relationship between public health expenditure 
and the infant mortality rate, as well as a positive 
relationship between public health expenditure on life 
expectancy at birth in 17 OECD countries between 1973 
and 2000. The remaining factors selected are given in 
Table 3. In accordance with the present results, previous 
studies have shown that taking real-world variations in 
variables such as GDP, health expenditure, and lifestyle 
(alcohol, tobacco, fruit, vegetable, and fat consumption) 
into account explains mortality declines and improves 
mortality rate forecasting (French & O’hare 2014). The 
inclusion of factors, as verified by Kim and Lane (2013) 
and French and O’hare (2014), will lead to significant 
improvement in mortality forecasting. Therefore, all 
the factors selected are worthy representatives to test in 
the GLM LC model.  Great improvements in the Poisson 
and binomial framework are seen with the addition of 
factors which affect mortality (Figures 1, 2 & Table 5). 
It is important to take note that simulation strategies 
may not be useful for determining the best model to 
represent the mortality rates as a whole because factors 
such as exogenous determinants and the presence of 
outliers must be considered depending on the country 
of choice. Undoubtedly, the negative binomial model 
will supersede its counterparts due to the presence of the 
dispersion parameter.

TABLE 5. Deviance statistics for the GLM framework of LC models with and without factors (smallest values are bolded)

Country

Models

Negative
binomial

Negative
binomial
(Factors)

Poisson Poisson
(Factors) Binomial Binomial

(Factors)

USA 4049.30 4009.91 122275.20 21574.97 123881.30 22160.01
Spain 4068.70 3240.03 40597.71 5718.36 41171.08 5821.79
Japan 4048.74 3419.66 48048.03 13407.75 48259.50 13706.07
Australia 4333.76 3134.33 11227.47 4576.98 11270.07 4661.37
Netherlands 3257.92 2571.44 5849.39 3394.13 5940.07 3424.67
UK 4050.94 3266.83 36232.61 10551.33 36630.40 10896.47
Sweden 3704.77 3005.13 5147.84 3757.61 5219.02 3812.21
Canada 3802.78 3151.54 15572.67 4640.88 15706.75 4710.45
Belgium 4161.64 2832.51 8324.59 4504.36 8417.79 4607.28
Taiwan 4118.89 3030.04 13470.60 4744.56 13644.81 4845.44
Italy 4038.39 3455.56 36207.70 7512.56 37224.92 7673.71
Chile 1335.88 1026.86 2722.21 1582.69 2797.90 1616.05
South Korea 1267.78 834.55 3416.12 1753.46 3480.21 1788.20
Germany 2127.07 1446.53 21656.15 10209.37 22437.71 10678.21
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Parametric Monte-Carlo simulation is not suitable 
for this study because different choices of constraints are 
required to fit the LC model result in widely differing 
confidence and prediction intervals (Haberman & 
Renshaw 2008). Other simulation strategies to assess 
these models also have drawbacks. For example, the 
semiparametric bootstrap approach for the binomial 
case still requires a two-parameter probability distribution 
function representing the binomial distribution with 

dispersion to map the fitted responses onto the simulated 
responses (Haberman & Renshaw 2008). The fits of the 
GLM models are expected to differ for every country 
but the negative binomial model is the best fit for cases 
with extreme values and outliers due to the presence of 
the dispersion parameter. The extra parameters of the 
modified GLM LC model also managed to improve the 
model fit since they consider the effects of factors on the 
number of deaths which are not captured by the basic 
GLM LC model previously.

FIGURE 1. Standardised residuals vs. fitted plot for the Spanish population data 
(without factors): (a) Poisson; (b) Negative binomial; (c) Binomial

FIGURE 2. Standardised residuals vs. fitted plot for the Spanish population data (with 
factors): (a) Poisson; (b) Negative binomial; (c) Binomial 
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CONCLUSION

The three GLM variants of the LC model were modified 
by incorporating potential factors that affect mortality 
based on each selected country. The RF-RFE method 
played an important role in selecting the factors affecting 
mortality for each country. The inclusion of factors to 
the mortality model greatly improved the accuracies 
especially those of the Poisson and binomial models. 
Improvement in model accuracy was also seen in the 
negative binomial extension. However, it did not differ 
much compared to the original version due to the ability 
of the negative binomial model to capture overdispersion. 
It is evident from our study that macroeconomic 
fluctuations as well as other factors improve the accuracy 
of mortality models. Integrating exogenous determinants 
of mortality into the GLM framework of the LC model 
is feasible due to its straightforwardness in parameter 
estimation. Furthermore, the proper choice of exogenous 
determinants using the RF-RFE approach aids in 
identifying the factors which contribute to the mortality 
rates of each country. Hyndman and Ullah (2007) used 
a functional data approach in modelling mortality. This 
idea sheds light on further investigating mortality models 
from a generalised functional linear regression model 
perspective.

