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ABSTRACT

Melioidosis is a significant infectious disease caused by Burkholderia pseudomallei, which is commonly found in soil and
water. The disease is highly endemic in Malaysia, with an estimated 2000 deaths annually, surpassing fatalities from dengue
and tuberculosis. Despite its severity, understanding the geographical distribution of melioidosis remains a challenge.
In this study, the melioidosis data from 2014 to 2023 in Malaysia were analyzed using Excel and WinBUGS software.
Relative risk, a measure comparing the risk in one group to another, was used to map melioidosis risk geographically
by using ArcGIS. Four models - Susceptible-Infected-Recovered (SIR), Standardized Morbidity Ratios (SMR), Poisson-
Gamma, and Besag-York-Mollie (BYM) - were applied to assess their effectiveness. Mapping highlighted consistently
higher relative risk in northern Malaysia, particularly in Perlis and Kedah across multiple models while most other states
remained in the very low risk category. Besides, the model performance was compared using the Deviance Information
Criterion (DIC) to assess goodness of fit. Findings suggest the Poisson-Gamma model is most suitable and reliable for
accurate disease risk mapping to better epidemiological surveillance and targeted public health interventions as it accounts
for local variations while maintaining computational efficiency in Malaysia.
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ABSTRAK

Melioidosis ialah penyakit berjangkit yang serius yang disebabkan oleh Burkholderia pseudomallei, yang sering ditemui
dalam tanah dan air. Penyakit ini adalah endemik di Malaysia dengan anggaran 2000 kematian setiap tahun, melebihi
jumlah kematian akibat denggi dan tuberkulosis. Walaupun impaknya besar, pemetaan taburan geografi melioidosis masih
menjadi cabaran. Dalam kajian ini, data melioidosis dari tahun 2014 hingga 2023 dianalisis menggunakan perisian Excel
dan WinBUGS. Risiko relatif, ukuran membandingkan risiko dalam satu kumpulan dengan kumpulan lain digunakan
untuk memetakan risiko melioidosis secara geografi dijana menggunakan ArcGIS. Empat model - Susceptible-Infected-
Recovered (SIR), Standardized Morbidity Ratios (SMR), Poisson-Gamma, dan Besag-York-Mollie (BYM) - digunakan
untuk menilai ketepatannya. Hasil pemetaan menunjukkan risiko relatif yang lebih tinggi dan tekal di utara Malaysia,
khususnya di Perlis dan Kedah merentasi pelbagai model manakala kebanyakan negeri lain kekal dalam kategori risiko
sangat rendah. Selain itu, prestasi model dibandingkan dengan Deviance Information Criterion (DIC) untuk menilai
kesesuaian. Hasil kajian menunjukkan bahawa model Poisson-Gamma memberikan anggaran risiko relatif yang paling
sesuai untuk pemetaan risiko melioidosis dalam membantu meningkatkan pemantauan epidemiologi dan strategi intervensi
kesihatan awam yang lebih berkesan kerana ia mengambil kira variasi tempatan sambil mengekalkan kecekapan pengiraan.

Kata kunci: Anggaran risiko relatif; epidemiologi; melioidosis; model statistik; pemetaan penyakit

INTRODUCTION

Melioidosis, which is also known as Whitmore disease
or Nightcliff gardener's disease, was initially described
by Captain Alfred Whitmore in 1911 (Lee 2014). It was
caused by Burkholderia pseudomallei, a saprophytic
Gram-negative bacillus, commonly found in soil and water
(Limmathurotsakul & Peacock 2011; Liu, Gee & David

2024; Phillips & Garcia 2024). It is endemic in tropical
regions such as Southeast Asia and Northern Australia
where it has posed a major public health threat for over 25
years (Limmathurotsakul & Peacock 2011).

In Malaysia, melioidosis was first recorded in 1913
during a laboratory animal outbreak, and since then, it has
become endemic with an estimated 2000 annual deaths and
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a fatality rate of 48% to 65% among bacteremic patients
(Nathan et al. 2018). Melioidosis remains a significant
public health threat in Malaysia with high mortality rates,
yet spatial risk mapping remains limited. This study aims
to fill that gap by evaluating statistical models for effective
disease surveillance and intervention planning.

