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ABSTRACT

Melioidosis is a significant infectious disease caused by Burkholderia pseudomallei, which is commonly found in soil and 
water. The disease is highly endemic in Malaysia, with an estimated 2000 deaths annually, surpassing fatalities from dengue 
and tuberculosis. Despite its severity, understanding the geographical distribution of melioidosis remains a challenge. 
In this study, the melioidosis data from 2014 to 2023 in Malaysia were analyzed using Excel and WinBUGS software. 
Relative risk, a measure comparing the risk in one group to another, was used to map melioidosis risk geographically 
by using ArcGIS. Four models - Susceptible-Infected-Recovered (SIR), Standardized Morbidity Ratios (SMR), Poisson-
Gamma, and Besag-York-Mollie (BYM) - were applied to assess their effectiveness. Mapping highlighted consistently 
higher relative risk in northern Malaysia, particularly in Perlis and Kedah across multiple models while most other states 
remained in the very low risk category. Besides, the model performance was compared using the Deviance Information 
Criterion (DIC) to assess goodness of fit. Findings suggest the Poisson-Gamma model is most suitable and reliable for 
accurate disease risk mapping to better epidemiological surveillance and targeted public health interventions as it accounts 
for local variations while maintaining computational efficiency in Malaysia.
Keywords: Disease mapping; epidemiology; melioidosis; relative risk estimation; statistical models

ABSTRAK

Melioidosis ialah penyakit berjangkit yang serius yang disebabkan oleh Burkholderia pseudomallei, yang sering ditemui 
dalam tanah dan air. Penyakit ini adalah endemik di Malaysia dengan anggaran 2000 kematian setiap tahun, melebihi 
jumlah kematian akibat denggi dan tuberkulosis. Walaupun impaknya besar, pemetaan taburan geografi melioidosis masih 
menjadi cabaran. Dalam kajian ini, data melioidosis dari tahun 2014 hingga 2023 dianalisis menggunakan perisian Excel 
dan WinBUGS. Risiko relatif, ukuran membandingkan risiko dalam satu kumpulan dengan kumpulan lain digunakan 
untuk memetakan risiko melioidosis secara geografi dijana menggunakan ArcGIS. Empat model - Susceptible-Infected-
Recovered (SIR), Standardized Morbidity Ratios (SMR), Poisson-Gamma, dan Besag-York-Mollie (BYM) - digunakan 
untuk menilai ketepatannya. Hasil pemetaan menunjukkan risiko relatif yang lebih tinggi dan tekal di utara Malaysia, 
khususnya di Perlis dan Kedah merentasi pelbagai model manakala kebanyakan negeri lain kekal dalam kategori risiko 
sangat rendah. Selain itu, prestasi model dibandingkan dengan Deviance Information Criterion (DIC) untuk menilai 
kesesuaian. Hasil kajian menunjukkan bahawa model Poisson-Gamma memberikan anggaran risiko relatif yang paling 
sesuai untuk pemetaan risiko melioidosis dalam membantu meningkatkan pemantauan epidemiologi dan strategi intervensi 
kesihatan awam yang lebih berkesan kerana ia mengambil kira variasi tempatan sambil mengekalkan kecekapan pengiraan.
Kata kunci: Anggaran risiko relatif; epidemiologi; melioidosis; model statistik; pemetaan penyakit

INTRODUCTION

Melioidosis, which is also known as Whitmore disease 
or Nightcliff gardener`s disease, was initially described 
by Captain Alfred Whitmore in 1911 (Lee 2014). It was 
caused by Burkholderia pseudomallei, a saprophytic 
Gram-negative bacillus, commonly found in soil and water 
(Limmathurotsakul & Peacock 2011; Liu, Gee & David 

2024; Phillips & Garcia 2024). It is endemic in tropical 
regions such as Southeast Asia and Northern Australia 
where it has posed a major public health threat for over 25 
years (Limmathurotsakul & Peacock 2011).

