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ABSTRACT

Non-small cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and remains a leading 
cause of cancer-related deaths globally. While conventional chemotherapy has provided modest benefits, its toxicity and 
limited efficacy have underscored the need for more precise treatments. The identification of epidermal growth factor 
receptor (EGFR) mutations has transformed the therapeutic landscape, with EGFR tyrosine kinase inhibitors (EGFR-TKIs) 
significantly improving progression-free and overall survival in EGFR-mutant NSCLC. However, resistance mechanisms, 
such as T790M and C797S mutations have led to the development of successive generations of EGFR-TKIs. Fourth-
generation inhibitors and combination therapies targeting bypass pathways now offer renewed hope for overcoming 
resistance. Nonetheless, the high cost and limited accessibility of these targeted therapies remain critical barriers, particularly 
in low- and middle-income countries. This review highlights the evolution of EGFR-TKIs, key resistance challenges, and 
economic considerations, emphasizing the need for equitable access to advance NSCLC treatment globally.
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ABSTRAK

Kanser paru-paru bukan sel kecil (NSCLC) menyumbang kira-kira 85% daripada semua kes kanser paru-paru dan kekal 
sebagai punca utama kematian berkaitan kanser di seluruh dunia. Walaupun kemoterapi konvensional telah memberikan 
faedah yang sederhana, ketoksikan dan keberkesanannya yang terhad telah menekankan keperluan untuk rawatan yang lebih 
tepat. Pengenalpastian mutasi reseptor faktor pertumbuhan epidermis (EGFR) telah mengubah landskap terapeutik dengan 
perencat tirosina kinase EGFR (EGFR-TKIs) dengan ketara meningkatkan kelangsungan hidup bebas perkembangan dan 
keseluruhan dalam NSCLC mutan EGFR. Walau bagaimanapun, mekanisme rintangan, seperti mutasi T790M dan C797S, 
telah membawa kepada pembangunan generasi berturut-turut EGFR-TKI. Perencat generasi keempat dan terapi gabungan 
yang menyasarkan laluan pintasan kini menawarkan harapan baharu untuk mengatasi rintangan. Namun begitu, kos tinggi 
dan akses terhad bagi terapi yang disasarkan ini kekal sebagai halangan kritikal, terutamanya di negara berpendapatan 
rendah dan sederhana. Kertas ini menyerlahkan evolusi EGFR-TKI, cabaran rintangan utama dan pertimbangan ekonomi, 
menekankan keperluan untuk akses yang saksama untuk memajukan rawatan NSCLC secara global.
Kata kunci: EGFR; NSCLC; perencat tirosina kinase

INTRODUCTION

Lung cancer remains the top cause of cancer-related deaths 
globally, with approximately 1.8 million deaths in 2020 
(Sung et al. 2021). Non-small cell lung cancer (NSCLC) 
comprises 85% of cases, with adenocarcinoma as the most 
prevalent subtype (Thai et al. 2021). Unfortunately, late-
stage diagnoses limit treatment options and survival rates 

(Araki et al. 2023). Precision medicine has transformed 
NSCLC therapy, especially through EGFR tyrosine 
kinase inhibitors (TKIs), which improve progression-free 
and overall survival (Graham et al. 2017; Wee & Wang 
2017). EGFR mutations primarily exon 19 deletions and 
L858R are common in East Asians and non-smokers. 
First-generation TKIs (gefitinib, erlotinib) offered initial 
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success, but resistance, especially via the T790M mutation, 
developed within months (Santarpia et al. 2017). Second-
generation inhibitors (afatinib, dacomitinib) addressed 
some resistance but were hindered by toxicity.

Third-generation TKIs like osimertinib specifically 
targeted T790M with better tolerance (Wu et al. 2020). 
Yet, the emergence of the C797S mutation prompted 
the development of fourth-generation inhibitors, such 
as BLU-945 and BDTX-1535, which target compound 
mutations and show preclinical promise against brain 
metastases (Corvaja et al. 2024). Combination strategies 
such as osimertinib with MET inhibitors like savolitinib 
are under clinical evaluation (TATTON: NCT02143466; 
SAVANNAH: NCT03778229) and may overcome 
bypass resistance. Ongoing efforts focus on integrating 
EGFR-TKIs with chemotherapy, antiangiogenic agents, 
and immunotherapies to delay resistance and improve 
outcomes (Fu et al. 2022; Su & Sun 2024). However, high 
costs and limited access, especially in low- and middle-
income countries, remain a challenge. Strategies such 
as pricing reforms and assistance programs are vital for 
equitable treatment access. Continued innovation in fourth-
generation inhibitors and combination regimens holds 
promise for improving survival and treatment durability in 
EGFR-mutant NSCLC.