Several epidemiological models are used to estimate
disease risk and transmission. These include the Hazard
Function, Susceptible-Infected-Recovered (SIR),
Standardized Morbidity Ratios (SMR), Poisson-Gamma
and Besag-York-Mollie (BYM) models. Hazard Function
is the basic computation used to determine the probability
that an object will survive to a specific time based on its
survival to a precious time (Liberto 2022). The SIR model
is used to estimate the disease transmission rate by fitting
the models to observed incidence data (Trejo & Hengartner
2022).

The SMR model refers to the ratio of the observed
fatalities in a population during a particular time period
to the expected deaths over the same period if the study
population’s age-specific rates were the same as those of
the standard population (INED 2024). Poisson-Gamma
model is a statistical distribution for overdispersed count
data while the BYM model considers the possibility of
spatial correlation in the data and the possibility that
observations in nearby areas will be more similar than
those farther away (Ahlmann-Eltze 2021; Moraga 2019).
To study the performance between these four models,
Deviance Information Criterion (DIC) is used to estimate
candidate models for Bayesian models comparison.

Disease mapping plays a crucial role in visualizing
the geographical distribution of disease (Kelley & Breeze
2005). Advancements in digital mapping and geographical
information systems (GIS) technology now allow more
precise integration of epidemiological data (Koch 2022).
In this study, Windows Bayesian Inference Using Gibbs
Sampling (WinBUGS) is used for Bayesian modeling via
Markov Chain Monte Carlo (MCMC) techniques, while
Esri created ArcGIS provides spatial visualization tools to
produce risk maps of melioidosis across Malaysia states,
enhancing understanding and guiding interventions (Lee
2007; Shaktawat 2020).

LITERATURE REVIEW

Melioidosis originally identified in 1913 in commemoration
of Captain Alfred, who was the first to diagnose the illness,
which is also named Whitmore disease or Nightcliff
gardener’s disease, is endemic in Nightcliff in Australia
(Lee 2014; Nathan et al. 2018). In Malaysia, the earliest
documented case was recorded in 1911, during an
outbreak among laboratory guinea pigs and rabbits at the
Institute for Medical Research, in Kuala Lumpur, making
it a historical disease for around 111 years (Nathan et al.
2018). The causative agent, Burkholderia pseudomallei, is
a Gram-negative, saprophytic bacillus commonly found in
soil and water (Limmathurotsakul & Peacock 2011; Liu,

Gee & David 2024). This organism thrives in tropical and
subtropical climates, making Southeast Asia, South Asia,
and Northern Australia high risk regions for infection
(Lee 2014; Phillips & Garcia 2024). Transmission occurs
primarily through contact with contaminated soil or water,
especially through torn skin, inhalation or ingestion (Liu,
Gee & David 2024). Though rare, human-to-human
transmission has been documented (Lee 2014; Liu, Gee &
David 2024).

Environmental factors such as heavy rainfall can
elevate exposure risk by bringing the bacteria to the surface
(Nathan et al. 2018). People with pre-existing conditions
such as diabetes, cancer, kidney disease or compromised
immunity are particularly vulnerable (Cleveland Clinic
2022). Melioidosis can affect multiple organ systems,
leading to serious complications like bone infection
(osteomyelitis), joint infection (septic arthritis), collections
of pus (abscesses) and acute respiratory distress syndrome
(ARDS). The disease may incubate for one to four weeks,
although latent infections emerging years later also had
the possibility to happen (Cleveland Clinic 2022). Clinical
symptoms vary depending on the site of infection and may
include fever, cough, skin ulcers, joint pain, confusion, and
seizures. Diagnosis involves laboratory tests such as blood
cultures, Gram Stain, Polymerase Chain Reaction (PCR)
and Enzyme Immunoassay (EIA) (Lee 2014). Treatment
requires a two-phase antibiotic regimen: An intensive
phase of intravenous antibiotics (Ceftazidime, Meropenem
or Imipenem) for a minimum of two weeks, followed by
an eradication phase with oral antibiotics (Trimethoprim/
Sulfamethoxazole or Amoxicillin/Clavulanic acid) for
three months (Cleveland Clinic 2022). Despite effective
treatments, mortality rates remain high, particularly among
high-risk individuals.