ACKNOWLEDGEMENTS

The authors thank the anonymous referees for their 
useful suggestions. The authors would also like to convey 
our heartfelt gratitude to Shafiqah Azman and Aneesha 
Pillay Balachandran Pillay from Universiti Malaya for 
sharing relevant work that inspired us to write this paper. 
This work was supported by University of Malaya, 
Faculty Research Grant (GPF028B-2018).

REFERENCES 
Arif, R. 2020. A Simple Introduction to the Random Forest 

Method. https://arifromadhan19.medium.com/a-simple-
introduction-to-the-random-forest-method-badc8ee6c408

Azman, S. & Pathmanathan, D. 2020. The GLM framework of 
the Lee-Carter model: A multi-country study. Journal of 
Applied Statistics 49(3): 752-763.

Booth, H., Maindonald, J. & Smith, L. 2002. Applying 
Lee-Carter under conditions of variable mortality 
decline. Population Studies 56(3): 325-336.

Brouhns, N., Denuit, M. & Vermunt, J.K. 2002. A Poisson log-
bilinear regression approach to the construction of projected 
lifetables. Insurance: Mathematics and Economics 31(3): 
373-393.

Brownlee, J. 2020. Recursive Feature Elimination (RFE) for 
Feature Selection in Python. Machine Learning Mastery. 

https://machinelearningmastery. com/rfe-feature-selection-
in-python/. Accessed on February 15, 2021.

Cairns, A.J., Blake, D., Dowd, K., Coughlan, G.D., Epstein, D., 
Ong, A. & Balevich, I. 2009. A quantitative comparison of 
stochastic mortality models using data from England and 
Wales and the United States. North American Actuarial 
Journal 3(1): 1-35.

Chen, L., Islam, R.M., Wang, J., Hird, T.R., Pavkov, M.E., 
Gregg, E.W., Salim, A., Tabesh, M., Koye, D.N., Harding, 
J.L., Sacre, J.W., Barr, E.L.M., Magliano, D.J. & Shaw, J.E. 
2020. A systematic review of trends in all-cause mortality 
among people with diabetes.  Diabetologia 63(9): 1718-
1735.

Currie, I.D. 2016. On fitting generalized linear and non-linear 
models of mortality. Scandinavian Actuarial Journal 
2016(4): 356-383.

Currie, I.D. 2013. Smoothing constrained generalized linear 
models with an application to the Lee-Carter model. 
Statistical Modelling 13(1): 69-93.

Darst, B.F., Malecki, K.C. & Engelman, C.D. 2018. Using 
recursive feature elimination in random forest to account 
for correlated variables in high dimensional data. BMC 
Genetics 19(1): 1-6.

Delwarde, A., Denuit, M. & Partrat, C. 2007. Negative binomial 
version of the Lee-Carter model for mortality forecasting. 
Applied Stochastic Models in Business and Industry 23(5): 
385-401. 

Denuit, M., Hainaut, D. & Trufin, J. 2019. Some generalized 
non-linear models (GNMs). In Effective Statistical Learning 
Methods for Actuaries I. Springer, Cham. pp. 363-400.

Fawagreh, K., Gaber, M.M. & Elyan, E. 2014. Random forests: 
From early developments to recent advancements. Systems 
Science & Control Engineering: An Open Access Journal 
2(1): 602-609.

French, D. 2014. International mortality modelling - An 
economic perspective. Economics Letters 122(2): 182-186.

French, D. & O’Hare, C. 2014. Forecasting death rates using 
exogenous determinants.  Journal of Forecasting 33(8): 
640-650.

Haberman, S. & Renshaw, A. 2008. On simulation-based 
approaches to risk measurement in mortality with specific 
reference to binomial Lee-Carter modelling. In Society of 
Actuaries Living to 100 Symposium.

Hanewald, K. 2011. Explaining mortality dynamics: The 
role of macroeconomic fluctuations and cause of death 
trends. North American Actuarial Journal 5(2): 290-314.

Hanewald, K., Post, T. & Gründl, H. 2011. Stochastic mortality, 
macroeconomic risks and life insurer solvency. The Geneva 
Papers on Risk and Insurance-Issues and Practice 36(3): 
458-475.

Hansen, H. 2013. The forecasting performance of mortality 
models. AStA Advances in Statistical Analysis 97(1): 11-31.