EGFR-TYROSINE KINASE INHIBITORS (EGFR-TKIs)

EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)

EGFR, a receptor tyrosine kinase first identified in the 1970s, 
is critical for regulating cell proliferation, differentiation, 
and survival (King Jr., Carpenter & Cohen 1980). Upon 
ligand binding such as EGF or TGF-α, EGFR dimerizes 
and autophosphorylates, triggering key downstream 
signaling pathways including Ras/MAPK, PI3K/Akt, JAK/
STAT, PLCγ/PKC, and STAT, which govern oncogenic 
processes (Wieduwilt & Moasser 2008). In NSCLC, 
constitutively active EGFR signaling is primarily driven 
by activating mutations, with exon 19 deletions (ex19del) 
and exon 21 L858R mutations accounting for 85-90% of 
EGFR activation (Graham et al. 2017). These mutations 
enable ligand-independent activation of EGFR, promoting 
unchecked tumor growth and making EGFR an ideal target 
for tyrosine kinase inhibitors (Yun et al. 2007). EGFR-
mutant tumors often exhibit oncogene addiction, showing 
high dependence on EGFR signaling and, consequently, 
high sensitivity to TKIs (Wieduwilt & Moasser 2008).

However, resistance remains a major therapeutic 
obstacle. The T790M mutation increases ATP-binding 
affinity, reducing the efficacy of first-generation TKIs 
(Kobayashi et al. 2005), while the C797S mutation 
compromises third-generation inhibitors like osimertinib 
(Santarpia et al. 2017). Additional resistance arises from 
bypass mechanisms, such as MET amplification, HER2 
overexpression, and epithelial-mesenchymal transition 
(EMT), which activate alternative survival pathways 
(Engelman et al. 2007). To monitor and counteract 

resistance, advanced tools like circulating tumor DNA 
(ctDNA) analysis and droplet digital PCR (ddPCR) offer 
real-time mutation tracking, enabling timely treatment 
adjustments (Sundaresan et al. 2016). EGFR mutations 
are especially common in East Asians, non-smokers, and 
females, with rates surpassing 40%, and are associated 
with enhanced progression-free survival under EGFR-
TKIs (Graham et al. 2017; Wu et al. 2020). Nonetheless, 
acquired resistance underscores the ongoing need for next-
generation inhibitors and combinatorial strategies (Corvaja 
et al. 2024; Fu et al. 2022).

FIRST-GENERATION EGFR-TKIs

First-generation EGFR-TKIs, including gefitinib, 
erlotinib, and icotinib are reversible inhibitors that target 
common activating EGFR mutations such as exon 19 
deletions (ex19del) and exon 21 L858R substitutions by 
competitively binding to the ATP-binding site, thereby 
inhibiting downstream signaling (Wieduwilt & Moasser 
2008). Clinical trials like IPASS and OPTIMAL showed 
superior progression-free survival (PFS) for gefitinib and 
erlotinib compared to chemotherapy, confirming their 
efficacy in EGFR-mutant NSCLC (Mok et al. 2009; Wu et 
al. 2020). Icotinib, approved in China, also demonstrated 
comparable efficacy with fewer side effects (Tan et al. 
2015). However, resistance typically arises within 6–10 
months, most commonly due to the T790M mutation, 
which increases ATP affinity and reduces TKI binding. 
Initially thought to emerge post-treatment, T790M has also 
been detected in TKI-naive patients using high-sensitivity 
techniques, suggesting pre-existing resistant subclones (Su 
et al. 2012). The mutation often coexists with activating 
mutations and may contribute to tumor heterogeneity and 
progression (Kosaka et al. 2006).

