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ABSTRACT

The objective of this study was to propose a method for detecting outliers in multivariate data. It is based on a boxplot 
and multiple linear regression. In our proposed method, the box plot was initially applied to filter the data across all 
variables to split the data set into two sets: normal data (belonging to the upper and lower fences of the boxplot) and 
data that could be outliers. The normal data was then used to construct a multiple linear regression model and find the 
maximum error of the residual to denote the cut-off point. For the performance evaluation of the proposed method, 
a simulation study for multivariate normal data with and without contaminated data was conducted at various levels. 
The previous methods were compared with the performance of the proposed methods, namely, the Mahalanobis 
distance and Mahalanobis distance with the robust estimators using the minimum volume ellipsoid method, the 
minimum covariance determinant method, and the minimum vector variance method. The results showed that the 
proposed method had the best performance over other methods that were compared for all the contaminated levels. 
It was also found that when the proposed method was used with real data, it was able to find outlier values that were 
in line with the real data.
Keywords: Boxplot; multivariate data; multiple linear regression; outlier

ABSTRAK

Objektif kajian ini adalah untuk mencadangkan kaedah untuk mengesan data terpencil dalam data multivariat. Ia 
berdasarkan plot kotak dan regresi linear berganda. Dalam kaedah yang kami cadangkan, plot kotak pada mulanya 
digunakan untuk menapis data merentas semua pemboleh ubah untuk membahagikan set data kepada dua set: data biasa 
(kepunyaan pagar atas dan bawah plot kotak) dan data yang boleh menjadi data terpencil. Data biasa kemudiannya 
digunakan untuk membina model regresi linear berganda dan mencari ralat maksimum baki untuk menandakan titik 
potong. Untuk penilaian prestasi kaedah yang dicadangkan, kajian simulasi untuk data normal multivariat dengan 
dan tanpa data tercemar telah dijalankan pada pelbagai peringkat. Kaedah sebelumnya dibandingkan dengan prestasi 
kaedah yang dicadangkan, iaitu, jarak Mahalanobis dan jarak Mahalanobis dengan penganggar teguh menggunakan 
kaedah ellipsoid isi padu minimum, kaedah penentu kovarian minimum dan kaedah varians vektor minimum. Keputusan 
menunjukkan bahawa kaedah yang dicadangkan mempunyai prestasi terbaik berbanding kaedah lain yang dibandingkan 
untuk semua tahap yang tercemar. Didapati juga apabila kaedah yang dicadangkan digunakan dengan data sebenar, 
ia dapat mencari nilai data terpencil yang selari dengan data sebenar.
Kata kunci: Data berbilang variasi; data terpencil; plot kotak; regresi linear berganda

INTRODUCTION

In statistics, outliers are data points that are noticeably 
different from the rest. Outliers are divided into three 
categories: To begin with, there is intrinsic variability, 
which refers to variances that exist spontaneously within 
a group. Experiments with plants produced by soil fertility 

in experimental plots, for example, are not the same. 
Second, measurement error is the discrepancy between 
the measured quantity and its true value that causes 
the fluctuation. Third, data is incorrectly recorded by 
selecting a biased sample or including people who are 
not representative of the group being sampled (Anscombe 
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& Guttman 1960). Outliers in datasets have an impact 
on data analysis. Even if the results of the study are 
not statistically significant, the outliers will render 
them statistically significant, and vice versa. Outlier 
troubleshooting: if the resultant outlier is impracticable 
or the product of erroneous data gathering, it could 
be excluded from the study. However, if an outlier is 
confirmed to be caused by an anomaly in the real sample, 
it will be investigated.

There are three main statistical analysis procedures 
when it comes to the level of analysis. Univariate, 
bivariate, and multivariate analyses are the three types 
of analyses. When there is just one variable in the data, 
the most fundamental statistical data analysis technique 
is univariate analysis. When compared to univariate 
analysis, bivariate analysis is slightly more analytical 
when there are two variables in the data set. Multivariate 
analysis is a more complicated type of statistical analysis 
that is performed when a data set has more than two 
variables.