In Malaysia, melioidosis was first recorded in 1913 
during a laboratory animal outbreak, and since then, it has 
become endemic with an estimated 2000 annual deaths and 
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a fatality rate of 48% to 65% among bacteremic patients 
(Nathan et al. 2018). Melioidosis remains a significant 
public health threat in Malaysia with high mortality rates, 
yet spatial risk mapping remains limited. This study aims 
to fill that gap by evaluating statistical models for effective 
disease surveillance and intervention planning.

Several epidemiological models are used to estimate 
disease risk and transmission. These include the Hazard 
Function, Susceptible-Infected-Recovered (SIR), 
Standardized Morbidity Ratios (SMR), Poisson-Gamma 
and Besag-York-Mollie (BYM) models. Hazard Function 
is the basic computation used to determine the probability 
that an object will survive to a specific time based on its 
survival to a precious time (Liberto 2022). The SIR model 
is used to estimate the disease transmission rate by fitting 
the models to observed incidence data (Trejo & Hengartner 
2022).

The SMR model refers to the ratio of the observed 
fatalities in a population during a particular time period 
to the expected deaths over the same period if the study 
population’s age-specific rates were the same as those of 
the standard population (INED 2024). Poisson-Gamma 
model is a statistical distribution for overdispersed count 
data while the BYM model considers the possibility of 
spatial correlation in the data and the possibility that 
observations in nearby areas will be more similar than 
those farther away (Ahlmann-Eltze 2021; Moraga 2019). 
To study the performance between these four models, 
Deviance Information Criterion (DIC) is used to estimate 
candidate models for Bayesian models comparison.

Disease mapping plays a crucial role in visualizing 
the geographical distribution of disease (Kelley & Breeze 
2005). Advancements in digital mapping and geographical 
information systems (GIS) technology now allow more 
precise integration of epidemiological data (Koch 2022). 
In this study, Windows Bayesian Inference Using Gibbs 
Sampling (WinBUGS) is used for Bayesian modeling via 
Markov Chain Monte Carlo (MCMC) techniques, while 
Esri created ArcGIS provides spatial visualization tools to 
produce risk maps of melioidosis across Malaysia states, 
enhancing understanding and guiding interventions (Lee 
2007; Shaktawat 2020). 

LITERATURE REVIEW

Melioidosis originally identified in 1913 in commemoration 
of Captain Alfred, who was the first to diagnose the illness, 
which is also named Whitmore disease or Nightcliff 
gardener’s disease, is endemic in Nightcliff in Australia 
(Lee 2014; Nathan et al. 2018). In Malaysia, the earliest 
documented case was recorded in 1911, during an 
outbreak among laboratory guinea pigs and rabbits at the 
Institute for Medical Research, in Kuala Lumpur, making 
it a historical disease for around 111 years (Nathan et al. 
2018). The causative agent, Burkholderia pseudomallei, is 
a Gram-negative, saprophytic bacillus commonly found in 
soil and water (Limmathurotsakul & Peacock 2011; Liu, 

Gee & David 2024). This organism thrives in tropical and 
subtropical climates, making Southeast Asia, South Asia, 
and Northern Australia high risk regions for infection 
(Lee 2014; Phillips & Garcia 2024). Transmission occurs 
primarily through contact with contaminated soil or water, 
especially through torn skin, inhalation or ingestion (Liu, 
Gee & David 2024). Though rare, human-to-human 
transmission has been documented (Lee 2014; Liu, Gee & 
David 2024).

Environmental factors such as heavy rainfall can 
elevate exposure risk by bringing the bacteria to the surface 
(Nathan et al. 2018). People with pre-existing conditions 
such as diabetes, cancer, kidney disease or compromised 
immunity are particularly vulnerable (Cleveland Clinic 
2022). Melioidosis can affect multiple organ systems, 
leading to serious complications like bone infection 
(osteomyelitis), joint infection (septic arthritis), collections 
of pus (abscesses) and acute respiratory distress syndrome 
(ARDS). The disease may incubate for one to four weeks, 
although latent infections emerging years later also had 
the possibility to happen (Cleveland Clinic 2022). Clinical 
symptoms vary depending on the site of infection and may 
include fever, cough, skin ulcers, joint pain, confusion, and 
seizures. Diagnosis involves laboratory tests such as blood 
cultures, Gram Stain, Polymerase Chain Reaction (PCR) 
and Enzyme Immunoassay (EIA) (Lee 2014). Treatment 
requires a two-phase antibiotic regimen: An intensive 
phase of intravenous antibiotics (Ceftazidime, Meropenem 
or Imipenem) for a minimum of two weeks, followed by 
an eradication phase with oral antibiotics (Trimethoprim/
Sulfamethoxazole or Amoxicillin/Clavulanic acid) for 
three months (Cleveland Clinic 2022). Despite effective 
treatments, mortality rates remain high, particularly among 
high-risk individuals.