Structurally, the T790M substitution creates steric 
hindrance in the ATP-binding pocket, further limiting 
inhibitor efficacy (Yun et al. 2008). Additionally, Activation-
Induced Cytidine Deaminase (AICDA)-mediated cytosine 
deamination, promoted by NFκB activation, has been 
implicated in the mutation’s development (El Kadi et 
al. 2018). T790M-positive tumors are associated with 
aggressive behavior and poorer outcomes, particularly 
when co-occurring with RB1/TP53 mutations, which may 
lead to EMT or small-cell transformation (Araki et al. 
2023).

Detection of T790M through liquid biopsy methods 
(ctDNA, BEAMing, ddPCR, and NGS) enables early 
treatment switching to third-generation TKIs like 
osimertinib, which improve survival metrics (Hou et al. 
2023; Ramalingam et al. 2018; Sundaresan et al. 2016). 
Beyond T790M, resistance also arises through MET 
amplification, HER2 alterations, and EMT, which activate 
alternative pathways like PI3K/AKT, MAPK, and STAT3, 
sustaining tumor survival and progression (Coleman et al. 
2021; Santarpia et al. 2017). These mechanisms emphasize 
the importance of combination strategies targeting both 
EGFR and bypass pathways.
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SECOND-GENERATION EGFR-TKIs

Second-generation EGFR-TKIs, including afatinib and 
dacomitinib, were developed to overcome resistance to 
first-generation inhibitors by forming irreversible covalent 
bonds with EGFR, enabling prolonged and broader 
inhibition. Both drugs also target multiple ErbB family 
members (HER1, HER2, HER4), expanding their efficacy 
across EGFR-driven tumors (Landi & Cappuzzo 2013). 
Despite this broader activity, acquired resistance such as 
the T790M mutation remains a challenge, and toxicity 
profiles are higher compared to first-generation agents 
(Takeda & Nakagawa 2019).

Afatinib approved by the FDA in 2013, showed 
significant improvements in progression-free survival (PFS) 
compared to chemotherapy, and first-generation (Sequist et 
al. 2013; Tu et al. 2018). Particularly, patients with exon 
19 deletions and without brain metastases responded more 
favourably. However, toxicity is a concern with afatinib, 
especially grade 3–4 events such as diarrhea, rash, and 
stomatitis, prompting dose reductions (Tu et al. 2018). 
Dacomitinib approved in 2018 is another irreversible pan-
HER inhibitor. In the ARCHER 1050 trial, it significantly 
outperformed gefitinib, achieving a PFS of 14.7 months 
versus 9.2 months (p < 0.001) (Ramalingam et al. 2018). 
Its broader inhibition of HER receptors contributed to more 
sustained EGFR suppression (Shirley 2018). Dacomitinib’s 
tolerability is limited by high toxicity rates, including 
grade 3-4 diarrhea (47%), rash, and liver-related adverse 
events (Wang et al. 2022). Skin toxicities often necessitate 
dose modifications. Prophylactic strategies, such as the 
use of antibiotics and moisturizers, were shown to reduce 
severity but did not eliminate the need for dose adjustments 
(Iwasaku et al. 2023). 

THIRD-GENERATION EGFR-TYROSINE KINASE 
INHIBITORS (EGFR-TKIs)

Third-generation EGFR-TKIs (osimertinib) received FDA 
approval in 2015 for metastatic T790M-positive NSCLC 
after prior EGFR-TKI failure. Osimertinib is a selective, 
irreversible inhibitor that targets both activating EGFR 
mutations and T790M by covalently binds to the CYS797 
residue in the ATP-binding site, while sparing wild-
type EGFR, thereby reducing off-target effects (Cross 
et al. 2014). In clinical trials, osimertinib demonstrated 
superior efficacy. The AURA3 trial showed it significantly 
improved PFS over chemotherapy in T790M-positive 
patients (10.1 vs. 4.4 months, HR = 0.30, p < 0.001), with 
a higher objective response rate (71% vs. 31%) (Wu et al. 
2020). It was particularly effective against CNS metastases, 
extending PFS to 8.5 months compared to 4.2 months with 
chemotherapy.