There are currently several methods for detecting 
outliers and the most familiar is boxplot (Tukey 1977). 
It is a method used to detect outliers for univariate 
data. There are a variety of ways for detecting outliers. 
Meanwhile, bivariate and multivariate data may or may 
not have a dependent variable. If the data contains a 
dependent variable, many works have proposed outlier 
detection methods, including Cook’s distances (Cook 
1977), the hat matrix (Hoaglin & Welsch 1978), DFFITS 
(Belsley, Kuh & Welsch 1980), studentized residuals 
(Montgomery, Peck & Vining 2012), and R-student 
(Montgomery, Peck & Vining 2012).

If the data does not contain a dependent variable, 
the Mahalanobis distance (MD) has been used 
(Mahalanobis 1936), which is essentially the distance 
of the vector from the mean with the covariance matrix. 
The Mahalanobis distance of samples based on the 
maximum likelihood estimators (MLEs) of the mean 
vector and covariance matrix follows a chi-square 
distribution with p  degrees of freedom, where p  is 
the number of variables. If the observations have a 
Mahalanobis distance greater than the quantile value, 
as 1 α−  of 2

1 , pαχ − , where 2
1 , pαχ −  is the ( )100 1 thα−  

percentile of a chi-square distribution with p  degrees 
of freedom. The cut-off point for detecting outliers is 

2
1 , pαχ −  usually used α = 0.05, they will be considered 

outliers. Also, robust estimators of the mean vector and 
covariance matrix were used to find outliers using the 
Mahalanobis distance. These estimators were made by 
using the minimum volume ellipsoid (MVE) (Aelst & 

Rousseeuw 2009), the minimum covariance determinant 
(MCD) (Hubert & Debruyne 2010), and the minimum 
vector variance (MVV) (Herdiani, Sari & Sunusi 2019). 
The MVE is based on the minimum volume ellipsoid, the 
MCD is based on the minimum covariance determinant, 
and the MVV is based on the minimum vector variance 
that covers a subset of observations, respectively.

In this research, only those datasets that do not 
contain a dependent variable are considered since these 
datasets with high dimensionality and large sample sizes 
usually appear in the organizations that collect them. 
The detection of outliers in these datasets is widely used 
Mahalanobis distance methods follows a chi-square 
distribution, which is necessarily denoted by the quantile 
value. So, the dataset might contain outliers, but some 
datasets do not necessarily contain outliers. Therefore, to 
eliminate such a problem, this research aims to propose 
a method for detecting outliers in multivariate data in 
another way by combining a boxplot for univariate 
data with multiple linear regression. The boxplot for 
univariate data is initially filtered such that the data is in 
the boxplot for all variables that are denoted as normal 
data. After that, multiple linear regression is used to find 
outliers in the rest of the data.

The paper is organized as follows. Next section 
describes the proposed method. In the following section, 
an experiment on simulated data with contaminated 
multivariate normal data to compare the proposed 
methods with the previous methods. Subsequntly, the 
behavior with a real dataset example was discussed. 
Finally, last section provides some conclusions and 
discussion.

PROPOSED METHOD

This research proposes the outlier detection method in 
multivariate data in another way by combining a boxplot 
for univariate data with multiple linear regression. In 
this method, multiple linear regression analysis is used 
together with data split with a boxplot to initially filter 
each variable. This method is called multiple linear 
regression using data split with the boxplot method 
(MLRSB) and is explained in the following steps:

Step 1 For a dataset with n  observations and p  
variables, a boxplot is used to filter the data in each 
variable, splitting the data into 2 sets. The first dataset (

1n  observations and p  variables) is an observation with 
at least one variable outside the upper and lower fences 
of boxplot, and the second dataset ( 2n  observations and 
p  variables) is an observation where all variables are in 

the upper and lower fences.
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Step 2 After getting 2 sets of data in step 1, the 
multiple linear regression equations ( p  equations) are 
constructed and computed 2 ; 1, 2, ,lR l p=   from the 
second dataset. All the variables are thought of as a single 
dependent variable ( Y ), while the other variables are 
called independent variables,

Step 3 For the 2 ; 1, 2, ,lR l p=   of multiple linear 
regression equations in step 2, the multiple linear 
regression equation with the maximum 2

lR  is selected 
to denote the cut-off point. The cut-off point is the largest 
absolute error in this equation. 

