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ABSTRACT

This study presents a robust estimation approach for the Multiplicative Error Model (MEM), developed for analyzing 
non-negative, high-frequency financial time series data. Although maximum likelihood estimation (MLE) is widely used, 
it is very sensitive to outliers and shows poor results for small sample sizes. To address this problem, we propose a self-
weighted M-estimation method that accounts for infinite variance and weights outliers downwards, thereby improving the 
stability and robustness of the estimation. Simulation studies with four distributions confirm the superior performance of 
this method compared to MLE and LAD estimators. An empirical analysis using five-minute price spread data of eight 
major Chinese commodity futures - gold, petroleum asphalt, soybean, iron ore, soybean oil, corn, sugar, and rapeseed 
oil - demonstrates the practical advantages of this method. The results show a consistent improvement in model fit, which 
translates into lower AIC values and confirms the effectiveness of self-weighted M-estimation for noisy, high-frequency 
financial data.
Keywords: Empirical analysis; high-frequency data; Multiplicative Error Model; self-weighted M-estimation 

ABSTRAK

Penyelidikan ini memperkenalkan pendekatan penganggaran teguh bagi Model Ralat Pendaraban (MEM) yang dibangunkan 
untuk menganalisis data siri masa kewangan frekuensi tinggi yang bukan negatif. Walaupun kaedah penganggaran 
kebolehjadian maksimum (MLE) digunakan secara meluas, namun ia sangat sensitif terhadap nilai terpencil dan 
menunjukkan prestasi yang lemah apabila saiz sampel kecil. Bagi mengatasi masalah ini, kajian ini mencadangkan kaedah 
penganggaran berpemberat-kendiri-M yang mengambil kira varian tak terhingga dan memberikan pemberat lebih rendah 
kepada nilai terpencil, sekali gus meningkatkan kestabilan dan keteguhan anggaran. Kajian simulasi yang melibatkan 
empat taburan menunjukkan prestasi kaedah ini lebih baik berbanding anggaran MLE dan LAD. Analisis empirik yang 
menggunakan data harga lima-minit bagi lapan kontrak niaga hadapan komoditi utama China - emas, asfalt petroleum, 
soya, bijih besi, minyak soya, jagung, gula dan minyak biji rapa - membuktikan kelebihan praktikal kaedah ini. Hasil kajian 
menunjukkan peningkatan tekal dalam kesesuaian model yang diterjemahkan kepada nilai AIC yang lebih rendah, sekali 
gus mengesahkan keberkesanan penganggaran berpemberat-kendiri-M bagi data kewangan frekuensi tinggi yang bising.
Kata kunci: Anggaran berpemberat-kendiri-M; analisis empirik; data frekuensi tinggi; Model Ralat Pendaraban

INTRODUCTION

China’s commodity futures market has experienced rapid 
growth over the past decade, playing a pivotal role in global 
commodity price discovery. With exchanges such as the 
Shanghai Futures Exchange (SHFE), Dalian Commodity 
Exchange (DCE), and Zhengzhou Commodity Exchange 
(ZCE), it offers deep liquidity and high-frequency trading 
volume, making it an ideal setting for testing robust 
modeling approaches under noisy and volatile conditions. 
With the gradual opening of the market and ongoing 
internationalization, the composition of market participants 

is becoming increasingly diverse. Zhang (2019) found 
in his research that the risk management function of the 
Chinese futures market has been significantly strengthened 
and that the socio-economic operation will continue 
to utilize this function. The development potential of 
China’s futures market is immeasurable, but it also faces 
new risk challenges. For example, Cai and Zhang (2021) 
have shown that there are many obstacles to the high-
quality development of China’s futures market, including 
imperfect product structure, irrational investor structure, 
unclear boundary between government and market, weak 
futures society and low degree of internationalization.
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With the development of the market, the use of 
high-frequency data has become an important trend 
in futures market analysis. High-frequency data, i.e., 
market information collected in extremely short time 
intervals, such as prices and trading volume per minute, 
allows researchers to observe the micro-dynamics of the 
market. Zhou (1996) showed in his early research that 
high-frequency data can show short-term market price 
fluctuations and the effects of liquidity. However, with 
the proliferation of high-frequency data applications, the 
problem of data noise has gradually gained attention. Data 
noise not only affects the accuracy of data analysis, but also 
has a negative impact on model predictions and decision 
making. Therefore, researching the problem of data noise 
in high-frequency data is of great theoretical and practical 
importance. Numerous studies have focused on how to 
effectively deal with data noise and minimize its impact on 
data analysis. For example, Ma and Yin (2012) introduced 
a threshold pre-averaging method to estimate high-
frequency price fluctuations amid market microstructure 
noise and price jumps. This approach reduces volatility 
prediction errors and thus improves the precision of risk 
management.

