Sains Malaysiana 54(10)(2025): 2539-2551
http://doi.org/10.17576/jsm-2025-5410-16

Multiplicative Error Model Based on Robust Estimation: Evidence from

High-Frequency Data in the Chinese Futures Market
(Model Ralat Pendaraban Berdasarkan Keteguhan Anggaran: Bukti daripada Data Frekuensi Tinggi dalam Pasaran
Hadapan China)

TING L1* & SAIFUL [ZZUAN HUSSAIN

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia

Received: 20 December 2024/Accepted.: 28 August 2025

ABSTRACT

This study presents a robust estimation approach for the Multiplicative Error Model (MEM), developed for analyzing
non-negative, high-frequency financial time series data. Although maximum likelihood estimation (MLE) is widely used,
it is very sensitive to outliers and shows poor results for small sample sizes. To address this problem, we propose a self-
weighted M-estimation method that accounts for infinite variance and weights outliers downwards, thereby improving the
stability and robustness of the estimation. Simulation studies with four distributions confirm the superior performance of
this method compared to MLE and LAD estimators. An empirical analysis using five-minute price spread data of eight
major Chinese commodity futures - gold, petroleum asphalt, soybean, iron ore, soybean oil, corn, sugar, and rapeseed
oil - demonstrates the practical advantages of this method. The results show a consistent improvement in model fit, which
translates into lower AIC values and confirms the effectiveness of self-weighted M-estimation for noisy, high-frequency
financial data.
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ABSTRAK

Penyelidikan ini memperkenalkan pendekatan penganggaran teguh bagi Model Ralat Pendaraban (MEM) yang dibangunkan
untuk menganalisis data siri masa kewangan frekuensi tinggi yang bukan negatif. Walaupun kaedah penganggaran
kebolehjadian maksimum (MLE) digunakan secara meluas, namun ia sangat sensitif terhadap nilai terpencil dan
menunjukkan prestasi yang lemah apabila saiz sampel kecil. Bagi mengatasi masalah ini, kajian ini mencadangkan kaedah
penganggaran berpemberat-kendiri-M yang mengambil kira varian tak terhingga dan memberikan pemberat lebih rendah
kepada nilai terpencil, sekali gus meningkatkan kestabilan dan keteguhan anggaran. Kajian simulasi yang melibatkan
empat taburan menunjukkan prestasi kaedah ini lebih baik berbanding anggaran MLE dan LAD. Analisis empirik yang
menggunakan data harga lima-minit bagi lapan kontrak niaga hadapan komoditi utama China - emas, asfalt petroleum,
soya, bijih besi, minyak soya, jagung, gula dan minyak biji rapa - membuktikan kelebihan praktikal kaedah ini. Hasil kajian
menunjukkan peningkatan tekal dalam kesesuaian model yang diterjemahkan kepada nilai AIC yang lebih rendah, sekali
gus mengesahkan keberkesanan penganggaran berpemberat-kendiri-M bagi data kewangan frekuensi tinggi yang bising.

Kata kunci: Anggaran berpemberat-kendiri-M; analisis empirik; data frekuensi tinggi; Model Ralat Pendaraban

INTRODUCTION

China’s commodity futures market has experienced rapid
growth over the past decade, playing a pivotal role in global
commodity price discovery. With exchanges such as the
Shanghai Futures Exchange (SHFE), Dalian Commodity
Exchange (DCE), and Zhengzhou Commodity Exchange
(ZCE), it offers deep liquidity and high-frequency trading
volume, making it an ideal setting for testing robust
modeling approaches under noisy and volatile conditions.
With the gradual opening of the market and ongoing
internationalization, the composition of market participants

