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ABSTRACT

This paper presents an extension work of robust principal component analysis (ROBPCA) denoted as IRPCA, to improve 
the accuracy of the detection of high leverage points (HLPs) in high dimensional data (HDD). The IRPCA employs the 
Principal Component Analysis (PCA) to reduce the dimension of the data set and subsequently a robust location and scatter 
estimates of the PC scores are obtained based on the Minimum Regularized Covariance Determinant (MRCD). Instead 
of using robust score distance to detect HLPs as in ROBPCA; in the proposed IRPCA, we have considered using Robust 
Mahalanobis distance (RMD).  The performance of the IRPCA is compared to the ROBPCA and the Minimum Regularized 
Covariance Determinant and PCA-based method (MRCD-PCA) for the identification of HLPs in HDD. The results signify 
that all the three methods are very successful in the detection of HLPs with no masking effect. Nonetheless, the ROBPCA 
suffers from serious swamping problems for less than 30% of HLPs. The proposed IRPCA and the MRCD-PCA have 
similar performance, having very small swamping effect. However, the MRCD-PCA algorithm is quite cumbersome and 
required longer computational running time. The attractive feature of the IRPCA is that it provides a simpler algorithm and 
it is very fast. 
Keywords: High Leverage Point; minimum regularized covariance determinant; principal component analysis; robust 
mahalanobis distance

ABSTRAK

Kertas ini membentangkan kerja lanjutan bagi Analisis Komponen Utama Teguh (ROBPCA) ditandakan dengan IRPCA, 
untuk meningkatkan ketepatan pengecaman titik tuasan tinggi (HLPs) dalam data dimensi tinggi (HDD). IRPCA 
menggunakan Analisis Komponen Utama (PCA) bagi menurunkan dimensi set data dan seterusnya penganggar lokasi dan 
skala skor PC dikira berdasarkan Penentu Kovarian Teratur Minimum (MRCD).  Dengan tidak menggunakan jarak skor 
teguh untuk pengecaman HLPs seperti ROBPCA; dalam kaedah IRPCA yang dicadangkan, kami telah mempertimbangkan 
penggunaan Jarak Mahalanobis Teguh (RMD). Prestasi IRPCA yang dicadang dibandingkan dengan kaedah ROBPCA 
dan kaedah Penentu Kovarian Teratur Minimum dan PCA (MRCD-PCA) bagi mengecam HLPs dalam HDD. Keputusan 
menunjukkan ketiga-tiga kaedah sangat berjaya dalam pengesanan HLPs tanpa kesan penyorokan. Walau bagaimanapun, 
ROBPCA mengalami masalah kesan limpahan yang serius apabila terdapat HLPs kurang daripada 30%. Prestasi IRPCA 
yang dicadangkan dan MRCD-PCA ada lah sama; mempunyai kesan limpahan yang sangat kecil. Namun begitu, algoritma 
MRCD-PCA agak rumit dan memerlukan masa yang panjang. Sifat menarik bagi IRPCA ialah ia memberi algoritma yang 
mudah dan masa pengiraan yang singkat. 
Kata kunci: Analisis komponen utama; jarak Mahalanobis teguh; penentu kovarian teratur minimum; titik tuasan baik 

INTRODUCTION

High dimensional data refers to the situations where the 
number of covariates or predictors is much larger than the 
number of data points (i.e., p >> n). To provide an example, 
in gene analysis, a single individual may have measurements 

for millions of genes (Boulesteix & Strimmer 2007), 
whereas in image analysis, there are thousands of high-
resolution pixel images with a limited number of samples 
(Chiang 2016). Other prominent and critical areas of high 
dimensional data are usually found in image analysis, 
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microarray analysis, document classification, astronomy, 
and atmospheric science. Dealing with this kind of data 
sets involves new challenging issue since it is difficult to 
analyze high dimensional data, due to the high correlation 
between variables and the risk of model overfitting. The 
application of conventional statistical approaches to high 
dimensional data tends to be ineffective, can cause serious 
misleading result and difficult interpretation on the pattern 
of the data particularly in the presence of outliers.