Despite the increasing use of high-frequency data in 
commodity markets, many existing volatility and time 
series models, including GARCH-based approaches, are 
limited in their ability to handle non-negative, spiky and 
noisy data common in emerging markets such as China. In 
addition, most studies rely heavily on maximum likelihood 
estimation (MLE), which assumes finite variance and a 
well-specified distribution, making it highly susceptible 
to outliers. This poses a serious limitation for practical 
modeling of real-world financial time series, which often 
exhibit strong tails, skewness and non-Gaussian noise. 
Engle (2002) proposed a new non-negative financial time 
series model of MEM, which is based on ARCH models. 
MEM not only identifies the fluctuation characteristics of 
non-negative sequences, but also avoids the disadvantages 
of overlooking non-negative sequences, which is not 
the case with other models. Moreover, MEM solves the 
problem of combining low-frequency and high-frequency 
volatility components in both univariate and multivariate 
cases.

However, there is still a lack of robust estimation 
methods specifically designed to deal with infinite variance 
or non-normal data structures, which are common in high-
frequency commodity price dynamics. Although the MEM 
offers a flexible framework for modeling non-negative 
financial time series, little has been done to improve its 
robustness under extreme data scenarios. This creates a 
gap between the theoretical models and their application 
in practice, especially in fast-moving markets such as the 
Chinese commodity futures exchanges.

The combination of a positive random variable 
and a time-varying scaling factor can represent the  
non-negative process that MEM investigates. Set {xt,t { }tx t N∈，  N} as a  

non-negative financial time series, Ft – 1 = σ (εt–1, εt–2,...) representing the information set available up to the 
time period t – 1, then the standard MEM (p, q) can be 
represented as

xt = μtεt , (1)

μt = ω + 
1 1

,
p q

t i t i j t j
i j

xìùáâì − −
= =
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xìùáâì − −
= =
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Among them, μt is the conditional expectation of xt based 
on Ft – 1, εt is a positive random error term with a mean of 
1, and the coefficients in the model satisfy ω > 0, αi ≥ 0 
(i = 1,2,..., p)

 
as well as βj ≥ 0( j = 1,2...,q), p and q are 

the lag order of the model.
Ma, Guo and Zhao (2014) presented a method for 

measuring the volatility of high-frequency financial time 
series that incorporates the non-negative multiplicative 
error model. The analysis results showed that the MEM had 
the best prediction performance. Zhou and Zhang (2016) 
proposed a relative error estimation method for MEM 
based on the least squares criterion, and the simulation 
results showed that this method has certain advantages 
compared with other similar methods. Taylor and Xu 
(2017) developed a general logarithmic vector MEM 
(log-vMEM). The model is applied to high-frequency data 
associated with a set of NYSE-listed stocks. The results 
show that log-vMEM is a better fit for the data than the 
competing model.

The rapid development of the Chinese futures market 
has created new opportunities for the application of high-
frequency data, but has also brought challenges for data 
processing. When analyzing high-frequency data, more 
noise and error problems need to be considered due to 
the fine-grained characteristics. The MEM as an effective 
method for error handling has shown promising prospects 
for improving data quality, optimizing market forecasts and 
risk management. In this article, the specific application 
of the MEM to the Chinese futures market is examined 
in more detail, its practical effectiveness in analyzing 
high-frequency data is evaluated, and new perspectives 
and directions for future research are pointed out. The 
following outline describes the further structure of this 
article: Next section provides an overview of the research 
methodology. Subsequent section includes the results and 
discussion through numerical simulations and empirical 
analysis. Finally, last section provides the conclusion.

To close this methodological and empirical gap, this 
paper proposes a self-weighted M-estimation method 
tailored to the MEM framework. The aim is to improve the 
robustness of the model and the stability of the estimation 
when analyzing high-frequency, non-negative data, which 
may contain extreme values and outliers. Using simulation 
studies and empirical analysis of eight major Chinese 
commodity futures contracts, this study demonstrates the 
superiority of the proposed method over traditional MLE 
and LAD estimators. This research contributes to both 
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the advancement of robust econometric modeling and the 
practical understanding of volatility dynamics in one of the 
most important emerging financial markets.

