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ABSTRACT

The application of data mining technique in dealing with real problems is popular and ubiquitous in various 
knowledge domains. This study proposes the concept of severity measures correspond to the characteristics of duration 
and intensity size for evaluating unhealthy air pollution events. In parallel with that, the present study also proposes 
a decision tree as a predictive model to deal with a binary classification corresponding to extreme and non-extreme 
unhealthy air pollution events, which is established based on threshold of the power-law behavior. In a similar vein, 
other characteristics, such as duration and intensity size, were also determined as important related features. A case 
study was conducted using the air pollution index data of Klang, Malaysia, from January 1st, 1997 to August 31st, 
2020. The results found that the decision tree model can provide a high degree of precision and generalization with 
100% accuracy in classifying a class for extreme and non-extreme events for the air pollution severity in the Klang 
area. In addition, a duration size is the most influential feature that leads to the occurrence of an extreme air pollution 
event. Thus, this study also suggests that authorities should exercise some vigilance precautions with respect to 
pollution incidents with a consecutive duration exceeding 11 hours.
Keywords: Air pollution classification; data mining; extreme air pollution; predictive model 

ABSTRAK

Pengaplikasian teknik perlombongan data dalam menangani masalah dunia sebenar adalah popular dalam pelbagai 
domain pengetahuan. Kajian ini mengusulkan konsep ukuran keparahan sepadan dengan ciri tempoh masa dan saiz 
keamatan untuk menilai kejadian pencemaran udara yang tidak sihat. Selari dengan itu, kajian ini juga mengusulkan 
kaedah pokok keputusan sebagai model ramalan bagi kes pengelasan binari terhadap kejadian pencemaran udara tidak 
sihat yang melampau dan tidak melampau yang boleh dikenal pasti berdasarkan nilai ambang tingkah laku hukum-
kuasa. Di samping itu, ciri lain iaitu tempoh masa dan saiz keamatan, juga dikenal pasti sebagai ciri berkaitan yang 
penting bagi suatu kes pencemaran udara. Dalam kajian ini, kajian kes telah dijalankan menggunakan data indeks 
pencemaran udara di Klang, Malaysia, dari  1 Januari 1997 hingga 31 Ogos 2020. Hasil kajian mendapati model pokok 
hasil dapat memberikan tahap ketepatan dan pengitlakan yang tinggi dengan ketepatan 100% dalam mengelaskan 
bagi kejadian pencemaran melampau dan tidak melampau merujuk kepada keparahan suatu pencemaran udara di 
kawasan Klang. Selain itu, saiz tempoh masa dikenal pasti sebagai adalah ciri berpengaruh yang membawa kepada 
berlakunya kejadian pencemaran udara yang melampau. Oleh itu, kajian ini juga mencadangkan bahawa pihak berkuasa 
harus melaksanakan beberapa langkah berjaga-jaga jika kejadian pencemaran udara didapati berlaku dalam tempoh 
berturut-turut melebihi 11 jam.
Kata kunci: Model peramal; pencemaran udara melampau; pengelasan pencemaran udara; perlombongan data 
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INTRODUCTION