Phase III trials have expanded osimertinib’s indications 
across first-line, second-line, and adjuvant settings. 
The ADAURA trial confirmed osimertinib’s role as an 
adjuvant therapy, improving disease-free survival (DFS) 
in patients with resected stage IB–IIIA while preserving 

health-related quality of life (Majem et al. 2022). A  
meta-analysis further supported its superiority over 
earlier TKIs and chemotherapy, reporting enhanced PFS  
(HR = 0.38), OS (HR = 0.66), and ORR (OR = 1.76), along 
with reduced toxicity (Huang et al. 2019). Osimertinib’s 
safety profile is favorable, with fewer grade 3 or higher 
adverse events (23% vs. 47% with chemotherapy), and 
commonly reported side effects are generally manageable 
(Wu et al. 2020). Its high CNS activity and tolerability 
make it the preferred treatment option across therapy lines 
(Mok et al. 2017).

ACQUIRED MUTATIONS AMONG POST-OSIMERTINIB 
PATIENTS

Although osimertinib shows strong initial efficacy, 
resistance inevitably develops, leading to disease 
progression. These resistance mechanisms can be 
categorized into EGFR-dependent mutations and EGFR-
independent bypass pathways (Mok et al. 2017). The 
C797S mutation is the most frequent EGFR-dependent 
resistance mechanism, impairing the covalent binding of 
osimertinib to the EGFR ATP-binding site. This mutation, 
especially when occurring alongside T790M, leads to cross-
resistance against most EGFR-TKIs (Thress et al. 2015), 
creating a significant challenge in clinical management. 
Ercan et al. (2015) identified C797S, along with L718Q 
and L844V, as key resistance mutations that interfere with 
drug binding. Their findings highlight the urgent need for 
fourth-generation TKIs and dual inhibitor strategies to 
combat complex resistance profiles. Similarly, Zhang et al. 
(2018) reported that mutations L792H and G796R reduce 
osimertinib binding through structural alterations of EGFR, 
contributing to resistance in compound mutants such as 
L858R/T790M/L792H.

Beyond EGFR mutations, bypass signaling pathways 
drive resistance independently of EGFR inhibition. These 
include MET amplification, HER2 amplification, and 
PI3K/AKT/mTOR pathway activation (Goldberg et al. 
2018). Planchard et al. (2018) emphasized molecular 
profiling and liquid biopsies as essential tools to detect 
resistance mutations early and guide adaptive therapeutic 
strategies. Their recommendations include combining 
EGFR-TKIs with MET or PI3K inhibitors to address 
bypass pathway activation and employing flexible 
treatment plans based on emerging resistance. Resistance 
also arises through epithelial-to-mesenchymal transition 
(EMT), which enhances tumor invasiveness, and small-cell 
lung cancer (SCLC) transformation, necessitating a shift to 
chemotherapy or immune checkpoint inhibitors (Goldberg 
et al. 2018).

FOURTH-GENERATION TYROSINE KINASE INHIBITORS 
(TKIs)

Fourth-generation EGFR-TKIs were developed to overcome 
resistance to third-generation inhibitors like osimertinib, 
particularly due to T790M and C797S mutations. These 
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inhibitors use covalent and non-covalent binding to 
enhance specificity, overcome steric hindrance, and spare 
wild-type EGFR, reducing adverse effects. BLU-945 
targets T790M/C797S co-mutations with strong preclinical 
efficacy and is currently in the Phase I/II SYMPHONY trial 
(NCT04862780), being evaluated as monotherapy and in 
combination with osimertinib (Corvaja et al. 2024; Lim et 
al. 2024). JBJ-04-125-02 is an allosteric inhibitor designed 
for L858R/T790M/C797S mutations, and its derivative, 
JBJ-09-063, has shown synergy with osimertinib (Fu et al. 
2022). BPI-361175 selectively inhibits single, double, and 
triple EGFR mutations, including brain metastases, with 
preclinical data showing potent tumor suppression, low 
toxicity, and blood-brain barrier (BBB) penetration (Liu et 
al. 2022). 

Additional promising agents include BI-732, effective 
against Ex19del, L858R/C797S, and L858R/T790M/
C797S mutations. Oral administration at 25 mg/kg in 
xenograft models resulted in tumor reduction and CNS 
activity (Corvaja et al. 2024; Lee et al. 2023). BDTX-1535 
is a brain-penetrating, mutant-selective inhibitor with broad 
efficacy against both common and rare EGFR mutations, 
including L718X and A289V (Dardenne et al. 2024; Su 
& Sun 2024). TRX-221 is specifically designed to target 
C797S and T790M/C797S mutations with demonstrated 
CNS activity; preclinical studies show strong efficacy in 
both subcutaneous and intracranial tumor models, and it 
is currently in a Phase I/II trial (NCT06186076), although 
recruitment is pending (Lim et al. 2023).