MATERIALS AND METHODS

When using MEM for practical modeling, the traditional 
estimation method assumes that the error term follows a 
known distribution with bounded variance, and maximum 
likelihood estimation (MLE) is used to estimate its 
parameters. However, high-frequency data in the actual 
futures market often have strong spurs and contain many 
outliers, and the variance of these data may even be infinite. 
Lu, Wang and Gao (2020) proposed the M-estimation of the 
MEM to solve the problems with MLE. The results showed 
that M-estimation works well regardless of whether the 
data contain outliers or not. In this paper, self-weighted 
M estimation (SM estimation) is used, in which outliers 
are weighted differently depending on their size, further 
reducing the impact of outliers on the estimation results.

Let θ = (ω, α1, ..., αp, β1, ..., βq)T

 
be the model parameter, 

and it is known from Equation (2) that it is related to μt and 
θ, so it can be recorded μt = μt (θ). By taking the logarithm 
at both ends of Equation (1), it can be obtained that

ln xt = ln μt (θ) + ln, εt , (3)

Let yt = ln xt – c0, ηt = ln εt – c0, and co = median (ln εt), then

yt = ln μt (θ) + ηt , (4)

Therefore, the SM-estimation of parameters in MEM (p, q) 
is

(SM estimation) is used, in which outliers are weighted differently depending on their size, 

further reducing the impact of outliers on the estimation results. 

Let 1 1, , , , , ,
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where  is to be determined. 
 

RESULTS AND DISCUSSION 
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where k is to be determined.

RESULTS AND DISCUSSION

In this part, a finite sample simulation is used to investigate 
the SM estimation of the parameters. The main goal is to 
compare how well SM estimation works with MLE and 
M estimation when the error has some outliers. In M 
estimation, data outliers and normal points are weighted 
equally, which is somewhat inappropriate. In SM 
estimation, outliers can be weighted differently depending 
on their size, further reducing their impact on the estimation 
results. Let us first consider the M estimate when wt = 1, 
and the loss function assumes an absolute value function. 
In this case, the M-estimate is the LAD-estimate. On the 
other hand, if we consider the SLAD estimate with the 
loss function as an absolute value function in the form of 
(6) for wt. Comparing the results of SLAD estimation and 
LAD estimation, we find that the effectiveness of SLAD 
estimation has improved, but not significantly. For this 
reason, this paper proposes to use the form of (7) as the 
loss function in SM estimation, where SM estimation is 
S-Huber estimation.

Consider the standard MEM (1, 1), where the true 
value of ѐ is taken (0.1, 0.3, 0.6) and the error εt follows 
four distributions with expected values of 1, Exp (1), Pareto 
(3, 1.9), Weibull (1, 1.1), Burr (3, 1.5, 2), respectively. We 
know that financial market transactions are frequent, and 
new information may emerge at any time, which can have 
an impact on market transactions. High-frequency data is 
more susceptible to the reflection of market information, 
and it frequently contains outliers. In order to better reflect 
the characteristics of high-frequency financial data, 10% 
of the data is randomly selected from the generated error 
sequence random numbers, and these data are added with 
three times the sample standard deviation of the distribution 
as outliers. 

Generate observational data with a sample size of 500 
and compare the mean bias and mean squared error (MSE) 
of the three estimation methods after 2000 replicates. 
The specific results are shown in Table 1. It can be seen 
from Table 1 that the results of S-Huber estimation are 
generally better than those of LAD and MLE for both light-
tailed and heavy-tailed error distributions. This indicates 
that the results of SM-estimation are more robust and 
suitable for modeling financial data with heavy tails and 
outliers (similar simulation results can also be obtained for 
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higher-order models such as MEM(1,2), MEM(2,1), and 
MEM(2,2), indicating that the results of SM-estimation 
are more robust. This section is limited to space and does 
not include numerical simulation results for higher-order 
models).