Air pollution has always been a main concern particularly 
for developed and developing countries as the process of 
urbanization increases (Al-Kindi et al. 2020; Masseran, 
2017; Ouyang et al. 2019). The air pollution problem 
always exerts damaging effects closely related to human, 
environmental health, and socioeconomic impacts. The 
health effect has been reported by many researchers, 
particularly in terms of the effects corresponding to the 
respiratory and cardiovascular systems (Maji, Ghosh & 
Ahmed 2018; Thongtip et al. 2022; Wang, Feng & Chen 
2019), morbidity and mortality (Brønnum-Hansena et 
al. 2018; Sanyal et al. 2018), lung cancer (Hvidtfeldt et 
al. 2021; Wang et al. 2019), and other diseases (Chau 
& Wang 2020; Schraufnagel et al. 2019; Zhao et al. 
2019). In terms of the environmental effect, air pollution 
is reported to potentially be a cause of a reduction in 
agricultural crops (Zhao, Zheng & Wu 2018; Zhao et al. 
2021), affect forest sustainability (Agathokleous, Feng & 
Saitanis 2022), increase plant susceptibility to diseases 
(Agathokleous & Saitanis 2020), and influence pests and 
other environmental stresses (Emberson 2020; Masui et 
al. 2021). Meanwhile, the spillover effect of air pollution 
has a high risk to influence the socioeconomic situation 
(Lanzi, Dellink & Chateau 2018), such as decrease life 
satisfaction and increase anxiety and mental disorders 
(Lu 2020). Thus, a timely investigation on the risk for 
air pollution events in any country is a must to mitigate 
and plan for severe effects from the occurrences of such 
events.
	 Air pollution can be classified as extreme or non-
extreme depending on the magnitude or severity of 
an event. As described by Masseran (2021a), in this 
scenario, an air pollution event that exceeds the threshold 
of the power-law behavior is extremely unhealthy 
corresponding to a high level of severity. Thus, a 
precautionary measure needs to be taken to prevent the 
occurrence of this event. Accordingly, this study expands 
the classification analysis of extreme air pollution events 
by attempting to develop a machine learning model 
that can accurately predict the features that lead to the 
occurrences of such events. Thus, a better judgment can 
be made to mitigate the risk of extreme air pollution 
events. In the literature, many available techniques can 
predict an air pollution event. Among the most popular 
ones are neural network and deep learning model 
(Bakar et al. 2022; Bekesiene, Meidute-Kavaliauskiene & 
Vasiliauskiene 2021; Cabaneros, Calautit & Hughes 2019; 
Haldorai & Ramu 2021; Kow et al. 2022). However, such 
models are solely designed to achieve a high accuracy of 

estimation corresponding to a large assemblage’s value 
of parameters. Thus, a neural network model and a deep 
learning model are difficult to be interpreted and hence 
is sometimes referred as a black-box model. 

On the contrary, classification techniques, such as 
decision trees, provide a comprehensive criterion in terms 
of interpretability (Rokach & Maimon 2015). In fact, a 
decision tree model provides more advantages compared 
to other classification techniques. For example, because 
this technique is a nonparametric approach, there is no 
rigor statistical or mathematical assumption that needs 
to be fulfilled before applying to any dataset (Rokach 
& Maimon 2009). In parallel with that, a decision tree 
is a versatile approach that can be used to deal with 
the data mining task involving air pollution analysis, 
such as regression (Ndong et al. 2021), classification 
(Sarkhosh et al. 2021), feature selection (Zhang et al. 
2020), and clustering (Zalakeviciute et al. 2020). In 
addition, a decision tree is a self-explanatory technique 
that produces results that are transparent and easy to be 
interpreted (Lantz 2019; Rizvi, Rienties & Khoja 2019). A 
decision tree is also a very flexible technique that can be 
easily used in a variety of data types, including numeric, 
nominal, and textual values (Malik et al. 2019; Rokach 
& Maimon 2015). It is also very flexible to deal with 
missing values, outliers, or errors in a dataset (Feldman 
& Gross 2005; Hodge & Austin 2004). 

The application of decision tree methods in dealing 
with air pollution data has been presented in several 
studies around the world. For instance, Tileubai et 
al. (2023) used a decision tree technique to provide a 
classification model for defining high and low rates of 
mortality in Ulaanbaatar, Mongolia, based on 11 attributes 
that representing air pollution and temperature. They 
found that the accuracy of decision tree model for their 
cases is between 60% and 70% along with a sensitivity 
and the specificity values ranging from 0.50 to 0.75.  
They conclude that a decision tree able to produce a 
satisfying results with a simple model development. 
In fact, a decision tree is very flexible model that can 
easily be extended to form a new variant model for 
the purpose of increasing its accuracy, specificity and 
sensitivity. Among the popular extended version decision 
tree model are bagging (Breiman 1996), random forest 
(Breiman 2001), gradient boosting (Friedman 2001), and 
adaptive boosting (Schapire & Freund 2013). Examples 
of application of these models in air pollution data can be 
referred to Mustakim et al. (2023), Putra and Sitanggang 
(2020), and Shaziayani et al. (2022). However, these 
modified models should not be used indiscriminately. 
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This main reason is because, although these models are 
able to provide better accuracy, however, the structure 
of the resulting decision tree is more complex which is 
generally difficult to interpret against the data.

Along with all of the advantages of decision tree 
technique, this study try to look at a different perspective 
in classifying air pollution data by attempting to describe 
the extreme and non-extreme of air pollution events 
in terms of their characteristic defined as a duration, 
intensity and severity size. 