Step 4 For the multiple linear regression equation 
with the maximum 2

lR  that is found in step 3, the 
predicted values are found using the data from the first 
dataset, and the absolute errors are also found for that 
prediction. 

Step 5 If any observation in the first dataset has 
an absolute error in step 4 greater than the cut-off point 
obtained from step 3, it is labeled an outlier. 

This proposed outlier detection method is illustrated 
in Figure 1.

EXPERIMENT ON SIMULATED DATA AND PERFORMANCE 
COMPARISON

In this section, the data using a multivariate normal 
distribution with and without contaminated data are 
simulated to compare the performance of the proposed 
method with the previous methods.

Step 1 The p -variate normal data with sample 
sizes n  = 100, 300, 500, 800, 1000 and variables p = 
2, 3, 4, 6, 8, 10 with and without contaminated data for 
the multivariate normal distribution are generated using 
the R program. The contaminated multivariate normal 
distribution given as a mixture of normal is given as 
below.

where µ denotes the p -dimensional vector of ones and 
covariance matrix I, the distance of the outliers δ = 
5, 10 and the concentration of the contamination λ = 
0.1, 1. The contamination levels is α (Cabana, Lillo & 
Laniado 2021).

The simulated data with and without contaminated 
data can be considered under the denoting value of α. 
If α = 0, the simulated data is without contaminated data, 
and vice versa. The contaminated data that is inserted 
into the generated data are called outliers with α = 0.01, 
0.05, 0.10.

Step 2 The proposed method (MLRSB) is used to 
find outliers in each situation. 

Step 3 Steps 1 to 2 are repeated for 1,000 iterations. 
Step 4 The proportion of the detected outliers for 

those without contaminated data and accuracy, precision, 
recall, and F1-Score for those with contaminated data 
are calculated, which is the criterion to evaluate the 
performance of the proposed methods.

The performance of the proposed method and the 
previous methods (MD, MVE, MCD, MVV) are separated 
into two cases. Case I: Without contaminated data (α = 
0), the proportion of the detected outliers for p  = 2, 3, 
4, 6, 8, 10 and n  = 100, 300, 500, 800, 1000 are showed 
in Table 1. Case II: With contaminated data (α = 0.01, 
0.05, 0.10), the accuracy, precision, recall, and F1-Score 
for p = 10, n  = 500, δ = 5, 10, λ  = 0.1, 1 are showed in 
Tables 2-5. (Another situation can also be available from 
the corresponding author).

FIGURE 1. Multiple linear regression using data split with the boxplot method (MLRSB)

(1 ) ( , ) ( , )N I N I   − +0 μ , 

 

1 0 2 2 3 3
ˆ

p pY b b x b x b x= + + + +  

2 0 1 1 3 3
ˆ

p pY b b x b x b x= + + + +  

 