is becoming increasingly diverse. Zhang (2019) found
in his research that the risk management function of the
Chinese futures market has been significantly strengthened
and that the socio-economic operation will continue
to utilize this function. The development potential of
China’s futures market is immeasurable, but it also faces
new risk challenges. For example, Cai and Zhang (2021)
have shown that there are many obstacles to the high-
quality development of China’s futures market, including
imperfect product structure, irrational investor structure,
unclear boundary between government and market, weak
futures society and low degree of internationalization.
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With the development of the market, the use of
high-frequency data has become an important trend
in futures market analysis. High-frequency data, i.c.,
market information collected in extremely short time
intervals, such as prices and trading volume per minute,
allows researchers to observe the micro-dynamics of the
market. Zhou (1996) showed in his early research that
high-frequency data can show short-term market price
fluctuations and the effects of liquidity. However, with
the proliferation of high-frequency data applications, the
problem of data noise has gradually gained attention. Data
noise not only affects the accuracy of data analysis, but also
has a negative impact on model predictions and decision
making. Therefore, researching the problem of data noise
in high-frequency data is of great theoretical and practical
importance. Numerous studies have focused on how to
effectively deal with data noise and minimize its impact on
data analysis. For example, Ma and Yin (2012) introduced
a threshold pre-averaging method to estimate high-
frequency price fluctuations amid market microstructure
noise and price jumps. This approach reduces volatility
prediction errors and thus improves the precision of risk
management.

Despite the increasing use of high-frequency data in
commodity markets, many existing volatility and time
series models, including GARCH-based approaches, are
limited in their ability to handle non-negative, spiky and
noisy data common in emerging markets such as China. In
addition, most studies rely heavily on maximum likelihood
estimation (MLE), which assumes finite variance and a
well-specified distribution, making it highly susceptible
to outliers. This poses a serious limitation for practical
modeling of real-world financial time series, which often
exhibit strong tails, skewness and non-Gaussian noise.
Engle (2002) proposed a new non-negative financial time
series model of MEM, which is based on ARCH models.
MEM not only identifies the fluctuation characteristics of
non-negative sequences, but also avoids the disadvantages
of overlooking non-negative sequences, which is not
the case with other models. Moreover, MEM solves the
problem of combining low-frequency and high-frequency
volatility components in both univariate and multivariate
cases.

However, there is still a lack of robust estimation
methods specifically designed to deal with infinite variance
or non-normal data structures, which are common in high-
frequency commodity price dynamics. Although the MEM
offers a flexible framework for modeling non-negative
financial time series, little has been done to improve its
robustness under extreme data scenarios. This creates a
gap between the theoretical models and their application
in practice, especially in fast-moving markets such as the
Chinese commodity futures exchanges.

The combination of a positive random variable
and a time-varying scaling factor can represent the
non-negativeprocessthatMEMinvestigates. Set {x,/EN} asa

non-negative financial time series, F,_, = o (¢_,, €_,,...)
representing the information set available up to the
time period ¢ — 1, then the standard MEM (p, ¢) can be
represented as

_— 0
P q

po=o+ Y ax, ¥ pu, 2)
i=1 =

Among them, u, is the conditional expectation of x; based
on F, |, ¢ is a positive random error term with a mean of
1, and the coefficients in the model satisfy @ > 0, a.> 0
(i=12,..,p) aswellas 5= 00/ =1.2..9),p and ¢ are
the lag order of the model.

Ma, Guo and Zhao (2014) presented a method for
measuring the volatility of high-frequency financial time
series that incorporates the non-negative multiplicative
error model. The analysis results showed that the MEM had
the best prediction performance. Zhou and Zhang (2016)
proposed a relative error estimation method for MEM
based on the least squares criterion, and the simulation
results showed that this method has certain advantages
compared with other similar methods. Taylor and Xu
(2017) developed a general logarithmic vector MEM
(log-vMEM). The model is applied to high-frequency data
associated with a set of NYSE-listed stocks. The results
show that log-vMEM is a better fit for the data than the
competing model.

The rapid development of the Chinese futures market
has created new opportunities for the application of high-
frequency data, but has also brought challenges for data
processing. When analyzing high-frequency data, more
noise and error problems need to be considered due to
the fine-grained characteristics. The MEM as an effective
method for error handling has shown promising prospects
for improving data quality, optimizing market forecasts and
risk management. In this article, the specific application
of the MEM to the Chinese futures market is examined
in more detail, its practical effectiveness in analyzing
high-frequency data is evaluated, and new perspectives
and directions for future research are pointed out. The
following outline describes the further structure of this
article: Next section provides an overview of the research
methodology. Subsequent section includes the results and
discussion through numerical simulations and empirical
analysis. Finally, last section provides the conclusion.