STUDY AREA AND DATA

This study analyzed the air pollution index data of 
Klang, Malaysia. As illustrated in Figure 1, Klang is 
located at a latitude of 101°26′44.023″ E and longitude 
of 3°2′41.701″ N, and it is one of the largest cities with 
a land area of approximately 573 km2 (Google, 2019). 
The main economic activities in Klang are import and 
export which operate in Port Klang. Its import and 
export activities encompass a wide range of products 
across various industries which mainly include; i) 
electronics and electrical equipment, ii) petroleum 
and chemical products, iii) machinery and equipment, 
iv) automobiles and automotive parts, v) textiles and 

apparel, vi) consumer goods, vii) plastics and rubber 
products, and vii) agricultural products.  Apart from that, 
Klang is also an active area for important industrial and 
economic interests in Malaysia. Klang was recognized 
as the 13th busiest transshipment port and the 16th 
busiest container port in the world (Gin 2009). Despite 
its importance, Klang has an elevated risk of exposure 
to air pollution (Masseran & Safari 2020). Thus, it is 
extremely important to investigate the behaviors of the 
air pollution index (API) in Klang for the purpose of 
planning and alleviating the risks of extreme air pollution 
events. The data used in this study were obtained from 
the Department of Environment Malaysia from January 
1st, 1997 to August 31st, 2020.

In general, the Department of Environment 
Malaysia measures the API values to provide intelligible 
information on the status of the air quality to the public. 
Five main sub-pollution indices, namely, nitrogen 
dioxide (NO2), sulfur dioxide (SO2), ozone (O3), 
suspended particulate matter of less than 10 microns 
(PM10), and carbon monoxide (CO), are integrated 
to represent the API values at a particular time 
(Department of Environment 1997). The process of 
determining the API is illustrated in Figure 2 (Masseran 
2022b).

FIGURE 1. (a) Map of Peninsular Malaysia (Klang identified by the red 
dot); (b) map of Klang

 

          (a)                           (b) 
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AIR POLLUTION CHARACTERISTICS 

Unhealthy air pollution events are identified with API 
values greater than 100 (Department of Environment 
1997). For some particular unhealthy air pollution 
events, information about their duration size can be 
derived based on the consecutive periods of having 
API values higher than 100. In particular, the duration 
of unhealthy air pollution events can be represented as 
follows

(1)

where Di is a random variable for air pollution duration, 
and  i=1,2,3,…,n represents the i-th air pollution event 
with n as the total number of air pollution events 
occurring throughout the observed period. In addition, 
APIj for j=1,2,3,…,N,  is an observed time series data 
with N as the total number of observations (Masseran 
2021a). In addition, the characteristic of air pollution 
severity can be derived from each particular i-th 
unhealthy air pollution event. Let the indicator function 
represent data points with an unhealthy state (API>100) 
as follows.

(2)

Then, the severity of unhealthy air pollution events can 
be determined from a cumulative of API values greater 
than 100 corresponding to their duration Di. This severity 
measure can be represented as follows,

(3)

where Si is a random variable representing the severity 
of air pollution events. Meanwhile, maximum API 
value within each particular air pollution event can be 
determined from the information about the intensity 
(Ii). Figure 3 illustrates the relationship between the 
characteristics of the duration, intensity, and severity size 
corresponding to unhealthy air pollution events.

These three characteristics of air pollution event 
could provide an important attributes that should 
be utilized as indicators for analyzing the risk for 
occurrence of extreme air pollution events. In parallel 
with that, the higher the value of severity, the more 
serious the air pollution event. For instance, a prolonged 
duration or high level of intensity and severity indicates 
the occurrences of extreme pollution events. The 
occurrence of this scenario will negatively affect the 
public health, disrupt the economic activities, and 
deteriorate the environmental ecosystems (Masseran 
2021b). As reported by Masseran (2022a), air pollution 
events with severity levels greater than a threshold of 
1221 exhibit a power-law behavior. Air pollution events 
corresponding to a severity level that obeys a power-law 
mechanism have a high risk to provide a disastrous effect 
on the air quality. Thus, in this study, any unhealthy air 
pollution event can be categorized as an extreme event 
if their severity level exceeds the threshold of 1221. 
Meanwhile, a non-extreme event is determined by a 
severity measure below the threshold of 1221.