Outliers in regression problem can be classified into 
three categories namely the vertical outliers, residual 
outliers, and high leverage points. Vertical outliers are 
observations that are outlying in the Y-space; residual 
outliers are data with noticeably large residuals (Habshah, 
Norazan & Imon 2009; Siti Zahariah & Habshah 2023). 
In contrast, high leverage points (HLPs) are those 
observations that are outlying in the X-space. While a great 
deal of study has been done on residual and vertical outlier 
detection, comparatively there has been less emphasis on 
addressing high leverage points (HLPs). Huber (1973) 
and Rana, Midi and Imon (2009) stated that the presence 
of HLPs may cause apparent non-normality. HLPs in 
a dataset might cause severe effects on the parameter 
estimates and would give invalid results to the regression 
model and become more serious in high dimensional data 
(Midi et al. 2021; Rashid et al. 2021). Accurate detection of 
HLPs is of paramount importance in statistical analysis, as 
an incorrect identification of such points will substantially 
disrupt the standard error of estimates and give rise to a 
multicollinearity problem, masking and swamping of 
outliers, overfitting or underfitting of a model which will 
lead to insignificant prediction (Chiang 2016; Siti Zahariah, 
Habshah & Mohd Shafie 2022). Masking refers to outliers 
misidentified as inliers and swamping, on the other hand, is 
a phenomenon of incorrectly labelling normal observations 
as outliers (Rashid et al. 2021). This is the reason why the 
detection of outliers or HLPs is essential before making 
any kind of inferences. 

Many papers are available in the literatures for the 
identification of HLPs in linear model and low dimensional 
data, to name a few (Lim & Midi 2016; Rousseeuw & 
Driessen 1999). Nonetheless, not many papers are devoted 
to the detection of HLPs in high dimensional data. This 
is primarily due to computational burden that one has 
to face when analyzing a huge number of variables. 
Robust Mahalanobis distance (RMD) is a very popular 
diagnostic tool used for the identification of HLPs (Hubert, 
Rousseeuw & Verdonck 2012). The formulation of the 
RMD is based on robust location and robust covariance 
matrix.  Minimum covariance determinant (MCD) is 
an example of highly robust estimators of multivariate 
location and scatter (Rousseeuw 1985). It is very resistant to 
outlying observations that makes the MCD highly effective 
for outlier detection. Nevertheless, most of the robust 
covariance matrix is only applicable for low dimensional 
data because it is not invertible in high dimension cases. As 

a solution to this problem, Boudt et al. (2018) developed a 
minimum regularized covariance determinant (MRCD) to 
overcome the curse of dimensionality issue. Afterwards, 
the robust Mahalanobis distance which is based on 
the MRCD (RMD-MRCD) is put forward. However, 
according to Siti Zahariah and Habshah (2023), the RMD-
MRCD method indicates a decrease in its performance 
as the number of independent variables (p) increases. To 
remedy this problem, Siti Zahariah and Habshah (2023) 
proposed robust Mahalanobis distance (RMD) based 
on the combined methods of the minimum regularized 
covariance determinant and the principal component 
analysis (MRCD-PCA). It is developed by incorporating the 
Principal Component Analysis (PCA) method in the MRCD 
algorithm.  The MRCD-PCA consist of two stages whereby 
in the first stage, the PCA reduces the dimension of data set 
and generates a fitted X̂  matrix in the original dimension 
p. Subsequently, the fitted X̂  matrix will be shrunk to yield 
an invertible covariance matrix for HDD. The MRCD was 
then performed on these fitted X̂  to determine the robust 
mean and robust covariance of HDD. In the second stage, 
the robust Mahalanobis distance based on MRCD-PCA 
estimators is constructed for the identification of HLPs in 
HDD.  The MRCD-PCA is very successful in the detection 
of HLPs with small swamping effect. The only shortcoming 
of this method is that its algorithm is quite cumbersome 
and takes longer computational running times. 

Hubert, Rousseeuw and Vanden Branden (2005) 
developed Robust Principal Component Analysis 
(ROBPCA) which is the combination of projection pursuit 
and robust covariance estimate, i.e., MCD. ROBPCA is one 
of the popular methods for the detection of HLPs in high 
dimensional data. PCA transforms high dimensional data 
into the low dimensional data set and yields k-dimensional 
subspace. The MCD is then applied to this low dimensional 
data set to compute robust location and scatter estimates 
based on the k-dimensional subspace. The robust score 
distance (SD) or orthogonal distance (OD) is then computed 
to identify outliers. The ROBPCA is very successful in the 
identification of HLPs; however, it suffers from serious 
swamping effects for less than 30% of HLPs (Siti Zahariah 
& Habshah 2023). Another shortcoming of this method is 
that it uses Chi-Squared distribution as the cut-off point 
for SD based on the assumption that the k-dimensional 
variables follow a multivariate normal distribution. 
Nonetheless, in a real situation, there is no guarantee that 
data would come from a multivariate normal distribution. 
This cut-off point is inappropriate when the assumption of 
normality is not met.