To close this methodological and empirical gap, this
paper proposes a self-weighted M-estimation method
tailored to the MEM framework. The aim is to improve the
robustness of the model and the stability of the estimation
when analyzing high-frequency, non-negative data, which
may contain extreme values and outliers. Using simulation
studies and empirical analysis of eight major Chinese
commodity futures contracts, this study demonstrates the
superiority of the proposed method over traditional MLE
and LAD estimators. This research contributes to both



the advancement of robust econometric modeling and the
practical understanding of volatility dynamics in one of the
most important emerging financial markets.

MATERIALS AND METHODS

When using MEM for practical modeling, the traditional
estimation method assumes that the error term follows a
known distribution with bounded variance, and maximum
likelihood estimation (MLE) is used to estimate its
parameters. However, high-frequency data in the actual
futures market often have strong spurs and contain many
outliers, and the variance of these data may even be infinite.
Lu, Wang and Gao (2020) proposed the M-estimation of the
MEM to solve the problems with MLE. The results showed
that M-estimation works well regardless of whether the
data contain outliers or not. In this paper, self-weighted
M estimation (SM estimation) is used, in which outliers
are weighted differently depending on their size, further
reducing the impact of outliers on the estimation results.

Let0=(w,a,,..., ap,,b’,, ...,ﬂq)T be the model parameter,
and it is known from Equation (2) that it is related to x, and
6, so it can be recorded u, = 1, (). By taking the logarithm
at both ends of Equation (1), it can be obtained that

Inx, =1Inw(0)+In, e, 3)

Lety, = Inx,—co, 1, = Ing—cyp, and ¢, = median (In g,), then

Y, =Inw ) +n, 4)

Therefore, the SM-estimation of parameters in MEM (p, q)
is

0, =arg rglgier)l Z th(y’ ~lng, (6))’ )

t=v+1

where v = max (p, g), ® c R”**' represents the parameter

space, w, =w, (x,_,,X_,,~~-)>0 is an optional weight

function, and p(.) represents a non-negative loss function.
In SM-estimation, select

w, =1 (6)

where a, = |xt—l | I (|XH | 2 C), c is the 90% quantile point
of the sequence x,.

Here, we choose the Huber function (1964) as the loss
function in the SM-estimation, which is
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%x2,|x|ﬁk,
7, (x) = L, ()
k|x|—5k x> k.

where £ is to be determined.

RESULTS AND DISCUSSION

In this part, a finite sample simulation is used to investigate
the SM estimation of the parameters. The main goal is to
compare how well SM estimation works with MLE and
M estimation when the error has some outliers. In M
estimation, data outliers and normal points are weighted
equally, which is somewhat inappropriate. In SM
estimation, outliers can be weighted differently depending
on their size, further reducing their impact on the estimation
results. Let us first consider the M estimate when w, = 1,
and the loss function assumes an absolute value function.
In this case, the M-estimate is the LAD-estimate. On the
other hand, if we consider the SLAD estimate with the
loss function as an absolute value function in the form of
(6) for w,. Comparing the results of SLAD estimation and
LAD estimation, we find that the effectiveness of SLAD
estimation has improved, but not significantly. For this
reason, this paper proposes to use the form of (7) as the
loss function in SM estimation, where SM estimation is
S-Huber estimation.

Consider the standard MEM (1, 1), where the true
value of ¢ is taken (0.1, 0.3, 0.6) and the error &, follows
four distributions with expected values of 1, Exp (1), Pareto
(3, 1.9), Weibull (1, 1.1), Burr (3, 1.5, 2), respectively. We
know that financial market transactions are frequent, and
new information may emerge at any time, which can have
an impact on market transactions. High-frequency data is
more susceptible to the reflection of market information,
and it frequently contains outliers. In order to better reflect
the characteristics of high-frequency financial data, 10%
of the data is randomly selected from the generated error
sequence random numbers, and these data are added with
three times the sample standard deviation of the distribution
as outliers.