Various epidemiological models are used to understand 
melioidosis transmission and risk. The Susceptible-
Infected-Recovered (SIR) model, introduced by Kermack 
and McKendrick, divides the population into three 
compartments: susceptible compartment, S for individuals 
who have never had a pathogen infection; infected 
compartment, i for individuals that are currently infected; 
and removed compartment, r for individuals who have 
either recovered from the infection and are immune or have 
passed away are therefore eliminated from the population 
(Melikechi et al. 2022; Trejo & Hengartner 2022). Given 
that the SIR model assumes every recovered individuals 
retains an ongoing immunity to the pathogen, the value of 
r can be obtained from the summation of S, i and r which is 
equal to 1. The SIR model is easy to compute and interpret, 
effectively modeling disease progression and outbreak 
dynamics. However, it assumes equal contact probability 
among individuals, which may not reflect real-world social 
structures and contact patterns (Melikechi et al. 2022).

The observed mortality divided by the expected 
mortality is referred to as standardized morbidity ratio or 
standardized mortality ratio (SMR) (Litton, Guidet & de 
Lange 2020). There are two ways to standardized mortality 
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data which are direct and indirect methods. When the age-
sex-specific rates for the study population and the age-sex-
structure of the standard population is known, the direct 
method is used. When the age-specific rates for the study 
populations are unknown or not available, the indirect 
method is used. With this model, the ratio of the number 
of deaths observed in a population during a certain period 
was compared to the number that would be expected if the 
study population’s age-specific rates were the same as the 
standard population (Anna 2020; INED 2024). The SMR 
model is simple and useful for comparing morbidity rates 
across populations, especially in occupational health, but it 
lacks flexibility and can be biased if population structures 
differ (Nicholls 2020).

Poisson-Gamma distribution is a statistical distribution 
for overdispersed count data which is also known under 
the name Negative Binomial. The Poisson-Gamma is 
parametrized by the mean and the overdispersion alpha, 
unlike the Negative Binomial which is mostly utilised 
for repeated trials and number of successes or failures. 
It reduces to the Poisson distribution if alpha is zero 
(Ahlmann-Eltze 2021). The Poisson-Gamma model allows 
for covariate adjustments and spatial correlation across 
neighbouring areas while taking into account the disease’s 
transmission in humans (Jainsankar & Ranjani 2024). 
Poisson-Gamma model handles overdispersed count data 
well and allows covariate inclusion, offering more accurate 
estimates (FasterCapital 2024). Its drawbacks include 
complexity compared to simple ratios such as the SIR and 
SMR model, higher computational demands and reliance 
on the assumption that the Poisson rate follows a Gamma 
distribution (FasterCapital 2024).

The Besag-York-Mollie (BYM) model is a spatial 
model that considers the possibility of spatial correlation 
between data and observations in neighbouring areas that 
may be more similar than those farther away. This model 
consists of a spatial random effect that smoothes the data 
based on a neighbourhood structure, and an unstructured 
exchangeable component that models uncorrelated noise. 
Spatio-temporal models that take into consideration not 
only for spatial structure but also for temporal correlations 
and spatio-temporal interactions are used in spatio-
temporal settings where disease counts are observed over 
time (Moraga 2019). The BYM model captures spatial 
patterns and distinguishes structured and unstructured 
spatial effects, aiding in disease mapping. However, it 
is statistically complex and requires detailed spatial data 
(Besag, York & Mollié 1991).