Despite encouraging preclinical and early clinical 
data, these agents face challenges including toxicity, 
emerging resistance pathways, and limited long-term 
data. Combination therapies targeting MET and HER2 
amplifications, and allosteric inhibitors to bypass structural 
resistance are actively being explored (Fu et al. 2022; Lim 
et al. 2024). Su and Sun (2024) call for the development 
of reversible, high-specificity EGFR-TKIs targeting 
compound mutations while maintaining tolerability. 
Integrative approaches combining immunotherapy and 
targeted agents are under investigation to enhance treatment 
durability (Corvaja et al. 2024).

EGFR-TKIs COMBINED WITH CHEMOTHERAPY

Combining EGFR-TKIs with chemotherapy has emerged as 
a strategy to enhance treatment efficacy and delay resistance 
in EGFR-mutated NSCLC. The NEJ009 trial demonstrated 
significant improvements in PFS, overall survival (OS), 
and objective response rate (ORR) with gefitinib plus 
carboplatin and pemetrexed versus gefitinib alone, albeit 
with increased manageable toxicities (Hosomi et al. 
2020). However, the IMPRESS trial found no OS benefit 
when gefitinib was continued with chemotherapy after 
disease progression, indicating the importance of first-line 
combination rather than continuation beyond progression 
(Soria et al. 2015). Hou et al. (2023) (NCT01951469 trial) 

further reported improved intracranial and systemic PFS in 
patients with brain metastases treated with gefitinib plus 
chemotherapy, supporting its use in CNS involvement 
case. Meta-analyses by Xue et al. (2022) and Zhu et al. 
(2021) confirmed survival benefits of combining TKIs 
with platinum-based chemotherapy, with better balance of 
efficacy and tolerability in regimens including pemetrexed 
and carboplatin.

Recent data from the FLAURA2 trial reinforced 
the benefit of combining osimertinib with platinum-
pemetrexed chemotherapy as a first-line regimen. The trial 
showed high ORR (87%), prolonged PFS (up to 3 years), 
and acceptable toxicity (Planchard et al. 2023). The OPAL 
study also supported this combination, reporting a 90.9% 
ORR and a median PFS of 31.0 months, with no treatment-
related deaths (Saito et al. 2023). Ongoing trials such as 
COMPEL (NCT04765059) and EPONA (TORG 1938) are 
evaluating osimertinib continuation with chemotherapy 
in patients with disease progression, particularly focusing 
on maintaining CNS control and targeting resistant clones 
(Okuma et al. 2022; Sequist et al. 2021).

EGFR-TKIs COMBINED WITH ANTIANGIOGENIC THERAPY

Combining EGFR-TKIs with antiangiogenic agents 
provides a synergistic approach by simultaneously targeting 
tumor proliferation and angiogenesis, two key drivers 
of NSCLC progression and resistance. Antiangiogenic 
agents such as bevacizumab and ramucirumab inhibit the 
VEGF pathway, improving drug delivery and enhancing 
the efficacy of EGFR-TKIs through tumor vascular 
normalization (Masuda et al. 2017; Papini et al. 2021). 
The phase III RELAY trial demonstrated that erlotinib 
plus ramucirumab significantly prolonged PFS (19.4 
vs. 12.4 months; HR = 0.59, p < 0.0001) and duration of 
response compared to erlotinib alone (Nakagawa et al. 
2019). Similarly, the CTONG-1509 trial reported a PFS of 
18.0 months with erlotinib and bevacizumab versus 11.3 
months with erlotinib monotherapy (HR = 0.55, p < 0.001), 
with manageable toxicity (Zhou et al. 2019). 