Generate observational data with a sample size of 500
and compare the mean bias and mean squared error (MSE)
of the three estimation methods after 2000 replicates.
The specific results are shown in Table 1. It can be seen
from Table 1 that the results of S-Huber estimation are
generally better than those of LAD and MLE for both light-
tailed and heavy-tailed error distributions. This indicates
that the results of SM-estimation are more robust and
suitable for modeling financial data with heavy tails and
outliers (similar simulation results can also be obtained for
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higher-order models such as MEM(1,2), MEM(2,1), and
MEM(2,2), indicating that the results of SM-estimation
are more robust. This section is limited to space and does
not include numerical simulation results for higher-order
models).

To demonstrate the effectiveness of the SM estimation
method in practice, we selected eight large-scale, highly
liquid and industry-representative five-minute high-
frequency futures trading data from the Shanghai Futures
Exchange, Dalian Commodity Exchange and Zhengzhou
Commodity Exchange, including the price range of gold,
petroleum asphalt, soybean, iron ore, soybean oil, corn,
sugar and rapeseed oil from June 7, 2023 to June 7, 2023.
June 7, 2023 to June 7, 2024, as samples for empirical
analysis. Before analyzing the data, the raw data must be
pre-processed: The price range is the highest daily price
minus the lowest daily price. Table 2 shows the results
of the descriptive statistical analysis of the price range of
eight futures. Figures 1 to 8 respectively show the time
series plot for eight futures. Figures 9 to 16 respectively
show the boxplot for eight futures.

From Table 2, it can be seen that the average price range
of gold, petroleum asphalt, soybean, iron ore, soybean oil,
corn, sugar and rapeseed oil is 0.33, 5.76, 6.36, 2.65, 14.91,
2.92, 8.14 and 17.58, respectively, with standard deviations
of 0.36, 3.82, 4.14, 1.29, 7.65, 1.91, 5.14 and 9.97. From
these two indicators, it can be seen that the volatility of
the gold futures price is low and stable and that market
expectations are relatively uniform. Trading activity could
be relatively calm. The skewness is greater than 0 for all
eight futures, i.e., the distribution curves of the price range
are positively skewed for all eight futures and therefore
well suited for modeling non-negative models. From the
kurtosis point of view, the kurtosis of all eight futures is
also greater than 3, indicating that the distribution curves

of all eight futures have obvious characteristics of a thick
peak end. In addition, it can be seen from the results of the
JB statistics in the table that the P-values of all eight futures
Jarque-Bra tests are less than 2.2e-16, which rejects the null
hypothesis of normality and indicates that all eight futures
are non-normal distributions.

Figures 1 to 8 show that the price spread between the
eight futures contracts exhibits considerable data volatility.
Data characterized by greater volatility tends to contain
more market information, and data characterized by high
volatility tends to contain more outliers and extreme
scenarios. By analyzing this data, we can better compare
different estimation methods and gain a deeper insight
into the dynamic changes and underlying patterns of the
market. From Figures 9 to 16, we can visually supplement
the summary statistical data in Table 2 and provide visual
evidence of potential outliers for analysis.

When performing MLE for models, a comprehensive
comparison of the models under different distributions
is performed to determine which empirical study is
more appropriate for the price range. The use of MLE to
determine BMEM for the price range of iron ore, soybean
oil, sugar and rapeseed oil (compared to models such as
EMEM, WMEM, PMEM. BMEM estimation is relatively
effective), and the use of M-estimation and SM-estimation
to estimate the MEM parameters. The specific results are
shown in Table 3.