In short, the SIR model is dynamic but sensitive to initial 
conditions and limiting realism. The SMR model is simple 
but unstable with sparse data and limited adjustability. 
The Poisson-Gamma model accounts for overdispersion 
well but is complex and assumption-dependent. The BYM 
model incorporates spatial effects effectively but requires 
advanced methods, spatial data and can be oversmooth.

There are some regional studies that have successfully 
applied these epidemiological models for disease 

mapping, particularly in Southeast Asia, Australia, and 
other tropical regions. For example, Aidalina and Poh 
Ying (2020) applied a modified SIR model to predict 
COVID-19 dynamics, demonstrating how movement 
control measures could flatten the epidemic curve while 
extending its duration. Maryam, Nor Azah and Zulkifley 
(2019) applied a Bayesian spatial model incorporating 
SMR model to analyze lung cancer incidence in Libya, 
identifying significant spatial clustering. For melioidosis, 
Limmathurotsakul et al. (2016) used Bayesian spatial 
modeling - incorporating Poisson-Gamma and hierarchical 
models - to map disease incidence in Thailand and identify 
environmental risk factors. Similarly, Currie, Ward and 
Cheng (2010) conducted a 20-year prospective study in 
Northern Australia using spatial statistical approaches, 
including BYM-type models, to evaluate melioidosis 
clustering and the influence of environmental variables in 
Darwin.

Deviance Information Criterion (DIC) is a Bayesian 
method for model comparison, especially after Markov 
Chain Monte Carlo (MCMC) that WinBUGS can calculate 
for many models (Li, Yu & Zeng 2020; UC Santa Cruz 
n.d.). It has been used in a wide range of fields such as 
biostatistics and ecology (Li, Yu & Zeng 2020). DIC 
selects a model to minimize a plug-in predictive loss (Li, 
Yu & Zeng 2020). A lower DIC value is estimated to be 
the model that would best predict a replicate dataset which 
has the same structure as that currently observed (UC Santa 
Cruz n.d.).

Disease mapping is essential for visualizing spatial 
patterns of melioidosis (Kelley & Breeze 2005). From early 
hand-drawn maps to modern digital platforms, mapping 
practices have evolved significantly. The integration of 
epidemiological data into Geographic Information System 
(GIS) allows for detailed analysis of disease trends across 
regions (Koch 2022). Tools like WinBUGS and ArcGIS 
enhance data visualization and support strategic planning 
for disease control and prevention. 

MATERIALS AND METHODS

DATA COLLECTION

To study the relative risk of melioidosis, the melioidosis 
cases from 2014 until 2023 were used. The melioidosis 
cases from 2024 were excluded due to the incomplete data 
records since when the data obtained, it is still in the year 
2024 where the year had not yet ended. The melioidosis 
observed cases, Oi are obtained from the online database, 
Melioidosis.Info (2024). As the data recorded is taken 
from different sources and it does not total up all the cases 
accordingly, thus, the data is transferred and the total 
observed cases for each state for the year 2014 to 2023 
which infected humans only is calculated by using excel 
software.

From 2014 to 2023, melioidosis cases in Malaysia 
showed significant regional variation, with the highest peak 
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in 2017 (777 cases) mostly in Kedah (521 cases) and Perlis 
(225 cases) due to their extensive agriculture activities 
(Hassan et al. 2010). Sarawak showed a notable second-
highest cases in 2016 (148 cases), likely influenced by its 
tropical climate and rural landscape (Sia et al. 2021). Urban 
areas such as W.P Kuala Lumpur had sporadic low cases 
throughout the period, while states like Kelantan and Johor 
reported occasional cases. The lowest overall incidence was 
recorded in 2022 with only 5 cases nationwide, indicating 
possible fluctuations due to strict movement restrictions 
and public health measures significantly reduced exposure 
to environmental sources during COVID-19 pandemic.

The incidence rate is obtained from the paper 
‘Incidences, Case Fatality Rates and Epidemiology of 
Melioidosis Worldwide: A Review Paper’ where the 
incidence rate is estimated 5.0 per 100,000 people at risk 
per year for melioidosis and the population of Malaysia for 
every state is obtained from OpenDOSM (Department of 
Statistics Malaysia 2024; Fong et al. 2021). The expected 
case, Ei is then calculated by using the equation: 

Ei = Incidence Rate × ni

Substitute incidence rate into the formula:

Ei =
5.0

× ni
100000

where Ei is the expected case of melioidosis for the state i 
and ni is the number of population for the state i.

SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL

In this study, the relative risk estimation using the SIR 
model is calculated manually using excel software. The 
relative risk calculated is then used in constructing disease 
mapping using ArcGIS. In SIR model, for i = 1,2,...,M 
study areas (state in Malaysia) and j = 1,2,...,T periods 
(year observed), the equations are as follow:

Si,j = μNi + (1 – α – μ) Si,j – 1

Ii,j = αIi,j – 1 Si,j – 1 + (1 – ɡ – μ – μm) Ii,j – 1

Ri,j = ɡIi,j – 1 + (1 – μ) Ri,j – 1

where Si,j is the total number of susceptible persons for 
area i, at time j; Ii,j is the total number of infectious persons 
for area i, at time j ; Ri,j is the total number of recovered 
persons for area i, at time j; ɡ is the hazard of an infectious 
person’s being removed (recovery rate); a is the risk of a 
susceptible person’s becoming infective in time period j, 
where a is constant; µ is the birth and natural death rate of 
humans per year (assumed equal); and µm is the death rate 
due to melioidosis per year.

STANDARDIZED MORBIDITY RATIOS (SMR) MODEL

In this study, the relative risk estimation using the SMR 
model is calculated manually using excel software. The 
relative risk calculated is then used in constructing disease 
mapping using ArcGIS. The relative risk estimation using 
SMR model in this study is calculated by using formula as 
follow:

SMR =
Oi

Ei

where Oi is the number of observed cases and Ei is the 
number of expected cases.

It should be noted that SMR is a summary measure 
rather than a full statistical model, and its estimates can 
be unreliable in areas with small populations. It is best 
complemented by advanced spatial models.

POISSON-GAMMA MODEL

In this study, the relative risk estimation using the Poisson-
Gamma model is calculated using WinBUGS software. 
The relative risk calculated is then used in constructing 
disease mapping using ArcGIS. Theoretically, to calculate 
Poisson-Gamma model, the steps are as follow:

Let yi,i = 1,...,n be counts of disease in arbitrary small 
areas. Also define, for the same areas, expected rates {Ei } 
and relative risks {θi}. It is assumed that yi ~ Pois (Ei θi)  
given θi are iid. Assuming θi = θ, for all i and that the prior 
distribution of θ, p(θ) , is θ ~ Gamma (α,β) where E(θ) = , 
and Var(θ) = . The posterior distribution of θ is given by,

[θ|y, α, β] =
β*α*

θ α* – 1exp(– θβ*)
Γ(α*)

where α* = ∑yi + α, β* = ∑Ei + β. It follows that the 
predictive distribution is

[y*|y, α. β] = ∫ f ( y*|θ) f (θ|α, β) dθ

BESAG-YORK-MOLLIE (BYM) MODEL

In this study, the relative risk estimation using the BYM 
model IS calculated using WinBUGS software. The relative 
risk calculated is then used in constructing disease mapping 
using ArcGIS. To calculate BYM model, theoretically, the 
steps are as follow:

yi ~ Poisson (ei θi)
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where ei θi  is the mean of the Poisson distribution; yi  is the 
observed number of cases in i state; and ei is the expected 
number of cases in the i state.

log θi = α + ui + vi

where log θi is the variability of the log relative risk; a is 
the overall level of the relative risk; ui is the spatial random 
effect, reflecting the correlated heterogeneity; and vi : 
random effect, representing the uncorrelated heterogeneity.

The distribution model for the uncorrelated 
heterogeneity, vi does not depend on geographic location 
and is assumed to follow a normal distribution with zero 
means and a common variance (precision parameter) τv

2:

vi ~ N(O,τi
2)

For the clustering component, a spatial correlation structure 
is used, where estimation of the risk in any area depends on 
neighbouring areas.