In this paper, an attempt is made to compromise 
between the MRCD-PCA and the ROBPCA. We expect that 
our proposed method provides the best results in term of 
having 100% correct detection of HLPs with no masking 
effect and negligible swamping effect with the least 
computational running times compared to the MRCD-PCA 
and ROBPCA.  
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PRINCIPAL COMPONENT ANALYSIS (PCA)

Hotelling (1933) developed Principal Component Analysis 
(PCA) as a data reduction method for multidimensional 
data set. The main goal of PCA is to summarize a data 
without losing too much information by searching fewer 
linear combinations of variables. The PCA seeks to 
explain the variance–covariance structure of a multivariate 
data set (Hubert, Rousseeuw & Vanden Branden 2005). 
The standard setting for PCA as an exploratory data 
analysis method involves a dataset with observations on 
p numerical variables, for each of n observations. These 
data values define p n-dimensional vectors,  , . . ., 
or, equivalently, an n × p data matrix X. The main idea 
of PCA is to find a linear combination of the columns of 
data matrix X known as principal components (PCs), that 
exhibits the maximum variance. The PCs are arranged so 
that most of the variation found in all the original variables 
is retained in the first few (Jolliffe, 1986).  The factorization 
of a data matrix X is given by X = TP', where T is the score 
matrix and P is an orthogonal matrix known as the loading 
matrix (Jolliffe 1986).  Important PCs are given by the 
first k columns of P, where k ≤ p. Then, PCs are obtained 
with T(k)= XP(k). The proportion of the variance explained 
by PCs is found by  where λi is 
eigenvalues of variance–covariance matrix.

ROBUST PRINCIPAL COMPONENT ANALYSIS (ROBPCA)

Robust Principal Component Analysis (ROBPCA) 
introduced by Hubert, Rousseeuw and Vanden Branden 
(2005), is a statistical technique designed to effectively 
manage data that contains outliers. It is an extension of 
the classical Principal Component Analysis (PCA), which 
is widely used for dimensionality reduction and data 
compression. The goal of robust PCA method is to obtain 
principal components that are least affected by outliers. 
To address the issue of outliers in high-dimensional data, 
Hubert, Rousseeuw and Vanden Branden (2005) combined 
the concept of projection pursuit with robust covariance 
estimation in ROBPCA. The procedure of applying 
projection pursuit in ROBPCA is to reduce the dimension of 
high dimensional data into low dimensional dataset. Next, 
within this low dimensional space, a robust Minimum 
Covariance Determinant (MCD) estimator is then applied 
to compute the robust location and scatter estimates to 
replace the classical covariance matrix. In the PCA space, 
the principal component scores will be calculated using the 
robust estimators obtained from MCD.

The robust score distance (SD) and orthogonal 
distance (OD) are the two distances that are employed in 
the ROBPCA approach to identify outliers in PCA. Score 
distance measures how far each observation is from the 
centroid of the data cloud in the principal component 
space whereas the orthogonal distance (OD) measures 
the distance between an observation, xi and its projection, 

ikpi lpx ,ˆˆ +=µ  in the k-dimensional PCA subspace.

The score distance is given as, 
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robust eigenvalues corresponding to the PCs. k denotes the maximum number of PCs. 

The OD is defined as, 

ikpii tPxOD ,  
   (2) 

The cut-off value for SD is 2
975.0,k when k > 1 and ± , .   when k = 1 which are 

approximately  distribution with the assumption that scores are normally distributed. The 

cut-off value for OD is 2
3

975.0 )ˆˆ( zmcdmcd , where 975.0z  equal to 97.5% quantile of the 

Gaussian distribution. 
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measure the gap between two points with multiple variables (Varmuza & Filzmoser 2009). It 

is also used for the detection of HLPs. Nevertheless, it is not very successful in identifying of 
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ROBUST MAHALANOBIS DISTANCE (RMD)

Mahalanobis Distance (Mahalanobis 1936) is widely 
employed in multivariate analysis to measure the gap 
between two points with multiple variables (Varmuza & 
Filzmoser 2009). It is also used for the detection of HLPs. 
Nevertheless, it is not very successful in identifying of 
HLPs since it is based on classical mean vector and classical 
variance covariance matrix of X which is easily affected 
by outliers. As a remedy to this problem, an alternative 
approach is to find robust location and scatter estimates that 
are resistant to HLPs or outlying observations. Rousseeuw 
(1985) proposed robust Mahalanobis distance (RMD) for 
the identification of HLPs and it is defined as 
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where robust estimated mean, T(x) and robust covariance matrix, C(x) are employed in (3).  