To demonstrate the effectiveness of the SM estimation 
method in practice, we selected eight large-scale, highly 
liquid and industry-representative five-minute high-
frequency futures trading data from the Shanghai Futures 
Exchange, Dalian Commodity Exchange and Zhengzhou 
Commodity Exchange, including the price range of gold, 
petroleum asphalt, soybean, iron ore, soybean oil, corn, 
sugar and rapeseed oil from June 7, 2023 to June 7, 2023. 
June 7, 2023 to June 7, 2024, as samples for empirical 
analysis. Before analyzing the data, the raw data must be 
pre-processed: The price range is the highest daily price 
minus the lowest daily price. Table 2 shows the results 
of the descriptive statistical analysis of the price range of 
eight futures. Figures 1 to 8 respectively show the time 
series plot for eight futures. Figures 9 to 16 respectively 
show the boxplot for eight futures.

From Table 2, it can be seen that the average price range 
of gold, petroleum asphalt, soybean, iron ore, soybean oil, 
corn, sugar and rapeseed oil is 0.33, 5.76, 6.36, 2.65, 14.91, 
2.92, 8.14 and 17.58, respectively, with standard deviations 
of 0.36, 3.82, 4.14, 1.29, 7.65, 1.91, 5.14 and 9.97. From 
these two indicators, it can be seen that the volatility of 
the gold futures price is low and stable and that market 
expectations are relatively uniform. Trading activity could 
be relatively calm. The skewness is greater than 0 for all 
eight futures, i.e., the distribution curves of the price range 
are positively skewed for all eight futures and therefore 
well suited for modeling non-negative models. From the 
kurtosis point of view, the kurtosis of all eight futures is 
also greater than 3, indicating that the distribution curves 

of all eight futures have obvious characteristics of a thick 
peak end. In addition, it can be seen from the results of the 
JB statistics in the table that the P-values of all eight futures 
Jarque-Bra tests are less than 2.2e-16, which rejects the null 
hypothesis of normality and indicates that all eight futures 
are non-normal distributions. 

Figures 1 to 8 show that the price spread between the 
eight futures contracts exhibits considerable data volatility. 
Data characterized by greater volatility tends to contain 
more market information, and data characterized by high 
volatility tends to contain more outliers and extreme 
scenarios. By analyzing this data, we can better compare 
different estimation methods and gain a deeper insight 
into the dynamic changes and underlying patterns of the 
market. From Figures 9 to 16, we can visually supplement 
the summary statistical data in Table 2 and provide visual 
evidence of potential outliers for analysis. 

When performing MLE for models, a comprehensive 
comparison of the models under different distributions 
is performed to determine which empirical study is 
more appropriate for the price range. The use of MLE to 
determine BMEM for the price range of iron ore, soybean 
oil, sugar and rapeseed oil (compared to models such as 
EMEM, WMEM, PMEM. BMEM estimation is relatively 
effective), and the use of M-estimation and SM-estimation 
to estimate the MEM parameters. The specific results are 
shown in Table 3.

From Table 3, it can be observed that α + β of both 
futures is less than 1, meeting the requirements for model 
stationarity, and the values are both greater than 0.85, 
indicating a strong clustering effect. From the results 
of LogL, the LAD estimation results are relatively close 
to those of MLE. From the results of MLE to S-Huber 
estimation of AIC, iron ore decreases from 3.0258 to 
2.9923, a decrease of 1.11%; soybean oil decreases from 

TABLE 1. Simulation results under different distributions

Distributions Estimations Bias (ù) Bias (( )Bias á ) Bias (( )Bias â) MSE (ù) Bias (( )Bias á ) MSE (( )Bias â)

Exp (1)

MLE 0.0520 0.0868 -0.0085 0.0053 0.0104 0.0024
LAD 0.0233 -0.0011 -0.0121 0.0039 0.0035 0.0054
S-Huber 0.0133 -0.0117 -0.0112 0.0023 0.0030 0.0040

Pareto (3,1.9)

MLE 0.0783 0.1246 -0.0097 0.2707 0.0255 0.0035
LAD 0.0190 -0.0030 -0.0064 0.0088 0.0036 0.0047
S-Huber 0.0164 -0.0005 -0.0068 0.0059 0.0042 0.0043

Weibull (1,1.1)

MLE 0.0757 0.1240 -0.0048 0.0108 0.0181 0.0017
LAD 0.0308 -0.0046 -0.0049 0.0065 0.0027 0.0041
S-Huber 0.0195 -0.0108 -0.0077 0.0038 0.0024 0.0031

Burr (3,1.5,2)
MLE 0.0694 0.1076 -0.0063 0.0098 0.0147 0.0022
LAD 0.0242 -0.0032 -0.0051 0.0042 0.0021 0.0032
S-Huber 0.0205 -0.0006 -0.0068 0.0030 0.0019 0.0026
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TABLE 2. Descriptive statistical analysis of futures price range