[ui|uj,i ≠ j,τu
2] ~ N (ūi,τi

2)

The mean of the areas bordering area i,

τi
2 =

τu
2

∑j ꞷij

where ui is the weighted average of the other uj , i ≠ j; ωi,j 
is the relationship between the area i and j; and τv

2,τu
2 is the 

precision parameters, control the amount of variability of 
random effects v and u.

DEVIANCE INFORMATION CRITERION

To compare the performance of models in calculating the 
relative risk, DIC was used and calculated using WinBUGS. 
Theoretically, the DIC is calculated as follow:

where  is the posterior mean of the deviance;  is the 
effective number of parameters, ;  is a point 
estimate of the deviance obtained by substituting in the 
posterior means ; and .

RELATIVE RISK CATEGORIZATION

Theoretically, relative risk less than one indicates a 
decreased risk in the exposed group compared to the 
unexposed group, suggesting a protective effect. Relative 
risk equal to one implies no difference in risk between the 
exposed and unexposed groups to the disease. Relative risk 
more than one denotes an increased risk in the exposed 
group, indicating a potential risk factor (Andrade 2015). In 
this study, the relative risk was separated into 5 categories 
as shown in Table 1.

RESULTS AND DISCUSSION

The relative risk estimation for melioidosis from 2014 
to 2023 in Malaysia was calculated using excel software 
for SIR model and SMR model while for Poisson-Gamma 
model and BYM model, the relative risk was generated 
using WinBUGS. The trend of relative risk calculated 
using the SIR model for melioidosis in Malaysia from 
2014 to 2023 is shown in Figure 1(a). For this model, 
melioidosis cases from 2013 were used as the initial input, 
with only Perak and W.P. Kuala Lumpur recording cases 
- 1 and 3, respectively. As a result, only these two states 
showed relative risk across the ten-year period in the SIR 
model output.

The unusual trend and extreme value produced 
by the SIR model can be attributed to its sensitivity to 
small sample sizes and changes in case numbers (Luque-
Fernandez 2018). The SIR model tends to exaggerate 
risk in areas with sudden fluctuations because it lacks 
adjustments for variability. For example in W.P. Kuala 
Lumpur, a spike from 3 cases in 2013 to 86 cases in 2014 
led to an unusually high relative risk over the ten years. 
In contrast, Perak’s increase from 1 to 2 cases produced a 
more logical and acceptable risk estimate.

TABLE 1. Relative risk categorization

Category Relative risk Colour allocated
Very low risk [ 0.0 , 0.5 ) Light Beige
Low risk [ 0.5 , 1.0 ) Beige
Medium risk [ 1.0 , 1.5 ) Light Orange
High risk [ 1.5 , 2.0 ) Orange Red
Very high risk [ 2.0 , ∞ ) Dark Red
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Figure 1(b) presents the relative risk trend derived from 
the SMR model. Since this model considers both observed 
and expected cases, states with no observed cases displayed 
no calculated risk. In 2017, Perlis and Kedah recorded the 
highest risks, at 17.8571 and 4.9619 respectively. The trend 
generated by the Poisson-Gamma model was shown in 
Figure 1(c). The trend closely resembles that of the SMR 
model, with Perlis (16.7800) and Kedah (4.9430) again 
recording the highest relative risk for melioidosis in 2017. 
Unlike SMR, the Poisson-Gamma model can still estimate 
risk even with no observed cases due to its statistical 
structure.

Figure 1(d) shows the relative risk trend using the 
BYM model. Most states showed a significant downward 
trend in risk over time. This might result from the over-
smoothing characteristics of Bayesian hierarchical models. 
The BYM model borrows information from neighbouring 
regions and previous time points, which can suppress 
high local risk if surrounding areas consistently show low 
values (Besag, York & Mollié 1991). Additionally, if case 
reporting was more comprehensive in earlier years and less 

so in later years, the model might interpret this as a real 
decline (Lawson 2018). Similar to the Poisson-Gamma 
model, the BYM model is capable of estimating risk even 
for states with no observed cases.

Each model serves distinct purposes within the disease 
analysis workflow. SIR models simulate transmission 
dynamics, SMR model provides simple risk estimate, 
Poisson-Gamma model adjuster for overdispersion in count 
data, and BYM model accounts for spatial dependence. 
Comparisons should consider these intended functions.