Rousseeuw (1985) suggested using Chi-Squared distribution as the cut-

off point for RMD based on the assumption that the k-

dimensional variables follow a multivariate normal distribution. However, there is no guarant

ee that data would come from a multivariate normal distribution. Hence, as per 

Dhhan, Rana and Midi (2015), Habshah, Norazan and Imon (2009

), Midi et al. (2023), and Rashid et al. (2022), since the distribution of RMD is intractable, the

 following confident bound type of cut-off point is utilised:  

                    Cut-off point =  ( ) + 3 ( )                         (4) 

where median absolute deviation (MAD) is defined as  
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for i = 1, 2, 3…, n. 

Any observations that exceed the cut-off point are declared as HLPs. Many robust 

methods are available to be used such as the Minimum Volume Ellipsoid (MVE), Minimum 

Covariance Determinant (MCD), Index Set Equality (ISE), Reweighted Fast Consistent and 

High Breakdown (RFCH) estimators (Midi et al. 2020). Nevertheless, all these methods can 

only be applied to low dimensional data and not applicable to HDD because the covariance 

matrix of X is not invertible.  

 

MINIMUM REGULARIZED COVARIANCE DETERMINANT (MRCD) 

It is noted that the requirement to determine the MCD estimators is that, for any h-subset the 

number of parameters p must satisfy p < h; or else the covariance matrix will be singular. 

Hence, the scatter matrix of the MCD and other estimators such as the MVE are not invertible. 

(3)

where robust estimated mean, T(x) and robust covariance 
matrix, C(x) are employed in (3). 

Rousseeuw (1985) suggested using Chi-Squared 
distribution as the cut-off point for RMD based on the 
assumption that the k-dimensional variables follow a 
multivariate normal distribution. However, there is no 
guarantee that data would come from a multivariate normal 
distribution. Hence, as per Dhhan, Rana and Midi (2015), 
Habshah, Norazan and Imon (2009), Midi et al. (2023), 
and Rashid et al. (2022), since the distribution of RMD is 
intractable, the following confident bound type of cut-off 
point is utilised: 

Cut-off point = median (RMDi) + 3 * MAD (RMDi) (4)

where median absolute deviation (MAD) is defined as 
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MAD (RMDi) = median (abs (RMDi – median 
(RMDi)))/0.6745. (5)

for i = 1, 2, 3…, n.
Any observations that exceed the cut-off point are 

declared as HLPs. Many robust methods are available to 
be used such as the Minimum Volume Ellipsoid (MVE), 
Minimum Covariance Determinant (MCD), Index Set 
Equality (ISE), Reweighted Fast Consistent and High 
Breakdown (RFCH) estimators (Midi et al. 2020). 
Nevertheless, all these methods can only be applied to low 
dimensional data and not applicable to HDD because the 
covariance matrix of X is not invertible. 

MINIMUM REGULARIZED COVARIANCE DETERMINANT 
(MRCD)

It is noted that the requirement to determine the MCD 
estimators is that, for any h-subset the number of parameters 
p must satisfy p < h; or else the covariance matrix will be 
singular. Hence, the scatter matrix of the MCD and other 
estimators such as the MVE are not invertible. In this 
situation, the RMD as stated in (3) cannot be used for 
high dimensional data for the detection of HLPs unless 
we can find robust covariance matrix that is invertible. 
To rectify this problem, Boudt et al. (2018) modified 
the MCD algorithm so that it is invertible and called it 
Minimum Regularized Covariance Determinant (MRCD). 
The fundamental objective of MRCD is to substitute 
a regularized covariance estimate to the MCD subset-
based covariance. H-subset of MRCD that minimizes the 
determinant of K(H) is as follows,

( )( ) p
hHmrcd HKH

h

1
detminarg

∈
= (6)

where K(H) represents a regularized covariance matrix in 
MRCD. It can be written as.