Various epidemiological models are used to understand
melioidosis transmission and risk. The Susceptible-
Infected-Recovered (SIR) model, introduced by Kermack
and McKendrick, divides the population into three
compartments: susceptible compartment, s for individuals
who have never had a pathogen infection; infected
compartment, i for individuals that are currently infected;
and removed compartment, » for individuals who have
either recovered from the infection and are immune or have
passed away are therefore eliminated from the population
(Melikechi et al. 2022; Trejo & Hengartner 2022). Given
that the SIR model assumes every recovered individuals
retains an ongoing immunity to the pathogen, the value of
7 can be obtained from the summation of s, i and » which is
equal to 1. The SIR model is easy to compute and interpret,
effectively modeling disease progression and outbreak
dynamics. However, it assumes equal contact probability
among individuals, which may not reflect real-world social
structures and contact patterns (Melikechi et al. 2022).

The observed mortality divided by the expected
mortality is referred to as standardized morbidity ratio or
standardized mortality ratio (SMR) (Litton, Guidet & de
Lange 2020). There are two ways to standardized mortality



data which are direct and indirect methods. When the age-
sex-specific rates for the study population and the age-sex-
structure of the standard population is known, the direct
method is used. When the age-specific rates for the study
populations are unknown or not available, the indirect
method is used. With this model, the ratio of the number
of deaths observed in a population during a certain period
was compared to the number that would be expected if the
study population’s age-specific rates were the same as the
standard population (Anna 2020; INED 2024). The SMR
model is simple and useful for comparing morbidity rates
across populations, especially in occupational health, but it
lacks flexibility and can be biased if population structures
differ (Nicholls 2020).

Poisson-Gamma distribution is a statistical distribution
for overdispersed count data which is also known under
the name Negative Binomial. The Poisson-Gamma is
parametrized by the mean and the overdispersion alpha,
unlike the Negative Binomial which is mostly utilised
for repeated trials and number of successes or failures.
It reduces to the Poisson distribution if alpha is zero
(Ahlmann-Eltze 2021). The Poisson-Gamma model allows
for covariate adjustments and spatial correlation across
neighbouring areas while taking into account the disease’s
transmission in humans (Jainsankar & Ranjani 2024).
Poisson-Gamma model handles overdispersed count data
well and allows covariate inclusion, offering more accurate
estimates (FasterCapital 2024). Its drawbacks include
complexity compared to simple ratios such as the SIR and
SMR model, higher computational demands and reliance
on the assumption that the Poisson rate follows a Gamma
distribution (FasterCapital 2024).

The Besag-York-Mollie (BYM) model is a spatial
model that considers the possibility of spatial correlation
between data and observations in neighbouring areas that
may be more similar than those farther away. This model
consists of a spatial random effect that smoothes the data
based on a neighbourhood structure, and an unstructured
exchangeable component that models uncorrelated noise.
Spatio-temporal models that take into consideration not
only for spatial structure but also for temporal correlations
and spatio-temporal interactions are used in spatio-
temporal settings where disease counts are observed over
time (Moraga 2019). The BYM model captures spatial
patterns and distinguishes structured and unstructured
spatial effects, aiding in disease mapping. However, it
is statistically complex and requires detailed spatial data
(Besag, York & Mollié¢ 1991).

Inshort, the SIR model is dynamic but sensitive to initial
conditions and limiting realism. The SMR model is simple
but unstable with sparse data and limited adjustability.
The Poisson-Gamma model accounts for overdispersion
well but is complex and assumption-dependent. The BYM
model incorporates spatial effects effectively but requires
advanced methods, spatial data and can be oversmooth.