In order to study the performance between the SIR, 
SMR, Poisson-Gamma and BYM models, the relative 
risk for melioidosis in 2023 was used to generate disease 
mapping using ArcGIS. Based on the SIR model results 
in Table 2, only Perak and W.P. Kuala Lumpur displayed 
risk - categorized as very high (8.185676) and undefined 
(-3.1262E+73), respectively. The other 14 states showed no 
risk, which was still considered as a very low risk category. 
This was implied in Figure 2(a), where Perak appears in 
dark red indicating very high risk while the remaining 15 
states appear in light beige colour, indicating very low risk. 

(a) SIR Model (b) SMR Model

(c) Poisson-Gamma Model (d) BYM Model

FIGURE 1. Relative risk estimation for melioidosis
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Although W.P. Kuala Lumpur had a negative risk value 
less than 0, it was still grouped under the very low risk 
category.

From Table 2, the SMR model showed that only 
Sabah had a measurable risk (0.2167), while the other 15 
states showed no risk. All the 16 states were categorized 
under very low risk with light beige colour displayed in 
Figure 2(b). For the Poisson-Gamma model, all the 16 
states had the relative risk less than 0.5 according to Table 
2, categorising them in the very low risk as shown by the 
light beige colour in Figure 2(c). In the BYM model, Perlis 
recorded the highest relative risk (0.5969) among all 16 
states and was categorized as low risk, represented in beige 
colour in Figure 2(d) while the remaining 15 states were 
categorized as very low risk shown in light beige colour.

From Table 2, only Perlis and Perak showed different 
results between the four models. Perlis was classified as 
very low risk in SIR (0), SMR (0) and Poisson-Gamma 
(0.0038) models but was categorized as low risk in the 
BYM model (0.5969). Conversely, Perak showed a very 
high risk in SIR model (8.1857) but was classified as very 
low risk in SMR (0), Poisson-Gamma (0.0005) and BYM 
(0.0147) models. The SIR model only showed risk in Perak 
and W.P. Kuala Lumpur as these were the only states with 
melioidosis cases in 2013. For the SMR model, only Sabah 
with cases in 2023 showed the risk. In contrast, both the 
Poisson-Gamma and BYM models produced risk for all 
the 16 states, including those with no cases as shown in  
Table 2.

In this study, only Poisson-Gamma model and BYM 
model allowed for the calculation of DIC using WinBUGS 

as the SIR and SMR models are not in the family of 
Bayesian and do not have distribution. Among the four 
models, the SIR and SMR models were clearly less suitable 
as they were unable to estimate risk for the state with no 
observed cases. The SIR model’s dependence on initial 
cases can distort risk estimates when early data are sparse 
or incomplete. Moreover, the SIR model produced illogical 
negative relative risk values and unusually high relative 
risk which further undermine its reliability. Similarly, 
the SMR model struggles in areas with zero or very low 
observed cases, making it unstable and less robust in such 
contexts.

In contrast, the Poisson-Gamma outperformed the 
BYM model in estimating relative risk for melioidosis. 
While the BYM model incorporates spatial smoothing 
by borrowing strength from neighbouring areas, this can 
obscure true location variation, especially in areas with low 
case counts. Although the Poisson-Gamma model does not 
apply spatial smoothing, it provides local data more directly 
that better reflects the observed data. Most importantly, the 
Poisson-Gamma model achieved a significantly lower DIC 
value (262.577) compared to the BYM model (4426.18) as 
shown in Table 3 was further indicates a better model fit 
and stronger predictive ability, supporting its suitability for 
mapping melioidosis risk. 