FIGURE 2.  Process of determining the API value
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DECISION TREE CLASSIFICATION

To investigate a suitable predictive model for 
discriminating the class of extreme air pollution events, 
this study proposes the application of a decision tree 
model which is also known as a classification tree. 
This technique is commonly referred as a classifier of 
the instance space based on the concept of recursive 
partition (Cohen, Rokach & Maimon 2007; Rokach 
& Maimon 2005). As described by Lantz (2019), 
recursive partition corresponds to the concept, where 
the dataset will be split into several subsets up to the 
smallest subset. The construction of a decision tree 
commonly uses the classification and regression tree 
algorithm (Breiman 1984). This algorithm provides a 
splitting process that will only stop if all the subsets 
have sufficiently homogenous samples or the prescribed 
stopping criterion conditions are reached. Although 
the concept of classifiers in a decision tree is quite 
simple, in most scenarios, this technique is quite 
popular because it can provide good results in terms 
of the prediction, classification, and description of 
the relationship between independent and dependent 
variables in a dataset (Chang & Wang 2006; Delen, 
Kuzey & Uyar 2013; Kumar, Mishra & Choudhary 2022; 
Rizvi, Rienties & Khoja 2019). In fact, the decision tree 
technique is often used to extract meaningful features 

and patterns in large datasets for discrimination and 
predictive modeling (Kamiran, Calders & Pechenizkiy 
2013; McCarthy et al. 2019; Myles et al. 2004).

A decision tree is formed from a combination of 
nested nodes. Here, based on graph theory, a decision 
tree provides a hierarchical structure in terms of a 
directed graph starting from a root note (node without 
any incoming edges). Then, the root node will grow out 
by splitting into several factions of nodes until it reaches 
their terminal nodes, known as single-class subspaces, 
which is referred as a leaf (Rokach & Maimon 2009). As 
a directed graph, all other nodes except the root node in 
the decision tree model will have an incoming edge. The 
nodes between the root and terminal nodes are referred 
as decision nodes. The process of dividing a node into 
two or more subspaces are carried out in here, where 
two or more branches (child nodes) may grow from 
each decision node (parent node). The splitting process 
involves certain discrete functions of the input attribute 
values (Rokach & Maimon 2015). Among the most 
popular discrete functions used in decision tree classifiers 
are the information gain and Gini index (Raileanu & 
Stoffel 2004). The information gain uses the concept of 
entropy, which can be described as follows,

(4) 

FIGURE 3. Air pollution characteristics based on their duration, intensity, and severity
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where ( ).fI  is an information function given as

(5)

where N(t) is the number of samples in a node t, and 
Nj(t) is the number of samples belonging to  class  j that 
are found to be available in a node t (Myles et al. 2004). 
Information gain described in Equations (4) and (5) 
measure the effectiveness of splitting a dataset based 
on a particular attribute. In which it determines which 
feature should be chosen as the decision node to create 
a split that best separates the data into different classes. 
At each node, the splitting process occurs in essence to 
maximize the information gain between a parent node 
and its child node. Meanwhile, the Gini index can be 
described as

(6)

where ( ).mI  is an impurity function given as

(7)

where Nj is the number of samples belonging to class j 
(Myles et al. 2004). Equations (6) and (7) measure the 
impurity of distribution class in decision trees model 
during data classification. The value of Gini index 
range from 0 to 1. A node with Gini index equal to 0 or 
1 indicates greatest purity of the classification among 
various classes. On the other hand, a node with Gini index 
of 0.5 indicates a lowest purity corresponding to equal 
distribution of elements across different classes.

The process of splitting in decision tree model 
will continue until all the leaves in a decision tree mode 
have a homogeneous class or some stopping criteria, 
such as the maximum depth, are reached. Then, based 
on the constructed decision tree model, a certain class 
can be predicted based on the majority representation in 

that particular class. Predicted probabilities can also be 
determined based on the proportion of each class within 
the subgroup (Boehmke & Greenwell 2020).