There are some regional studies that have successfully
applied these epidemiological models for disease
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mapping, particularly in Southeast Asia, Australia, and
other tropical regions. For example, Aidalina and Poh
Ying (2020) applied a modified SIR model to predict
COVID-19 dynamics, demonstrating how movement
control measures could flatten the epidemic curve while
extending its duration. Maryam, Nor Azah and Zulkifley
(2019) applied a Bayesian spatial model incorporating
SMR model to analyze lung cancer incidence in Libya,
identifying significant spatial clustering. For melioidosis,
Limmathurotsakul et al. (2016) used Bayesian spatial
modeling - incorporating Poisson-Gamma and hierarchical
models - to map disease incidence in Thailand and identify
environmental risk factors. Similarly, Currie, Ward and
Cheng (2010) conducted a 20-year prospective study in
Northern Australia using spatial statistical approaches,
including BYM-type models, to evaluate melioidosis
clustering and the influence of environmental variables in
Darwin.

Deviance Information Criterion (DIC) is a Bayesian
method for model comparison, especially after Markov
Chain Monte Carlo (MCMC) that WinBUGS can calculate
for many models (Li, Yu & Zeng 2020; UC Santa Cruz
n.d.). It has been used in a wide range of fields such as
biostatistics and ecology (Li, Yu & Zeng 2020). DIC
selects a model to minimize a plug-in predictive loss (Li,
Yu & Zeng 2020). A lower DIC value is estimated to be
the model that would best predict a replicate dataset which
has the same structure as that currently observed (UC Santa
Cruz n.d.).

Disease mapping is essential for visualizing spatial
patterns of melioidosis (Kelley & Breeze 2005). From early
hand-drawn maps to modern digital platforms, mapping
practices have evolved significantly. The integration of
epidemiological data into Geographic Information System
(GIS) allows for detailed analysis of disease trends across
regions (Koch 2022). Tools like WinBUGS and ArcGIS
enhance data visualization and support strategic planning
for disease control and prevention.

MATERIALS AND METHODS

DATA COLLECTION

To study the relative risk of melioidosis, the melioidosis
cases from 2014 until 2023 were used. The melioidosis
cases from 2024 were excluded due to the incomplete data
records since when the data obtained, it is still in the year
2024 where the year had not yet ended. The melioidosis
observed cases, O; are obtained from the online database,
Melioidosis.Info (2024). As the data recorded is taken
from different sources and it does not total up all the cases
accordingly, thus, the data is transferred and the total
observed cases for each state for the year 2014 to 2023
which infected humans only is calculated by using excel
software.

From 2014 to 2023, melioidosis cases in Malaysia
showed significant regional variation, with the highest peak
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in 2017 (777 cases) mostly in Kedah (521 cases) and Perlis
(225 cases) due to their extensive agriculture activities
(Hassan et al. 2010). Sarawak showed a notable second-
highest cases in 2016 (148 cases), likely influenced by its
tropical climate and rural landscape (Sia et al. 2021). Urban
areas such as W.P Kuala Lumpur had sporadic low cases
throughout the period, while states like Kelantan and Johor
reported occasional cases. The lowest overall incidence was
recorded in 2022 with only 5 cases nationwide, indicating
possible fluctuations due to strict movement restrictions
and public health measures significantly reduced exposure
to environmental sources during COVID-19 pandemic.

The incidence rate is obtained from the paper
‘Incidences, Case Fatality Rates and Epidemiology of
Melioidosis Worldwide: A Review Paper’ where the
incidence rate is estimated 5.0 per 100,000 people at risk
per year for melioidosis and the population of Malaysia for
every state is obtained from OpenDOSM (Department of
Statistics Malaysia 2024; Fong et al. 2021). The expected
case, E; is then calculated by using the equation:

E; = Incidence Rate x n;,

Substitute incidence rate into the formula:

50,

100000

where £ is the expected case of melioidosis for the state i
and #; is the number of population for the state i.

SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL

In this study, the relative risk estimation using the SIR
model is calculated manually using excel software. The
relative risk calculated is then used in constructing disease
mapping using ArcGIS. In SIR model, for i = 1,2,...M
study areas (state in Malaysia) and j = 1,2,...,T periods
(year observed), the equations are as follow:

Sy=uN; + (1 —a—u) S
Ly=oal; 1 Sij-1 + (1 —g—p— ) Lij_
Rijy=gl; + + (1 -w) Ry

where §;; is the total number of susceptible persons for
area 7, at time j; /;; is the total number of infectious persons
for area i, at time j ; R;; is the total number of recovered
persons for area i, at time j; ¢ is the hazard of an infectious
person’s being removed (recovery rate); a is the risk of a
susceptible person’s becoming infective in time period j,
where a is constant; y is the birth and natural death rate of
humans per year (assumed equal); and u,, is the death rate
due to melioidosis per year.

STANDARDIZED MORBIDITY RATIOS (SMR) MODEL

In this study, the relative risk estimation using the SMR
model is calculated manually using excel software. The
relative risk calculated is then used in constructing disease
mapping using ArcGIS. The relative risk estimation using
SMR model in this study is calculated by using formula as
follow:

Oi
SMR = ——
E,

i

where O; is the number of observed cases and E; is the
number of expected cases.

It should be noted that SMR is a summary measure
rather than a full statistical model, and its estimates can
be unreliable in areas with small populations. It is best
complemented by advanced spatial models.

POISSON-GAMMA MODEL

In this study, the relative risk estimation using the Poisson-
Gamma model is calculated using WinBUGS software.
The relative risk calculated is then used in constructing
disease mapping using ArcGIS. Theoretically, to calculate
Poisson-Gamma model, the steps are as follow:

Let y,i = 1,...,n be counts of disease in arbitrary small
areas. Also define, for the same areas, expected rates {E; }
and relative risks {6;}. It is assumed that y, ~ Pois (E; 6;)
given 0, are iid. Assuming 6; = 6, for all / and that the prior
distribution ogr 0, p(0) , is 0 ~ Gamma (o.ff) where E(0) = 7
and Var(0) = Iy The posterior distribution of 8 is given by,

ko k

I(0*)

[0y, &, f1= 0 a*~lexp(— 6*)

where a* = Yy + a, f* = Y E; + p. It follows that the
predictive distribution is

* o B1=11(y4(0) f (Olar, p) dO

=ﬁ[’3“ rovta)
i=1 I'(a)(E; + B)0i+a)

BESAG-YORK-MOLLIE (BYM) MODEL

In this study, the relative risk estimation using the BYM
model IS calculated using WinBUGS software. The relative
risk calculated is then used in constructing disease mapping
using ArcGIS. To calculate BYM model, theoretically, the
steps are as follow:

y; ~ Poisson (e; 8))



where ¢,;0; is the mean of the Poisson distribution; y; is the
observed number of cases in i/ state; and e; is the expected
number of cases in the i state.

logl;=a+u +v

where log 6; is the variability of the log relative risk; a is
the overall level of the relative risk; u; is the spatial random
effect, reflecting the correlated heterogeneity; and v; :
random effect, representing the uncorrelated heterogeneity.
The distribution model for the uncorrelated
heterogeneity, v; does not depend on geographic location
and is assumed to follow a normal distribution with zero
means and a common variance (precision parameter) T

v~ NI (Oatiz)

For the clustering component, a spatial correlation structure
is used, where estimation of the risk in any area depends on
neighbouring areas.

[ty #,0.°] ~ N (1%))

The mean of the areas bordering area i,

_ 1
‘ILI = z—w ‘Itj-f.t.l!-j-
j o

2
2 Ty

2 @;

where u; is the weighted average of the other u;, i # j; w;;
is the relationship between the area i and j; and Tvz,ruz is the
precision parameters, control the amount of variability of
random effects v and u.