0 1 1 2 2 1 1p̂ p pY b b x b x b x− −= + + + + . 
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TABLE 1. Proportion of the detected outliers

n p MLRSB MD MVE MCD MVV 

100

2 0.0103 0.0470 0.0546 0.0518 0.4257

3 0.0100 0.0454 0.0585 0.0550 0.4073

4 0.0102 0.0454 0.0651 0.0601 0.4081

6 0.0104 0.0418 0.0770 0.0670 0.4067

8 0.0119 0.0403 0.0916 0.0787 0.4104

10 0.0131 0.0382 0.1117 0.0943 0.4100

300

2 0.0076 0.0489 0.0498 0.0490 0.4144

3 0.0080 0.0487 0.0501 0.0499 0.3899

4 0.0076 0.0483 0.0505 0.0502 0.3779

6 0.0075 0.0477 0.0519 0.0506 0.3661

8 0.0072 0.0468 0.0529 0.0507 0.3669

10 0.0075 0.0461 0.0551 0.0513 0.3717

500

2 0.0072 0.0494 0.0492 0.0492 0.4119

3 0.0071 0.0495 0.0495 0.0496 0.3829

4 0.0069 0.0489 0.0495 0.0494 0.3671

6 0.0069 0.0486 0.0497 0.0496 0.3492

8 0.0067 0.0479 0.0496 0.0492 0.3445

10 0.0071 0.0480 0.0510 0.0497 0.3445

800

2 0.0069 0.0495 0.0492 0.0492 0.4065

3 0.0069 0.0494 0.0489 0.0494 0.3773

4 0.0067 0.0493 0.0490 0.0494 0.3581

6 0.0066 0.0487 0.0485 0.0490 0.3388

8 0.0065 0.0489 0.0491 0.0492 0.3294

10 0.0064 0.0486 0.0492 0.0490 0.3250

1000

2 0.0070 0.0497 0.0493 0.0494 0.4057

3 0.0071 0.0494 0.0490 0.0494 0.3749

4 0.0068 0.0491 0.0488 0.0492 0.3562

6 0.0066 0.0493 0.0488 0.0494 0.3357

8 0.0064 0.0490 0.0488 0.0492 0.3241

10 0.0062 0.0487 0.0489 0.0489 0.3186
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TABLE 2. Accuracy, precision, recall and F1-Score for p  = 10, n  = 500, δ = 5, λ  = 0.1

α Criteria MLRSB MD MVE MCD MVV 

0.01 

Accuracy 0.9940 0.9647 0.9520 0.9535 0.6617

Precision 0.6274 0.2205 0.1726 0.1769 0.0287

Recall 0.9932 1.0000 1.0000 1.0000 1.0000

F1-Score 0.7690 0.3613 0.2944 0.3006 0.0558

0.05 

Accuracy 0.9954 0.9401 0.9623 0.9638 0.6900

Precision 0.9273 0.4273 0.5702 0.5799 0.1389

Recall 0.9859 0.5846 1.0000 1.0000 1.0000

F1-Score 0.9557 0.4937 0.7263 0.7341 0.2439

0.10 

Accuracy 0.9963 0.8511 0.9727 0.9734 0.5675

Precision 0.9804 0.0000 0.7856 0.7897 0.0952

Recall 0.9831 0.0000 1.0000 1.0000 0.3910

F1-Score 0.9817 N/A 0.8799 0.8825 0.1531

TABLE 3. Accuracy, precision, recall and F1-Score for p  = 10, n  = 500, δ = 5, λ  = 1

α Criteria MLRSB MD MVE MCD MVV 

0.01 

Accuracy 0.9936 0.9668 0.9527 0.9539 0.6625

Precision 0.6158 0.2312 0.1745 0.1782 0.0288

Recall 0.9568 1.0000 1.0000 1.0000 1.0000

F1-Score 0.7493 0.3756 0.2971 0.3025 0.0560

0.05 

Accuracy 0.9932 0.9689 0.9619 0.9635 0.6908

Precision 0.9213 0.6193 0.5674 0.5778 0.1392

Recall 0.9449 0.9790 1.0000 1.0000 1.0000

F1-Score 0.9330 0.7587 0.7240 0.7324 0.2444

0.10 

Accuracy 0.9913 0.9082 0.9722 0.9731 0.7261

Precision 0.9790 0.5620 0.7822 0.7879 0.2675

Recall 0.9330 0.3711 1.0000 1.0000 1.0000

F1-Score 0.9554 0.4470 0.8778 0.8814 0.4221
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TABLE 4. Accuracy, precision, recall and F1-Score for p  = 10, n  = 500,  δ = 10, λ  = 0.1