From Table 3, it can be observed that a + B of both
futures is less than 1, meeting the requirements for model
stationarity, and the values are both greater than 0.85,
indicating a strong clustering effect. From the results
of LogL, the LAD estimation results are relatively close
to those of MLE. From the results of MLE to S-Huber
estimation of AIC, iron ore decreases from 3.0258 to
2.9923, a decrease of 1.11%; soybean oil decreases from

TABLE 1. Simulation results under different distributions

Distributions Estimations  Bias (i)  Bias (d) Bias (4) MSE (u) Bias (d)  MSE (3)
MLE 0.0520 0.0868 -0.0085 0.0053 0.0104 0.0024

Exp (1) LAD 0.0233 -0.0011 -0.0121 0.0039 0.0035 0.0054
S-Huber 0.0133 -0.0117 -0.0112 0.0023 0.0030 0.0040

MLE 0.0783 0.1246 -0.0097 0.2707 0.0255 0.0035

Pareto (3,1.9) LAD 0.0190 -0.0030 -0.0064 0.0088 0.0036 0.0047
S-Huber 0.0164 -0.0005 -0.0068 0.0059 0.0042 0.0043

MLE 0.0757 0.1240 -0.0048 0.0108 0.0181 0.0017

Weibull (1,1.1) LAD 0.0308 -0.0046 -0.0049 0.0065 0.0027 0.0041
S-Huber 0.0195 -0.0108 -0.0077 0.0038 0.0024 0.0031

MLE 0.0694 0.1076 -0.0063 0.0098 0.0147 0.0022

Burr (3,1.5,2) LAD 0.0242 -0.0032 -0.0051 0.0042 0.0021 0.0032
S-Huber 0.0205 -0.0006 -0.0068 0.0030 0.0019 0.0026




3.4673 to 3.4337, a decrease of 0.97%; sugar decreases
from 3.3599 to 3.3186, a decrease of 1.23%; rapeseed oil
decreases from 3.6682 to 3.6278, a decrease of 1.10%.
Overall, the S-Huber estimation results are better than
MLE's.

Using MLE to establish WMEM for the price range of
gold, petroleum asphalt, soybean, and corn (compared to
models such as EMEM, PMEM, BMEM. WMEM estimation
is relatively effective), and using M-estimation and SM-
estimation to estimate MEM parameters. The specific
results are shown in the Table 4.
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From Table 4, it can be observed that a + B of both
futures is less than 1, meeting the requirements for model
stationarity, and the values are both greater than 0.85,
indicating a strong clustering effect. From the results
of LogL, the LAD estimation results are relatively close
to those of MLE. From the results from MLE to S-Huber
estimation of AIC, gold decreases from 3.4049 to 3.3477,
a decrease of 1.68%; petroleum asphalt decreases from
3.3756 to 3.3352, a decrease of 1.20%; soybean decreases
from 3.1610 to 3.1210, a decrease of 1.27%; corn
decreases from 3.2053 to 3.1418, a decrease of 1.98%.
Overall, the S-Huber estimation results are better than
MLE's.

TABLE 2. Descriptive statistical analysis of futures price range

Futures name Sample size ~ Mean Std  Skewness Kurtosis JB Stat

Gold 26467 0.33 0.36 6.26 76.15 6568331
(<2.2e-16)

Petroleum asphalt 16554 5.76 3.82 3.52 23.86 426991
(<2.2e-16)

Soybean 16554 636  4.14 3.39 23.35 407809
(<2.2e-16)

Iron ore 16554 2.65 1.29 2.21 10.93 95906

(<2.2e-16)

Soybean oil 16554 14.91 7.65 2.89 21 327347
(<2.2e-16)
Corn 16554 2.92 1.91 6.74 158.5 17457560
(<2.2e-16)
Sugar 16554 8.14 5.14 8.89 284.37 56010575
(<2.2e-16)

Rapeseed oil 16554 17.58 9.97 3.8 37.87 1029282
(<2.2e-16)