Ti

DEVIANCE INFORMATION CRITERION

To compare the performance of models in calculating the
relative risk, DIC was used and calculated using WinBUGS.
Theoretically, the DIC is calculated as follow:
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DIC=D+pD=D+2pD

where D is the posterior mean of the deviance; 2D is the
effective number of parameters, pD = D — D; D is a point
estimate of the deviance obtained by substituting in the
posterior means &; and D is — 2 log (p(v]6)).

RELATIVE RISK CATEGORIZATION

Theoretically, relative risk less than one indicates a
decreased risk in the exposed group compared to the
unexposed group, suggesting a protective effect. Relative
risk equal to one implies no difference in risk between the
exposed and unexposed groups to the disease. Relative risk
more than one denotes an increased risk in the exposed
group, indicating a potential risk factor (Andrade 2015). In
this study, the relative risk was separated into 5 categories
as shown in Table 1.

RESULTS AND DISCUSSION

The relative risk estimation for melioidosis from 2014
to 2023 in Malaysia was calculated using excel software
for SIR model and SMR model while for Poisson-Gamma
model and BYM model, the relative risk was generated
using WinBUGS. The trend of relative risk calculated
using the SIR model for melioidosis in Malaysia from
2014 to 2023 is shown in Figure 1(a). For this model,
melioidosis cases from 2013 were used as the initial input,
with only Perak and W.P. Kuala Lumpur recording cases
- 1 and 3, respectively. As a result, only these two states
showed relative risk across the ten-year period in the SIR
model output.

The unusual trend and extreme value produced
by the SIR model can be attributed to its sensitivity to
small sample sizes and changes in case numbers (Luque-
Fernandez 2018). The SIR model tends to exaggerate
risk in areas with sudden fluctuations because it lacks
adjustments for variability. For example in W.P. Kuala
Lumpur, a spike from 3 cases in 2013 to 86 cases in 2014
led to an unusually high relative risk over the ten years.
In contrast, Perak’s increase from 1 to 2 cases produced a
more logical and acceptable risk estimate.

TABLE 1. Relative risk categorization

Category Relative risk Colour allocated
Very low risk [00,0.5) Light Beige
Low risk [05,1.0) Beige
Medium risk [1.0,1.5) Light Orange
High risk [1.5,2.0) Orange Red
Very high risk [2.0,) Dark Red
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Figure 1(b) presents the relative risk trend derived from
the SMR model. Since this model considers both observed
and expected cases, states with no observed cases displayed
no calculated risk. In 2017, Perlis and Kedah recorded the
highest risks, at 17.8571 and 4.9619 respectively. The trend
generated by the Poisson-Gamma model was shown in
Figure 1(c). The trend closely resembles that of the SMR
model, with Perlis (16.7800) and Kedah (4.9430) again
recording the highest relative risk for melioidosis in 2017.
Unlike SMR, the Poisson-Gamma model can still estimate
risk even with no observed cases due to its statistical
structure.

Figure 1(d) shows the relative risk trend using the
BYM model. Most states showed a significant downward
trend in risk over time. This might result from the over-
smoothing characteristics of Bayesian hierarchical models.
The BYM model borrows information from neighbouring
regions and previous time points, which can suppress
high local risk if surrounding areas consistently show low
values (Besag, York & Molli¢ 1991). Additionally, if case
reporting was more comprehensive in earlier years and less

Relative Risk of SIR Model for Melioidosis in Malaysia from Year
2014 t0 2023
SE+72
—perlis

0 Kedah
2014 2015 2016 2017 2018 2019 2020 2021 20§2 2023

Pulau Pinang

-SE472 o perak

——W.P. Kuala Lumpur
e W.P. Putrajaya
-1E+73

= Selangor

= Negeri Sembilan

-1.5E+73
— Vel aka

——Johor
2E+73
———pahang
——Terengganu
-2.5€+73 Kelantan
Sabah

SET3 W.P. Labuan

Sarawak

-3.5E473
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so in later years, the model might interpret this as a real
decline (Lawson 2018). Similar to the Poisson-Gamma
model, the BYM model is capable of estimating risk even
for states with no observed cases.