α Criteria MLRSB MD MVE MCD MVV 

0.01 

Accuracy 0.9939 0.9676 0.9520 0.9536 0.6625

Precision 0.6208 0.2359 0.1724 0.1772 0.0288

Recall 1.0000 1.0000 1.0000 1.0000 1.0000

F1-Score 0.7660 0.3817 0.2941 0.3011 0.0560

0.05 

Accuracy 0.9963 0.9608 0.9620 0.9634 0.6902

Precision 0.9306 0.5613 0.5680 0.5771 0.1390

Recall 1.0000 0.9909 1.0000 1.0000 1.0000

F1-Score 0.9641 0.7167 0.7245 0.7318 0.2441

0.10 

Accuracy 0.9981 0.8519 0.9727 0.9736 0.5821

Precision 0.9813 0.0000 0.7856 0.7914 0.1099

Recall 1.0000 0.0000 1.0000 1.0000 0.4480

F1-Score 0.9906 N/A 0.8799 0.8836 0.1765

TABLE 5. Accuracy, precision, recall and F1-Score for p  = 10,  = 500,  δ = 10, λ  = 1

α Criteria MLRSB MD MVE MCD MVV 

0.01 

Accuracy 0.9938 0.9690 0.9522 0.9539 0.6630

Precision 0.6171 0.2438 0.1730 0.1783 0.0288

Recall 0.9998 1.0000 1.0000 1.0000 1.0000

F1-Score 0.7632 0.3920 0.2950 0.3026 0.0560

0.05 

Accuracy 0.9962 0.9706 0.9624 0.9634 0.6917

Precision 0.9290 0.6301 0.5706 0.5777 0.1395

Recall 0.9997 0.9993 1.0000 1.0000 1.0000

F1-Score 0.9631 0.7729 0.7266 0.7323 0.2448

0.10 

Accuracy 0.9980 0.9101 0.9725 0.9735 0.7259

Precision 0.9808 0.5747 0.7840 0.7905 0.2673

Recall 0.9998 0.3885 1.0000 1.0000 1.0000

F1-Score 0.9902 0.4636 0.8789 0.8830 0.4218
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Tables 1-5 correspond to all simulation scenarios for 
multivariate normal data with and without contaminated 
data. For Table 1, the results showed that for the proposed 
method, the MLRSB had the proportion of the detected 
outliers at or near the contaminated level of 0, or in the 
case of no contamination, but the other methods (MD, 
MVE, MCD, MVV) had the proportion of the detected 
outliers far from the contaminated level of 0. It means 
that the MLRSB indicates there are no outliers when some 
datasets do not contain outliers, as the preferred method 
should have the proportion of detected outliers at 0 in 
this instance. For Tables 2-5, the results showed that 
the MLRSB had higher accuracy, precision, recall, and 
F1-Score than the other methods. The preferred method 
should have accuracy, precision, recall, and F1-Score as 
high as possible and higher than other methods. When 
the precision and recall of the MLRSE are considered, 
the results indicate that it has a high actual number of 
correctly predicted outliers that came out to be outliers 
and actual outliers that were correctly predicted, 
respectively.