Similar findings have been reported in other 
melioidosis-endemic regions. Studies from Northern 
Australia and Thailand demonstrated that Bayesian and 
overdisperse count models, such as the Poisson-Gamma 
model, provide more reliable risk estimates than simpler 
ratio-based methods, particularly in areas with low or 

TABLE 2. Relative risk estimation for melioidosis in 2023 in Malaysia

State Observed cases SIR SMR Poisson- Gamma BYM
Perlis 0 0 0 0.0038 0.5969
Kedah 0 0 0 0.0006 0.1770
Pulau Pinang 0 0 0 0.0006 0.0033
Perak 0 8.1857 0 0.0005 0.0147
W.P. Kuala Lumpur 0 -3.1262E+73 0 0.0006 0.0001
W.P. Putrajaya 0 0 0 0.0109 0.0033
Selangor 0 0 0 0.0002 0.0030
Negeri Sembilan 0 0 0 0.0010 0.0099
Melaka 0 0 0 0.0013 0.0154
Johor 0 0 0 0.0003 0.0055
Pahang 0 0 0 0.0007 0.0023
Terengganu 0 0 0 0.0010 0.0081
Kelantan 0 0 0 0.0007 0.0352
Sabah 39 0 0.2167 0.2164 0.1398
W.P. Labuan 0 0 0 0.0109 0.0052
Sarawak 0 0 0 0.0005 0.1505
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of DIC using WinBUGS as the SIR and SMR models are not in the family of Bayesian and do 
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TABLE 3. DIC for SIR Model, SMR Model, Poisson-Gamma Model and BYM Model

SIR SMR Poisson-Gamma BYM
DIC - - 262.577 4426.18

variable case numbers (Currie, Ward & Cheng 2010; 
Limmathurotsakul et al. 2016). In Malaysia, prior research 
has focused more on descriptive mapping without advanced 
modeling. This study extends local research by confirming 
that the Poisson-Gamma model offers more accurate and 
stable risk estimates, especially in states with sparse or 
no reported cases (Puthucheary 2009). The consistency 
of high-risk areas identified - such as parts of Perlis and 
Sabah - also aligns with known melioidosis distributions 
in Malaysia, further validating the model’s performance.

CONCLUSION

Melioidosis is an infectious disease caused by Burkholderia 
pseudomallei which can be found in soil and water (Liu, 
Gee & David 2024). It can be transmitted through natural 
infection which is direct contact of damaged skin with 
contaminated soil and water, ingestion, and inhalation. 
Based on the melioidosis’ incidence and mortality, it 
is predicted that about 2000 persons die of melioidosis 
annually in Malaysia, which is significantly greater than the 
number of deaths from dengue or tuberculosis infections 
(Nathan et al. 2018).

In epidemiology and biostatistics, there are various 
models and ratios that can be used to understand and 
quantify the risk associated with diseases. In this study, 
the Susceptible-Infected-Recovered (SIR) model, 
Standardized Morbidity Ratios (SMR) model, Poisson-
Gamma model and Besag-York-Mollie (BYM) model 
was chosen. Excel software was used to calculate the 
relative risk of melioidosis for SIR model and SMR model 
while WinBUGS was selected as the tool to generate the 
relative risk of melioidosis for Poisson-Gamma model and 
BYM model. The four models had given different results 
in terms of the relative risk estimation. The SIR model 
gave an unusual value of relative risk, both SIR and SMR 
models only could generate the relative risk for the states 
with melioidosis cases, both Poisson-Gamma and BYM 
models can generate the relative risk for all the 16 states 
but BYM model showed a downward trend of relative risk 
for melioidosis from 2014 to 2023. 

After obtaining the relative risk through the four 
models, DIC was used to compare the relative risk 
estimation performance of the four models. Among the 
four models, the DIC for SIR model and SMR model could 
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not be calculated due to the lack of distribution while the 
Poisson-Gamma model was proven to be the best model 
to calculate the relative risk estimation for melioidosis 
in this study with its DIC value smaller than BYM 
model. Besides, ArcGIS was chosen to show visually the 
melioidosis among the 16 states in Malaysia to construct 
the melioidosis disease mapping based on the calculated 
relative risk estimation. In the mapping, the relative risk 
estimation was classified into 5 categories which were 
very low risk, low risk, medium risk, high risk, and very 
high risk. This study demonstrates that the Poisson-Gamma 
model effectively captures spatial variation in melioidosis 
risk, making it a valuable tool for mapping and guiding 
targeted public health action.
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