Each model serves distinct purposes within the disease
analysis workflow. SIR models simulate transmission
dynamics, SMR model provides simple risk estimate,
Poisson-Gamma model adjuster for overdispersion in count
data, and BYM model accounts for spatial dependence.
Comparisons should consider these intended functions.

In order to study the performance between the SIR,
SMR, Poisson-Gamma and BYM models, the relative
risk for melioidosis in 2023 was used to generate disease
mapping using ArcGIS. Based on the SIR model results
in Table 2, only Perak and W.P. Kuala Lumpur displayed
risk - categorized as very high (8.185676) and undefined
(-3.1262E+73), respectively. The other 14 states showed no
risk, which was still considered as a very low risk category.
This was implied in Figure 2(a), where Perak appears in
dark red indicating very high risk while the remaining 15
states appear in light beige colour, indicating very low risk.

Relative Risk of SMR Model for Melioidosis in Malaysia from Year
2014 t0 2023
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Relative Risk of BYM Model for Melioidosis in Malaysia from Year
2014 t0 2023
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FIGURE 1. Relative risk estimation for melioidosis



Although W.P. Kuala Lumpur had a negative risk value
less than 0, it was still grouped under the very low risk
category.

From Table 2, the SMR model showed that only
Sabah had a measurable risk (0.2167), while the other 15
states showed no risk. All the 16 states were categorized
under very low risk with light beige colour displayed in
Figure 2(b). For the Poisson-Gamma model, all the 16
states had the relative risk less than 0.5 according to Table
2, categorising them in the very low risk as shown by the
light beige colour in Figure 2(c). In the BYM model, Perlis
recorded the highest relative risk (0.5969) among all 16
states and was categorized as low risk, represented in beige
colour in Figure 2(d) while the remaining 15 states were
categorized as very low risk shown in light beige colour.

From Table 2, only Perlis and Perak showed different
results between the four models. Perlis was classified as
very low risk in SIR (0), SMR (0) and Poisson-Gamma
(0.0038) models but was categorized as low risk in the
BYM model (0.5969). Conversely, Perak showed a very
high risk in SIR model (8.1857) but was classified as very
low risk in SMR (0), Poisson-Gamma (0.0005) and BYM
(0.0147) models. The SIR model only showed risk in Perak
and W.P. Kuala Lumpur as these were the only states with
melioidosis cases in 2013. For the SMR model, only Sabah
with cases in 2023 showed the risk. In contrast, both the
Poisson-Gamma and BYM models produced risk for all
the 16 states, including those with no cases as shown in
Table 2.

In this study, only Poisson-Gamma model and BYM
model allowed for the calculation of DIC using WinBUGS
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as the SIR and SMR models are not in the family of
Bayesian and do not have distribution. Among the four
models, the SIR and SMR models were clearly less suitable
as they were unable to estimate risk for the state with no
observed cases. The SIR model’s dependence on initial
cases can distort risk estimates when early data are sparse
or incomplete. Moreover, the SIR model produced illogical
negative relative risk values and unusually high relative
risk which further undermine its reliability. Similarly,
the SMR model struggles in areas with zero or very low
observed cases, making it unstable and less robust in such
contexts.

In contrast, the Poisson-Gamma outperformed the
BYM model in estimating relative risk for melioidosis.
While the BYM model incorporates spatial smoothing
by borrowing strength from neighbouring areas, this can
obscure true location variation, especially in areas with low
case counts. Although the Poisson-Gamma model does not
apply spatial smoothing, it provides local data more directly
that better reflects the observed data. Most importantly, the
Poisson-Gamma model achieved a significantly lower DIC
value (262.577) compared to the BYM model (4426.18) as
shown in Table 3 was further indicates a better model fit
and stronger predictive ability, supporting its suitability for
mapping melioidosis risk.