Human Mortality Database. 2020. University of California, 
Berkeley (USA), and Max Planck Institute for Demographic 
Research (Germany). https://www.mortality.org/.



	 	 2247

Hyndman, R.J. & Shang, H.L. 2009. Forecasting functional time 
series. Journal of the Korean Statistical Society 38: 199-211.

Hyndman, R.J. & Ullah, M.S. 2007. Robust forecasting 
of mortality and fertility rates: A functional data 
approach.  Computational Statistics & Data Analysis 
51(10): 4942-4956.

Kim, T.K. & Lane, S.R. 2013. Government health expenditure 
and public health outcomes: A comparative study among 
17 countries and implications for US health care reform. 
American International Journal of Contemporary Research 
3(9): 8-13.

Kuhn, M. 2020. Caret: Classification and Regression Training. 
R package version 6.0-86. https://CRAN.R-project.org/
package=caret

Kuhn, M. & Johnson, K. 2013. Applied Predictive Modeling. 
Vol. 26. New York: Springer.

Lee, R.D. & Carter, L.R. 1992. Modeling and forecasting US 
mortality. Journal of the American Statistical Association 
87(419): 659-671.

Lee, R. & Miller, T. 2001. Evaluating the performance of the 
Lee-Carter method for forecasting mortality. Demography 
38(4): 537-549.

Leisch, F. & Dimitriadou, E. 2010. Machine learning benchmark 
problems. R Package, mlbench.

Liaw, A. & Wiener, M. 2002. Classification and regression by 
randomForest. R news 2(3): 18-22.

McCullagh, P. & Nelder, J.A. 1989. Generalized Linear Models. 
2nd ed. London: Chapman and Hall.

National Account Data. 2020. https://unstats.un.org/unsd/
snaama/downloads

Nor, S.R.M., Yusof, F. & Norrulashikin, S.M. 2021. Coherent 
mortality model in a state-space approach. Sains Malaysiana 
50(4): 1101-1111.

OECD. 2020. OECD. Stats. https://stats.oecd.org/ 
Our World in Data. 2020. https://ourworldindata.org/country/

taiwan
Pitt, D., Li, J. & Lim, T.K. 2018. Smoothing Poisson common 

factor model for projecting mortality jointly for both sexes. 
ASTIN Bulletin: The Journal of the IAA 48(2): 509-541.

Rasoulinezhad, E., Taghizadeh-Hesary, F. & Taghizadeh-
Hesary, F. 2020. How is mortality affected by fossil fuel 
consumption, CO2 emissions and economic factors in CIS 
region? Energies 13(9): 2255.

Renshaw, A.E. & Haberman, S. 2006. A cohort-based 
extension to the Lee-Carter model for mortality reduction 
factors.  Insurance: Mathematics and Economics 38(3): 
556-570.

Seklecka, M., Pantelous, A.A. & O’Hare, C. 2017. 
Mortality effects of temperature changes in the United 
Kingdom. Journal of Forecasting 36(7): 824-841.

Tulu, H.D., Lim, A., Ma-a-Lee, A., Bundhamcharoen, K. & 
Makka, N. 2020. Prediction of HIV mortality in Thailand 
using three data sets from the National AIDS Program 
Database. Sains Malaysiana 49(1): 155-160.

Turner, H. & Firth, D. 2020. Generalized Nonlinear Models in 
R: An Overview of the gnm Package.  https://cran.r-project.
org/package=gnm

Wang, D. & Lu, P. 2005. Modelling and forecasting mortality 
distributions in England and Wales using the Lee-Carter 
model. Journal of Applied Statistics 32(9): 873-885.

Wickham, H., Girlich, M. & Ruiz, E. 2021. dbplyr: A ‘dplyr’ 
Back End for Databases. R package version 2.1.0. https://
CRAN.R-project.org/package=dbplyr

Wilmoth, J.R. 1993. Computational Methods for Fitting and 
Extrapolating the Lee-Carter Model of Mortality Change. 
Technical report, Department of Demography, University 
of California, Berkeley.

World Bank. World Development Indicators. 2020. https://data.
worldbank.org/indicator/EN.ATM.CO2E.GF.KT

Yeh, H.H., Westphal, J., Hu, Y., Peterson, E., Williams, L., 
Prabhakar, D., Frank, C., Autio, K., Elsiss, F., Simon, G., 
Beck, A., Lynch, F., Rossom, R., Lu, C., Owen-Smith, A., 
Waitzfelder, B. & Ahmedani, B. 2019. Diagnosed mental 
health conditions and risk of suicide mortality. Psychiatric 
Services 70(9): 750-757.

*Corresponding author; email: dharini@um.edu.my