( ) )(1)( HScTHK αρρ −+= (7)

where T is a predetermined, symmetric and positive 
definite target matrix, in other words, assume T = I, S(H)is a 
sample covariance estimates based on subset H and ( ]1,0=ρ  
is regularization intensity parameter. The value of ρ is set 
such that K(H) is well-conditioned such that 1000

min

max ≤
λ
λ . The 

eigenvalue of MRCD covariance is equal to ( )λρρ −+ 1  and 
the regularization is employed when needed. Then, C-step 
of Boudt et al. (2018) of MCD is applied until the estimated 
MRCD covariance converges (Due to space constraint, the 
detailed steps are not reported here, one can refer to Siti 
Zahariah and Habshah (2023),

Upon convergence, the following estimates are obtained;
Location estimates of  MRCD, )( MRCDuxxMRCD HmDVM +=
Scatter estimates of MRCD, 

( ) ( )[ ] xMRCDwxMRCD DQHSIQDK ′Λ−+Λ=
−−

2
1

2
1

1 ρρ
where )( MRCDu Hm  is a location estimate based on 
subset MRCDH . 2

99.0,pχ  is used as the cutoff point.

THE MINIMUM REGULARIZED COVARIANCE 
DETERMINANT BASED ON PRINCIPAL COMPONENT 

ANALYSIS (MRCD-PCA) FOR THE DETECTION OF HIGH 
LEVERAGE POINTS

Siti Zahariah and Habshah (2023) proposed robust 
Mahalanobis distance (RMD) based on the combined 
methods of the minimum regularized covariance 
determinant and the principal component analysis (MRCD-
PCA).  At the outset, the PCA is applied to the original data 
with the main aim of reducing the high-dimensional data to 
a low-dimensional data set. Subsequently, a new data set 
is reconstructed based on selected k principal components 
by mapping it back to the original high dimensional space. 
The MRCD is then performed to this newly fitted data to 
determine the robust mean and robust covariance of high-
dimensional data. To identify HLPs, they calculated the 
Robust Mahalanobis Distance (RMD) for each observation.

)ˆ()ˆ()( 1
pcamrcdpcamrcd

T
pcamrcdii xxPCAMRCDRMD −

−
−− −Σ−=− µµ (8)

where pcamrcd−µ  and 1−
−Σ pcamrcd  are the robust location and 

parameter estimates of MRCD-PCA, respectively. Finally,  
robust cut-off point is used to identify high leverage points.

The MRCD-PCA technique can be summarized as follows: 

Step 1 : Construct centered data matrix X by 
subtracting median of each column xj from 
each observation ijx ; 

)( jij xmedianx − (9)

Step 2 : By using the PCA method,  the dimension 
of the centered data matrix will be reduced. 
The number of principal components k is 
chosen based on the Scree plot or Cumulative 
variance in which the first k loadings %80≥
80%(Cao 2006). The n × k matrix of PCA 
projections (scores) can be written as Z = 
XV where V is the p × k matrix (eigenvector 
matrix).

Step 3 : The original data is reconstructed based on 
these k principal components, and map it 
back to p dimensions as follows;

TVZX =ˆ (10)
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Step 4 : The minimum regularized covariance 
determinant is then performed on the 
fitted data, X̂  to determine the robust mean 
and robust covariance estimator for high 
dimensional data.

Step 5 : Finally, compute the Robust Mahalanobis 
distance for each observation based on the 
estimated mean and the estimated covariance 
matrix of MRCD-PCA.

Step 6 : The following cut-off point is employed; 
)(3)( pcamrcdpcamrcd RMDMADRMDmedian −− + (11)

An observations that exceed the cut-off point are declared 
as HLPs.

THE PROPOSED METHOD FOR THE DETECTION OF HLPS: 
IMPROVED ROBUST PRINCIPAL COMPONENT ANALYSIS 

(IRPCA)

As already discussed in the introduction section, ROBPCA 
can correctly identify outliers. However, it suffers from a 
serious swamping effect especially for high dimensional 
data. Hence, we propose to improve the ROBPCA so 
that the swamping effect can be reduced. The proposed 
method that we call IRPCA combines the idea of principal 
component analysis (PCA) and Minimum Regularized 
Covariance Determinant (MRCD) whereby it is simple 
to implement and takes less computation running times. 
This involved transforming a high-dimensional space 
into a lower-dimensional subspace by using PCA and 
subsequently conducting our work within this newly 
established principal component subspace. Then, the 
Minimum Regularized Covariance Determinant (MRCD) 
is applied to this newly derived low dimensional subspace 
to obtain the location and scatter matrix.  Instead of 
using robust score distance (SD) or orthogonal distance 
(OD) to identify outliers in HDD as suggested by Hubert, 
Rousseeuw and Vanden Branden (2005), we propose using 
Robust Mahalanobis distance (RMD) to detect HLPs and 
suggest a confident bound type of  cut-off point.
The IRPCA technique can be summarized as follows: 

Step 1 : Center the data by subtracting the median of 
each column xj from each observation ijx

)( jij xmedianx − (12)

Step 2 : Apply Principal Component Analysis 
(PCA) to the centered data to reduce from 
the original p variables into k dimensional 
subspace where k << p. The number of 
dimensions k retained is based on the Scree 
plot or Cumulative Variance.