Futures name Sample size Mean Std Skewness Kurtosis JB Stat
Gold 26467 0.33 0.36 6.26 76.15 6568331 

(< 2.2e-16)
Petroleum asphalt 16554 5.76 3.82 3.52 23.86 426991 

(< 2.2e-16)
Soybean 16554 6.36 4.14 3.39 23.35 407809 

(< 2.2e-16)
Iron ore 16554 2.65 1.29 2.21 10.93 95906 

(< 2.2e-16)
Soybean oil 16554 14.91 7.65 2.89 21 327347 

(< 2.2e-16)
Corn 16554 2.92 1.91 6.74 158.5 17457560 

(< 2.2e-16)
Sugar 16554 8.14 5.14 8.89 284.37 56010575 

(< 2.2e-16)
Rapeseed oil 16554 17.58 9.97 3.8 37.87 1029282 

(< 2.2e-16)

TABLE 3. Comparisons of three estimations

Futures name Estimations ù ( )Bias á ( )Bias â LogL AIC

Iron ore
MLE 0.2984 0.2090 0.6808 -1.5127 3.0258
LAD 0.2952 0.2103 0.6807 -1.5129 3.0262

S-Huber 0.3255 0.2039 0.6807 -1.4960 2.9923

Soybean oil
MLE 0.8946 0.1568 0.7856 -1.7335 3.4673
LAD 1.0192 0.1625 0.7716 -1.7335 3.4673

S-Huber 0.9036 0.1397 0.8065 -1.7167 3.4337

Sugar
MLE 0.9814 0.2203 0.6615 -1.6797 3.3599
LAD 1.0651 0.2233 0.6481 -1.6793 3.3590

S-Huber 1.0694 0.2048 0.6735 -1.6591 3.3186

Rapeseed oil
MLE 0.8120 0.1637 0.7929 -1.8339 3.6682
LAD 0.8258 0.1677 0.7884 -1.8338 3.6679

S-Huber 0.8455 0.1437 0.8170 -1.8137 3.6278

3.4673 to 3.4337, a decrease of 0.97%; sugar decreases 
from 3.3599 to 3.3186, a decrease of 1.23%; rapeseed oil 
decreases from 3.6682 to 3.6278, a decrease of 1.10%. 
Overall, the S-Huber estimation results are better than 
MLE's. 

Using MLE to establish WMEM for the price range of 
gold, petroleum asphalt, soybean, and corn (compared to 
models such as EMEM, PMEM, BMEM. WMEM estimation 
is relatively effective), and using M-estimation and SM-
estimation to estimate MEM parameters. The specific 
results are shown in the Table 4.

From Table 4, it can be observed that α + β of both 
futures is less than 1, meeting the requirements for model 
stationarity, and the values are both greater than 0.85, 
indicating a strong clustering effect. From the results 
of LogL, the LAD estimation results are relatively close 
to those of MLE. From the results from MLE to S-Huber 
estimation of AIC, gold decreases from 3.4049 to 3.3477, 
a decrease of 1.68%; petroleum asphalt decreases from 
3.3756 to 3.3352, a decrease of 1.20%; soybean decreases 
from 3.1610 to 3.1210, a decrease of 1.27%; corn 
decreases from 3.2053 to 3.1418, a decrease of 1.98%. 
Overall, the S-Huber estimation results are better than 
MLE's.
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FIGURE 1. The time series plot for gold

TABLE 4. Comparisons of three estimations

Futures name Estimations ù ( )Bias á ( )Bias â LogL AIC

Gold
MLE 0.0183 0.2418 0.7031 -1.7023 3.4049
LAD 0.0069 0.2508 0.7379 -1.7172 3.4345
S-Huber 0.0082 0.2481 0.7454 -1.6738 3.3477

Petroleum asphalt
MLE 1.2230 0.3750 0.4182 -1.6876 3.3756
LAD 0.5543 0.2571 0.6491 -1.6929 3.3861

S-Huber 0.6700 0.2949 0.6046 -1.6674 3.3352

Soybean
MLE 1.3885 0.3970 0.3896 -1.5803 3.1610
LAD 0.6878 0.2693 0.6235 -1.5879 3.1762