Osimertinib-based combinations have also been 
explored. The WJOG9717L trial showed a modest, non-
significant PFS improvement with osimertinib plus 
bevacizumab (22.1 vs. 20.2 months; HR = 0.862; p = 
0.213), and a higher incidence of grade ≥3 adverse events 
(Kenmotsu et al. 2022). Ongoing trials such as FLAIR and 
RAMOSE are investigating in specific patient populations, 
such as those with L858R mutations or treatment-naïve 
metastatic NSCLC (Saltos et al. 2021; Zhou et al. 2024). 
Preliminary data show manageable safety profiles, with 
efficacy outcomes still under evaluation. A meta-analysis 
by Dafni et al. (2022) suggests that smoking status may 
influence treatment efficacy. Smokers demonstrated 
significant PFS and OS benefits compared to non-smokers, 
indicating the potential utility of smoking status as a 
predictive biomarker.
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EGFR-TKIs COMBINED WITH RADIOTHERAPY

Combining EGFR-TKIs with radiotherapy offers a 
synergistic strategy by inducing DNA damage and impairs 
repair pathways, effects that are amplified by EGFR-
TKIs (Papini et al. 2021). This combination is promising 
for managing brain metastases, where EGFR-TKIs like 
osimertinib can penetrate the blood-brain barrier and 
enhance the efficacy of cranial irradiation. Clinically, a 
retrospective study by Kotek Sedef et al. (2021) showed 
that thoracic radiotherapy combined with EGFR-TKIs 
significantly improved overall survival (33 vs. 23 months; 
p = 0.05), particularly in patients with exon 19 deletions 
and those receiving higher biologically effective doses or 
stereotactic body radiotherapy (SBRT), which also offered 
superior local control.

A network meta-analysis by Xue et al. (2022) further 
reinforced the benefit of this approach, with a hazard 
ratio of 0.44 for PFS favoring the combination over TKI 
monotherapy (95% CI: 0.23-0.83). The benefit was 
particularly pronounced in patients with brain metastases. 
However, increased risks of adverse events such as 
pneumonitis and esophagitis were noted, underscoring the 
need for careful toxicity management and individualized 
treatment planning. The ongoing phase II NORTHSTAR 
trial is evaluating osimertinib with local consolidation 
therapy (LCT), including radiotherapy who developed 
T790M-mediated resistance (Elamin et al. 2018). 
Preliminary findings suggest that the addition of LCT to 
systemic therapy may delay progression and improve 
survival. The trial also incorporates exploratory biomarker 
analysis to guide personalized treatment strategies.

EGFR-TKIs COMBINED WITH IMMUNOTHERAPY

Combining EGFR-TKIs with immune checkpoint 
inhibitors (ICIs) offers a novel but complex strategy for 
enhancing immune responses in NSCLC. Preclinical data 
suggest EGFR activation upregulates PD-L1 expression, 
allowing immune evasion, while EGFR-TKIs may promote 
immunogenic apoptosis and facilitate T-cell recruitment 
(Chen et al. 2015; Suresh et al. 2018). However, EGFR-
mutant NSCLC is typically associated with tumor mutation 
burden (TMB), leading to reduced responsiveness to 
immunotherapy. Clinical trials have yielded mixed results. 
The CAURAL trial (NCT02454933), assessing osimertinib 
with durvalumab, was terminated early due to high 
rates of interstitial lung disease, despite initial response 
activity (Yang et al. 2019).  KEYNOTE-789 trial showed 
no significant survival benefit with pembrolizumab plus 
chemotherapy compared to chemotherapy alone in EGFR-
TKI-resistant patients (Yang et al. 2024).

More promising results emerged from the IMpower150 
and ATTLAS (KCSG-LU19-04) trials. IMpower150 
reported improved PFS and OS in EGFR-mutant patients 
treated with atezolizumab plus bevacizumab and 
chemotherapy, especially in those with liver or brain 
metastases (Nogami et al. 2022). The ATTLAS trial further 

supported this combination, showing a PFS of 8.48 months 
and an ORR of 69.5%, albeit with increased toxicity 
(Park et al. 2024). Similarly, ORIENT-31 demonstrated 
improved PFS using sintilimab with chemotherapy after 
TKI failure, reinforcing the potential of combining ICIs 
with chemotherapy in this setting (Lu et al. 2023).