REAL DATA ANALYSIS

In this section, a real dataset is used to show the 
efficiency of the proposed method. Hepatitis C virus 
(HCV) data, which contains laboratory values of 
blood donors and Hepatitis C patients (Lichtinghagen, 
Klawonn & Hoffmann 2020), there are 589 records and 
11 variables. The 11 variables are explained as follows, 
X1: Age (in years), X2: Albumin (ALB) is the amount of 
protein that floats in the bloodstream and is produced by 
the liver, X3: Alkaline phosphatase (ALP) is the amount of 
enzyme produced by proteins in diseased or dysfunctional 
organs, such as the liver, X4: Alanine transaminase 
(ALT) is the amount of an enzyme that floats in the 
bloodstream that can be caused by damage to any organ, 

such as the liver, X5: Aspartate aminotransferase (AST) 
is the amount of an enzyme used to help diagnose liver 
disease, X6: Bilirubin (BIL) is a blood breakdown value 
that is used as an important indicator of liver disease, 
X7: Cholinesterase (CHE) is a value used to diagnose the 
degree of intoxication, clarify the condition and assess 
liver function, X8: Cholesterol (CHOL) is the amount of 
cholesterol that comes from food or is made by the liver, 
X9: Creatinine (CREA) is the amount of waste produced by 
muscles. This value is used to see if the kidneys are able 
to filter waste products from the blood and excrete urine 
normally, X10: Gamma-glutamyl transferase (GGT) is the 
amount of an enzyme produced by the liver that aids in 
detoxification, and X11: Protein (PROT) is the amount of 
protein in the bloodstream used as an indicator of liver 
function.

The efficient method that was obtained in the 
simulation study for detecting outliers, that is, the 
MLRSB, will be applied to real data. In this dataset, 
blood donors and hepatitis C patients were originally 
divided into five categories in order of severity, from 
least to greatest: 0 (526 blood donors), 0s (7 suspect 
blood donors), 1 (20 hepatitis), 2 (12 fibrosis), and 3 (24 
cirrhosis). To make it easier to study, these five categories 
are broken as follows: non-morbid (0) in green points, 
moderate (0s, 1, 2) in gray points, and severe (3) in red 
points. 

Figure 2 shows that the MLRSB can detect outliers 
(patients with severe symptoms), with individuals 
identified as having severe symptoms over the cut-off 
point value (blue line). 9 green points, 27 gray points, 
and 24 red points were detected by this method. This 
means that, based on real data, the MLRSB can find all 
patients with severe symptoms. Therefore, this method 
will be used to identify outliers that are confirmed to be 
caused by a strange thing in the real data.

FIGURE 2. The MLRSB detected outliers for Hepatitis C virus (HCV) data
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CONCLUSION AND DISCUSSION

The datasets with high dimensionality and large 
sample sizes that usually appear in organizations 
are considered. The Mahalanobis distance and the 
Mahalanobis distance with robust approaches: MVE 
(Aelst & Rousseeuw 2009), MCD (Hubert & Debruyne 
2010), and MVV (Herdiani, Sari & Sunusi 2019) were 
used to detect outliers. In the simulation study, they 
still label outliers in the dataset even if there is no 
contamination. The proposed method (MLRSB) could 
solve a problem in cases where some datasets do not 
have to have outliers if there is no contamination. The 
MLRSE and other methods that were compared have 
a high number of actual outliers that were correctly 
predicted. But the MLRSE has a higher actual number of 
correctly predicted outliers that came out to be outliers 
than other methods. This superiority was evident in 
various key metrics such as accuracy, precision, recall, 
and the F1-Score. Therefore, the MLRSB is suggested 
to be used to check whether there are outliers or not 
and to find the outliers. The standout feature of MLRSB 
was its ability to accurately detect outliers while 
maintaining a proportion of detected outliers close 
to the contaminated level of 0. This characteristic is 
crucial in cases where the absence of outliers needs 
to be accurately identified. The method effectively 
minimized false positives and false negatives, making 
it a reliable tool for distinguishing between data with 
and without outliers. Furthermore, the MLRSB method 
demonstrated exceptional performance in identifying 
patients with severe symptoms in a real dataset of blood 
donors and hepatitis C patients. This suggests that the 
method has the potential to uncover instances that are 
truly caused by unusual factors or anomalies in real-
world data. In practical applications, this capability 
could lead to a better understanding of rare or extreme 
cases, especially in domains such as healthcare, where 
identifying such cases is of paramount importance.
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