DATA MINING APPROACH 

Data mining has become popular owing to its ability 
to produce an accurate prediction about certain 
phenomena. Most techniques in data mining use the 
concept of inductive learning, in which the original 
observed data will be divided into two non-overlapping 
random partitioned datasets known as training and test 
data samples. In general, 70% of original data will 
be randomly selected for the training set, whereas the 
remaining 30% of original data are allocated as a test 
dataset. The selection of training and test data sets with 
a ratio of 70:30 was made by random sampling without 
replacement. In training data, the selection of 70% of 
the original observation data will be used for the fitting 
and construction of the decision tree classification 
model. Meanwhile, the remaining 30% test data is an 
observational data that is not used for model building 
(Boehmke & Greenwell 2020; Tan et al. 2019).

A model will be constructed by generalizing it from 
the training dataset. In our cases, the training dataset 
will train the decision tree (fitted model) for constructing 
a suitable classifier. Then, based on the inductive 
approach, the trained model should be applicable for 
other unobserved datasets. This assumption will be 
assessed by evaluating the accuracy of the trained model 
using the test data sample (Aggarwal 2015; Maimon & 
Rokach 2009). If the decision tree classification model 
identified from the training data shows good results, by 
induction, this model should also give good results on 
the test data. However, if the opposite is happening, it 
means that the model is having overfitting problem that 
needs to be fixed (James et al. 2013; Tan et al. 2019). 
Likewise, the test dataset will be used for forecasting 
evaluations that can be assessed using the confusion 
matrix. For the two problem classes, Table 1 represents 
their confusion matrix. 
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TABLE 1.  Confusion matrix of the two data classes

Predicted class 

True class 

TotalExtreme event Non-extreme event

Extreme event A (True Event) B (False Event) A+B

Non-extreme event C (False Non-Event) D (True Non-Event) C+D

Total A+C B+D N=A+B+C+D
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Based on the trained model, true-positive and true-
negative results indicate the number of data that have 
been correctly classified in their class. Meanwhile, false-
positive and false-negative results indicate the number 
of elements that are incorrectly classified, also known 
as errors. In a similar vein, the information provided 
in the confusion matrix can be used to determine other 
performance measures for a trained model, which 
are known as sensitivity, specificity, accuracy, and 
misclassification rate (Rokach & Maimon 2015). The 
sensitivity measure is also known as recall, which is 
described as

(8)

This measure determines how well a trained model can 
recognize positive samples. The specificity measure 
provides information about how well the trained model 
can recognize negative samples, which is described as,

(9)

The accuracy of the trained model can be obtained as

(10)

A misclassification rate can be determined as

(11)

In general, the training set and test set errors should be 
low to provide a good estimation of the generalization 
error fitted model. 

RESULTS AND DISCUSSIONS

As mentioned earlier, this study classified air pollution 
events into two categories. The first category represents 
the extreme class (1), which corresponds to severity 
levels greater than the threshold of the power-law 
behavior, which is 1221. The second category represents 
the non-extreme class (0), which is determined based on 
a severity level below the threshold of 1221. Altogether 
with this binary category, the properties of unhealthy air 
pollution events can also be obtained from the observed 
hourly API, as described in Section ‘Air Pollution 
Characteristics’. Then, based on the obtained dataset, 
70% of data that represent the severity and the features 
of air pollution in Klang were randomly selected to be 
a training dataset to construct a decision tree model. 
The remaining 30% of the data were allocated as a 
test dataset to test the prediction accuracy for the fitted 
decision tree model. Based on the procedures presented 
in Section ‘Data Mining Approach’, Figure 4 and Table 
2 show the results of the fitted decision tree model for 
the training data using the concept of the partitioned 
feature space. This trained decision tree model is found 
to perfectly classify the class of extreme and non-extreme 
events of air pollution in Klang. Based on Figure 4, 
only the duration feature for unhealthy air pollution 
events is found to be the main factor for the occurrence 
of extreme air pollution events. In particular, unhealthy 
air pollution events with a duration size greater than 11 
h have a substantial risk of leading to implications. The 
complexity parameter (cp) plot in Figure 5 provides an 
agreement with the decision tree plot. The cp plot shows 
the values of the complexity parameter on the x-axis, 
while y-axis show a performance metric of decision tree 
model. The goal is to find the value of the complexity 
parameter that minimizes the performance metric based 
on relative error. Based on Figure 5, the cp plot suggests 
that the size of the decision tree, which is equal to 2, 
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FIGURE 4.  Decision tree model of air pollution severity for training data
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is an optimal tree size with minimum of relative error. 
Hence, the fitted decision tree with a simple structure as 
presented in Figure 4 is sufficient and optimal to represent 
the relationship of unhealthy air pollution events between 
their class (extreme and non-extreme event) and its 
features (duration size and intensity).  