S-Huber 0.7869 0.3037 0.5859 -1.5603 3.1210

Corn
MLE 0.9408 0.3118 0.3654 -1.6025 3.2053
LAD 0.5459 0.2646 0.5542 -1.5952 3.1908

S-Huber 0.5786 0.2913 0.5298 -1.5707 3.1418
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FIGURE 2. The time series plot for petroleum asphalt
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FIGURE 5. The time series plot for soybean oil
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FIGURE 3. The time series plot for soybean

Time

x

0 5000 10000 15000

0
5

10
15

20

FIGURE 4. The time series plot for iron ore
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FIGURE 8. The time series plot for rapeseed oil
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FIGURE 6. The time series plot for corn
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FIGURE 7. The time series plot for sugar
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The Boxplot of Gold The Boxplot of Petroleum

 
FIGURE 8. The time series plot for rapeseed oil 
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FIGURE 8. The time series plot for rapeseed oil 
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The Boxplot of Soybean The Boxplot of Iron Ore

 
FIGURE 11. The boxplot for soybean                         FIGURE 12. The boxplot for iron ore 
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CONCLUSIONS

This study set out to address a critical challenge in modeling non-negative, high-frequency 

financial time series data - namely, the sensitivity of conventional estimation techniques such 

as maximum likelihood estimation (MLE) and least absolute deviation (LAD) to outliers and 

non-normality, especially with small sample sizes and infinite variance. Building on the MEM, 

we introduced a self-weighted M-estimation approach to improve the robustness and stability 

of parameter estimation under these challenging data conditions. The motivation for this 

research stems from the increasing complexity and noise in financial markets, especially in 

high-frequency environments. The Chinese commodity futures market, one of the most 

dynamic and liquid in the world, provides a rich empirical environment for testing advanced 

statistical models. Given the importance of Chinese exchanges such as SHFE, DCE, and ZCE 

to global commodity trading, the ability to extract meaningful insights from high-frequency 

data in this context is of great practical and scientific interest.

Through extensive simulation studies across multiple distributions, our proposed 

method consistently outperformed traditional estimators in terms of efficiency and resilience 
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The Hill estimation method proposed by Resnick 
(1997) is used to estimate the tail index of residual 
sequences. Figures 17 to 24 show the estimation of the tail 
index of residual sequences after modeling the price range 
of eight futures using the S-Huber estimation. It cannot 
be concluded from the figure that the variance of residual 
sequences is finite, which means that the results of SM 
estimation are more reliable compared to other estimation 
methods.

CONCLUSIONS

This study set out to address a critical challenge in modeling 
non-negative, high-frequency financial time series  
data - namely, the sensitivity of conventional estimation 
techniques such as maximum likelihood estimation 
(MLE) and least absolute deviation (LAD) to outliers and 
non-normality, especially with small sample sizes and 
infinite variance. Building on the MEM, we introduced 
a self-weighted M-estimation approach to improve the 
robustness and stability of parameter estimation under 
these challenging data conditions. The motivation for 
this research stems from the increasing complexity and 
noise in financial markets, especially in high-frequency 
environments. The Chinese commodity futures market, 
one of the most dynamic and liquid in the world, provides a 
rich empirical environment for testing advanced statistical 
models. Given the importance of Chinese exchanges such 
as SHFE, DCE, and ZCE to global commodity trading, the 
ability to extract meaningful insights from high-frequency 
data in this context is of great practical and scientific 
interest.

Through extensive simulation studies across 
multiple distributions, our proposed method consistently 
outperformed traditional estimators in terms of efficiency 
and resilience to outliers. Empirical validation using 
five-minute price-voltage data of eight actively traded 
Chinese commodity futures further demonstrated the 
applicability of the model in practice. The results not 
only confirmed improved model fit and lower AIC 
values, but also underscored the practical utility of self-
weighted M-estimation in volatile and data-intensive 
environments. These results have important implications 
for market participants and policy makers. By improving 
the estimation of MEM in the context of Chinese high-
frequency markets, our approach enables more accurate 
volatility modeling, better risk management and more 
informed trading strategies. It also sets the stage for 
future research on robust econometric methods suitable 
for emerging markets where structural shifts and data 

irregularities are common. To summarize, this study 
contributes to the literature on financial econometrics 
both methodologically and empirically. It offers a 
statistically sound and practically relevant solution for 
modeling noisy, non-negative time series data that is 
directly applicable to one of the fastest growing financial 
markets in the world.
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