Similar findings have been reported in other
melioidosis-endemic regions. Studies from Northern
Australia and Thailand demonstrated that Bayesian and
overdisperse count models, such as the Poisson-Gamma
model, provide more reliable risk estimates than simpler
ratio-based methods, particularly in areas with low or

TABLE 2. Relative risk estimation for melioidosis in 2023 in Malaysia

State Observed cases SIR SMR  Poisson- Gamma  BYM
Perlis 0 0 0 0.0038 0.5969
Kedah 0 0 0 0.0006 0.1770
Pulau Pinang 0 0 0 0.0006 0.0033
Perak 0 8.1857 0 0.0005 0.0147
W.P. Kuala Lumpur 0 -3.1262E+73 0 0.0006 0.0001
W.P. Putrajaya 0 0 0 0.0109 0.0033
Selangor 0 0 0 0.0002 0.0030
Negeri Sembilan 0 0 0 0.0010 0.0099
Melaka 0 0 0 0.0013 0.0154
Johor 0 0 0 0.0003 0.0055
Pahang 0 0 0 0.0007 0.0023
Terengganu 0 0 0 0.0010 0.0081
Kelantan 0 0 0 0.0007 0.0352
Sabah 39 0 0.2167 0.2164 0.1398
W.P. Labuan 0 0 0 0.0109 0.0052
Sarawak 0 0 0 0.0005 0.1505
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FIGURE 2. Disease mapping for melioidosis in 2023 in Malaysia

TABLE 3. DIC for SIR Model, SMR Model, Poisson-Gamma Model and BYM Model

SIR SMR

Poisson-Gamma BYM

DIC - -

262.577 4426.18

variable case numbers (Currie, Ward & Cheng 2010;
Limmathurotsakul et al. 2016). In Malaysia, prior research
has focused more on descriptive mapping without advanced
modeling. This study extends local research by confirming
that the Poisson-Gamma model offers more accurate and
stable risk estimates, especially in states with sparse or
no reported cases (Puthucheary 2009). The consistency
of high-risk areas identified - such as parts of Perlis and
Sabah - also aligns with known melioidosis distributions
in Malaysia, further validating the model’s performance.

CONCLUSION

Melioidosis is an infectious disease caused by Burkholderia
pseudomallei which can be found in soil and water (Liu,
Gee & David 2024). It can be transmitted through natural
infection which is direct contact of damaged skin with
contaminated soil and water, ingestion, and inhalation.
Based on the melioidosis’ incidence and mortality, it
is predicted that about 2000 persons die of melioidosis
annually in Malaysia, which is significantly greater than the
number of deaths from dengue or tuberculosis infections
(Nathan et al. 2018).

In epidemiology and biostatistics, there are various
models and ratios that can be used to understand and
quantify the risk associated with diseases. In this study,
the  Susceptible-Infected-Recovered  (SIR)  model,
Standardized Morbidity Ratios (SMR) model, Poisson-
Gamma model and Besag-York-Mollie (BYM) model
was chosen. Excel software was used to calculate the
relative risk of melioidosis for SIR model and SMR model
while WinBUGS was selected as the tool to generate the
relative risk of melioidosis for Poisson-Gamma model and
BYM model. The four models had given different results
in terms of the relative risk estimation. The SIR model
gave an unusual value of relative risk, both SIR and SMR
models only could generate the relative risk for the states
with melioidosis cases, both Poisson-Gamma and BYM
models can generate the relative risk for all the 16 states
but BYM model showed a downward trend of relative risk
for melioidosis from 2014 to 2023.

After obtaining the relative risk through the four
models, DIC was used to compare the relative risk
estimation performance of the four models. Among the
four models, the DIC for SIR model and SMR model could



not be calculated due to the lack of distribution while the
Poisson-Gamma model was proven to be the best model
to calculate the relative risk estimation for melioidosis
in this study with its DIC value smaller than BYM
model. Besides, ArcGIS was chosen to show visually the
melioidosis among the 16 states in Malaysia to construct
the melioidosis disease mapping based on the calculated
relative risk estimation. In the mapping, the relative risk
estimation was classified into 5 categories which were
very low risk, low risk, medium risk, high risk, and very
high risk. This study demonstrates that the Poisson-Gamma
model effectively captures spatial variation in melioidosis
risk, making it a valuable tool for mapping and guiding
targeted public health action.
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