DUAL-TARGET APPROACHES: MET AND MEK INHIBITORS

Resistance to EGFR-TKIs often arises through activation 
of bypass pathways such as MET amplification and the 
RAS/RAF/MEK/ERK signaling cascade. These pathways 
can promote tumor survival and continued proliferation 
despite EGFR inhibition (Qin et al. 2023). Dual-target 
strategies combining EGFR-TKIs with inhibitors of 
MET or MEK have emerged as promising approaches 
to overcome resistance mechanisms. The TATTON trial 
(NCT02143466) evaluated osimertinib with the MET 
inhibitor savolitinib and reported an ORR of 64% and a 
median PFS of 9.1 months (Ahn et al. 2022; Oxnard et 
al. 2020). While combining osimertinib with the MEK 
inhibitor selumetinib (a MEK1/2 inhibitor) also showed 
tumor suppression, it was associated with increased toxicity. 
A third arm with durvalumab faced safety concerns due 
to interstitial lung disease, leading to discontinuation of 
these combination. The SAVANNAH trial further explored 
osimertinib and savolitinib in MET-amplified patients post-
osimertinib progression. Early results showed promising 
antitumor activity, supporting biomarker-guided treatment. 
Stratification based on MET expression helped identify 
patients more likely to benefit from dual inhibition (Ahn 
et al. 2022). Study by Luo et al. (2021) combined erlotinib 
with trametinib (a MEK inhibitor) showed overall efficacy 
was limited (4% ORR, 1.8 months PFS), although patients 
with BRAF fusions showed benefit, suggesting a role for 
selective biomarker-driven strategies. Toxicities, such as 
rash, diarrhea, and fatigue, were common, reinforcing the 
importance of optimizing safety.

TOXICITY PROFILES OF COMBINATION THERAPIES

Combination therapies involving EGFR inhibitors and 
other agents, such as antiangiogenics, immune checkpoint 
inhibitors, and chemotherapy, have shown promise in 
improving outcomes. However, these combinations 
are often associated with distinct toxicity profiles that 
necessitate careful management. This summary serves as 
a practical guide for clinicians to anticipate, monitor, and 
mitigate adverse events associated with these therapies 
(Table 1), ensuring patient safety and treatment efficacy. 
The detailed data from trials emphasize the need for 
proactive symptom management and biomarker-driven 
approaches to personalize therapy.

SELECTION CRITERIA IN COMBINATION THERAPIES 

The selection of combination therapies for EGFR-mutant 
NSCLC is guided by a comprehensive understanding of 
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resistance mechanisms, molecular profiles, and predictive 
biomarkers. Treatment strategies are personalized based 
on genetic alterations such as MET amplification, HER2 
overexpression, and bypass signaling pathways that confer 
resistance to EGFR-TKIs. For instance, combining VEGF 
inhibitors like bevacizumab with EGFR-TKIs benefits 
patients with high VEGF expression by normalizing 
tumor vasculature and enhancing drug delivery (Araki 
et al. 2023). Chemotherapy, particularly platinum-based 
agents or pemetrexed, is often combined with EGFR-TKIs 
in cases of acquired resistance to co-target downstream 
pathways like PI3K/AKT, as demonstrated by the NEJ009 
trial, which showed improved PFS and OS with concurrent 
gefitinib and chemotherapy. 

Immunotherapy combinations, though promising, 
require strict patient selection using markers such as PD-
L1 to mitigate toxicity and limited efficacy. For patients 
with resistance to osimertinib, combination approaches 
using MET inhibitors like savolitinib or platinum-based 
chemotherapy are employed when MET amplification is 
detected (Araki et al. 2023). Additionally, novel therapies 

such as antibody-drug conjugates (ADCs) and EGFR-MET 
bispecific antibodies are emerging for cases with complex 
resistance mutations like C797S or MET amplification, 
highlighting the importance of biomarker-guided and 
sequencing-informed strategies to improve clinical 
outcomes (Araki et al. 2023).

ECONOMIC IMPACT AND STRATEGIES FOR ACCESSIBILITY 
OF EGFR-TKIs

The cost-effectiveness and accessibility of EGFR-TKIs 
vary widely across regions due to differences in healthcare 
infrastructure and economic conditions. While high-HDI 
countries report high availability of EGFR testing and 
erlotinib (98%), access remains limited in lower-income 
nations (57%) due to affordability and infrastructure 
challenges (Carbonnaux et al. 2016). Only 42.6% of the 
global population, mostly in wealthier regions, benefits 
from free or low-cost testing. Economic evaluations 
support EGFR testing’s cost-effectiveness, as shown in 
Japan (ICER $32,500/QALY), Mexico ($3,630–$4,917 