Table 2 provides information on the confusion 
matrix for training data. A similar conclusion can be 
derived in this matrix information. That is, the computed 
values for sensitivity, specificity, and accuracy are all 
equal to 1, whereas the misclassification rate is equal to 
0. This result indicates a high precision performance for 
the fitted decision tree model to our training data. In a 
similar vein, the ROC curve plot in Figure 6 summarizes 
the trade-off between the true-positive rate and false-
positive rate for a decision tree model. In particular, 
Figure 6 provides a graphical performance of a decision 
tree as a classification model to our data in terms of its 
ability to distinguish between positive and negative 
instances. Based on Figure 6, it is found that the area 
under the curve for the ROC plot is equal to 100%, which 
implies that the decision tree model is a perfect classifier 

to deal with the data of air pollution events in this study. 
Nonetheless, it is still very important to evaluate this 
fitted model into a test dataset to justify that this model 
is not producing an overfitting problem with a poor 
generalization performance. 

Table 3 shows the results of the class prediction on 
the test dataset using the fitted decision tree obtained from 
the training data. The decision tree model can perfectly 
predict the class of extreme and non-extreme pollution 
events in our test dataset. Based on the confusion matrix, 
the computed values for sensitivity, specificity, and 
accuracy are all equal to 1, whereas the misclassification 
rate is equal to 0.

In fact, these results provide an agreement with 
the whole distributional class of extreme and non-
extreme air pollution event, as shown in Figure 7. The 
discriminant line determines based on duration size > 11 
h clearly can clearly separate well the two classes of air 
pollution events. Thus, in overall, we can conclude that 
the classifier based on the decision tree model produces 
remarkably high precision accuracy of the prediction 
corresponding to a good generalization performance.

FIGURE 5. Parameter of the cp value for the fitted decision tree model
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TABLE 2. Confusion matrix for the training data

Predicted class event

True class event

Non-extreme severity air 

pollution
Extreme severity air pollution

Non-extreme severity air pollution 143 0

Extreme severity air pollution 0 67

TABLE 3. Confusion matrix for the test data

Predicted class event

True class event

Non-extreme severity air 

pollution

Extreme severity air 

pollution

Non-extreme severity air pollution 64 0

Extreme severity air pollution 0 27

FIGURE 6. ROC plot for the fitted decision tree model
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CONCLUSIONS

This study proposes a concept to determine a 
characteristics of unhealthy air pollution event based 
on a measure of duration, intensity and severity size. 
Based on these three air pollution characteristics, a 
class for extreme events is determined using severity 
level corresponds to a threshold of the power-law 
behaviors. This scenario leads to a problem of the 
binary classification class that can be solved using data 
mining and machine learning. Thus, this study proposes 
the application of decision trees as a potential machine 
learning model for classifying extreme and non-extreme 
air pollution events based on their features described 
by the characteristics of duration and intensity size of 
the past occurrence of unhealthy air pollution events. 
A case study was conducted using the data from Klang, 

Malaysia. Then, an inductive approach based on a data 
mining framework was used to train a decision tree model 
that can represent well the training and testing datasets 
with a high precision degree. The obtained results show 
that decision trees can predict well a class for extreme 
and non-extreme events for air pollution severity 
with a high degree of precision and generalization in 
classifying a class for extreme and non-extreme events 
for air pollution severity class. The results also show that 
a duration size greater than 11 h is the most important 
feature that leads to the occurrence of extreme air 
pollution events in Klang. Thus, this study suggests that 
authorities should exercise some vigilance precautions 
with respect to pollution incidents with a consecutive 
duration exceeding 11 h. Overall, this study concludes 
that a decision tree is a good machine learning model 

FIGURE 7. Scatter plot for distribution of severity class of extreme and 
non-extreme air pollution event
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with transparent results and provides easy interpretation 
for the application on air pollution classification. Further 
research is recommended to evaluate the topological 
features of air pollution event. Evaluating topological 
features is an interesting alternative approach that can be 
used to investigate the air pollution data for the purpose 
of extracting important features hidden in the data before 
identifying a classification model.
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