TABLE 3. Comparisons of three estimations

Futures name  Estimations u d a LogL AlIC
MLE 0.2984  0.2090  0.6808 -1.5127 3.0258
Iron ore LAD 0.2952  0.2103  0.6807 -1.5129 3.0262
S-Huber 0.3255  0.2039  0.6807 -1.4960 2.9923
MLE 0.8946  0.1568  0.7856 -1.7335 3.4673
Soybean oil LAD 1.0192  0.1625  0.7716 -1.7335 3.4673
S-Huber 0.9036  0.1397  0.8065 -1.7167 3.4337
MLE 0.9814  0.2203  0.6615 -1.6797 3.3599
Sugar LAD 1.0651 0.2233  0.6481 -1.6793 3.3590
S-Huber 1.0694  0.2048  0.6735 -1.6591 3.3186
MLE 0.8120  0.1637  0.7929 -1.8339 3.6682
Rapeseed oil LAD 0.8258  0.1677  0.7884 -1.8338 3.6679
S-Huber 0.8455  0.1437  0.8170 -1.8137 3.6278
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TABLE 4. Comparisons of three estimations

Futures name Estimations u d 4 LogL AIC
MLE 0.0183 0.2418 0.7031  -1.7023 3.4049
Gold LAD 0.0069 0.2508 0.7379  -1.7172 3.4345
S-Huber 0.0082 0.2481  0.7454  -1.6738 3.3477
MLE 1.2230 03750 0.4182  -1.6876 3.3756
Petroleum asphalt LAD 0.5543  0.2571  0.6491  -1.6929 3.3861
S-Huber 0.6700 0.2949  0.6046  -1.6674 3.3352
MLE 1.3885 0.3970 0.3896  -1.5803 3.1610
Soybean LAD 0.6878 0.2693  0.6235  -1.5879 3.1762
S-Huber 0.7869 03037 0.5859  -1.5603 3.1210
MLE 0.9408 0.3118 0.3654  -1.6025 3.2053
Corn LAD 0.5459 0.2646 0.5542  -1.5952 3.1908
S-Huber 0.5786 0.2913  0.5298  -1.5707 3.1418
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FIGURE 2. The time series plot for petroleum asphalt
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The Hill estimation method proposed by Resnick
(1997) is used to estimate the tail index of residual
sequences. Figures 17 to 24 show the estimation of the tail
index of residual sequences after modeling the price range
of eight futures using the S-Huber estimation. It cannot
be concluded from the figure that the variance of residual
sequences is finite, which means that the results of SM
estimation are more reliable compared to other estimation
methods.

CONCLUSIONS

This study set out to address a critical challenge in modeling
non-negative, high-frequency financial time series
data - namely, the sensitivity of conventional estimation
techniques such as maximum likelihood estimation
(MLE) and least absolute deviation (LAD) to outliers and
non-normality, especially with small sample sizes and
infinite variance. Building on the MEM, we introduced
a self-weighted M-estimation approach to improve the
robustness and stability of parameter estimation under
these challenging data conditions. The motivation for
this research stems from the increasing complexity and
noise in financial markets, especially in high-frequency
environments. The Chinese commodity futures market,
one of the most dynamic and liquid in the world, provides a
rich empirical environment for testing advanced statistical
models. Given the importance of Chinese exchanges such
as SHFE, DCE, and ZCE to global commodity trading, the
ability to extract meaningful insights from high-frequency
data in this context is of great practical and scientific
interest.

Through extensive simulation studies across
multiple distributions, our proposed method consistently
outperformed traditional estimators in terms of efficiency
and resilience to outliers. Empirical validation using
five-minute price-voltage data of eight actively traded
Chinese commodity futures further demonstrated the
applicability of the model in practice. The results not
only confirmed improved model fit and lower AIC
values, but also underscored the practical utility of self-
weighted M-estimation in volatile and data-intensive
environments. These results have important implications
for market participants and policy makers. By improving
the estimation of MEM in the context of Chinese high-
frequency markets, our approach enables more accurate
volatility modeling, better risk management and more
informed trading strategies. It also sets the stage for
future research on robust econometric methods suitable
for emerging markets where structural shifts and data
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irregularities are common. To summarize, this study
contributes to the literature on financial econometrics
both methodologically and empirically. It offers a
statistically sound and practically relevant solution for
modeling noisy, non-negative time series data that is
directly applicable to one of the fastest growing financial
markets in the world.
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