TABLE 1. Toxicity profiles of combination therapies

Combination therapy Trial reference Profile of main toxicities References
Gefitinib + Carboplatin + 
Pemetrexed

NEJ009 Grade ≥: Hematologic (65.3%), Non-hematologic 
(31.0%), Treatment-related death (0.6%)

(Hosomi et al. 
2020)

Gefitinib + Cisplatin + 
Pemetrexed

IMPRESS Grade ≥3: Leukopenia (2%), Decreased neutrophil 
count (4%), Asthenia (2%) 

(Soria et al. 
2015)

Gefitinib + Pemetrexed + 
Platinum

GAP BRAIN Grade 3: Alanine aminotransferase level increase 
(11.3%), Neutropenia (7.5%), and Nausea (7.5%)

(Hou et al. 2023)

Osimertinib + Platinum-
Pemetrexed

FLAURA2 Serious adverse events (37%), Grade ≥3 adverse 
events (50%)

(Planchard et al. 
2023)

OPAL Grade ≥3: Neutrophil count decreased (44.8%), 
Anemia (22.4%), Platelet count decreased (20.9%) 

(Saito et al. 
2023)

Ramucirumab + Erlotinib RELAY Grade ≥3: Hypertension (24%), Dermatitis 
acneiform (15%), Diarrhea (7%). One treatment-
related death (pulmonary hemorrhage)

(Nakagawa et al. 
2019)

Bevacizumab + Erlotinib CTONG 1509 Grade ≥3: Hypertension, Proteinuria, Rash (Zhou et al. 
2019)

Osimertinib + Bevacizumab WJOG9717L Hypertension (Grade 3 ≥: 7%), Paronychia (Grade 
3: 7%), Proteinuria (any grade: 54%)

(Kenmotsu et al. 
2022)

FLAIR Hypertension (Grade 3: 16.6%), Proteinuria (any 
grade: 33%), Diarrhea (any grade: 27.7%)

(Zhou et al. 
2024)

Osimertinib + Ramucirumab RAMOSE Hypertension (Grade 3: 7.1%), Rash (Grade 3: 
4.2%), Neutropenia (Grade 3: 2.8%)

(Saltos et al. 
2021)

Osimertinib + Durvalumab CAURAL ILD (3%) reported as Grade 2. Diarrhea (50%) and 
Rash (67%) reported

(Yang et al. 
2019)

Atezolizumab + Bevacizumab 
+ Carboplatin + Paclitaxel

ATTLAS Grade ≥3 toxicities: Hypertension (2.0%), 
Proteinuria (1.3%), Neutropenia (5.3%). Treatment-
related deaths: Pneumonia (2 cases), Cerebral 
embolic infarction (1 case)

(Park et al. 2024)
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per progression-free month), and China ($22,973/QALY 
with assistance programs) (Arrieta et al. 2016; Narita et 
al. 2015; You et al. 2019). However, osimertinib remains 
cost-ineffective in countries like the US and China unless 
prices drop significantly, with the Netherlands requiring 
a 30% reduction to meet thresholds. To improve access, 
strategies such as local drug production, inclusion in the 
WHO Essential Medicines List, national reimbursement 
schemes, expanded diagnostics, biosimilars, and price 
negotiations are being adopted. Broad policy reform and 
collaboration across sectors are essential for equitable 
global access to EGFR-TKIs (Carbonnaux et al. 2016).

CONCLUSION

The advent of EGFR-targeted therapies has revolutionized 
the treatment landscape for NSCLC, significantly 
improving PFS and OS for patients with EGFR mutations. 
However, the persistent challenge of acquired resistance 
driven by mutations like T790M and C797S or alternative 
signaling pathways has spurred the evolution of EGFR-
TKIs from first- and second-generation agents to third-
generation drugs like osimertinib, and now to emerging 
fourth-generation inhibitors. These advancements, 
along with promising combination therapies involving 
chemotherapy, immunotherapy, and antiangiogenic agents, 
reflect a paradigm shift toward long-term disease control. 
Moving forward, the future of NSCLC treatment lies in the 
refinement of these approaches, integration of biomarker-
driven strategies, and the resolution of economic and 
accessibility barriers, paving the way for EGFR-TKIs to 
transform NSCLC from a lethal diagnosis into a manageable 
or potentially curable condition.
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