Step 3 : Project the data points on the 
k-dimensional subspace and obtain the 
principal component score where the 
score are the entries of n × k matrix  

Tn,k = (Xn,p - 1n )Pp,k (13)

Step 4 : where Pp,k consists of the first k columns of 
Pp,p
 
Estimate the robust scatter matrix of 
the principal component score within 
k-dimensional subspace using the Minimum 
Regularized Covariance Determinant 
(MRCD) estimator. The robust location and 
scatter estimates are indicated as  and 

, respectively.
Step 5 : Calculate Robust Mahalanobis Distance 

(RMD) for each observation of the HDD 
based on the robust location and scatter 
estimates obtained from Step (4). The 
RMD of the proposed method is given by

(14)

Step 6 : Calculate the cut-off point to identify HLPs. 
Since the distribution of RMDi (IRPCA) is 
intractable, as per Habshah, Norazan and 
Imon (2009), Rashid et al. (2022) and 
Siti Zahariah and Habshah (2023), the 
confident bound type of cutoff point for 
RMDi (IRPCA) is employed as follows,

median (RMDIRPCA) + 3MAD 
(RMDIRPCA) (15)

Any observations such that its RMDi (IRPCA) exceeds the 
cut-off point are declared as HLPs.

SIMULATION STUDY

A simulation study similar to that of Boudt et al. (2018) 
and Siti Zahariah and Habshah (2023) was conducted to 
assess the performance of our proposed IRPCA method. 
We generated two sample sizes of n = 50 and n = 100 from 
a p-variate normal distribution with four different sizes of 
p = 100, 200, 300, and 500 for each sample size. In this 
simulation study, we compare our proposed method of 
IRPCA with MRCD-PCA and ROBPCA. Since the PCA, 
MRCD-PCA and ROBPCA estimators are location and 
scale equivariant, as per Agostinelli et al. (2015), we make 
general assumption that the mean is 0, and that the diagonal 
element of variance are all equal to 1. Since our proposed 
method of IRPCA applied the algorithm of MRCD, we 
account for the lack of affine equivariance of our proposed 
estimator with a similar manner to that of Agostinelli et 
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al. (2015), by generating different correlation structures. 
To ensure that the generated correlation matrix is within a 
tolerance interval around 100, a condition number is fixed 
at 100. The dataset was set up as to contain both clean 
and contaminated observations. The clean observation 
was generated from 

 
xi ~ N p (0, I) for i = 1,2,3,..., n – m. 

For the contaminated data sets, we follow Maronna and 
Zamar (2002) by randomly replace ⌊εn⌋ observations with 
outliers along the direction of the eigenvector of ∑ with 
the least eigenvalue, since this is the direction where the 
contamination is most difficult to detect. For contamination 
model, we generated xi ~ N p (y0, ẟ2 I) for i > n – m, where  
y0 = k ɑ0  and ɑ0 is the eigenvector to the smallest eigenvalue 
of Σ. k is denoted as the distance between the outliers and 
the mean of the good data. In our simulation study, we 
choose a medium-sized outlier contamination and hence k 
is set at 50. Various contaminated fractions are considered, 
i.e., 5%, 10%, 20% and 30%. While Maronna and Zamar 
(2002) approach primarily focuses on estimating the robust 
location and scale estimates in the presence of outliers 
within the dataset, however, they do not address high 
leverage points (HLPs) which could do more damage to 
the statistical analysis. In contrast, we aimed to compare 
our proposed method with MRCD-PCA and ROBPCA in 
terms of percentage of HLP detected, the swamping and 
masking effect, and the computation running time. Tables 
1-2 present the percentage of high leverage points (HLP) 
detected and the percentage of masking and swamping for 
n = 50 and n = 100.  It can be observed from Tables 1-2 that 
the results of the current study, i.e., IRPCA and the previous 
study, i.e., MRCD-PCA and ROBPCA, successfully 
identify all HLPs with zero masking effect regardless 
of the outlier’s contamination percentage, sample size 
and number of variables. The results also signify that 
the swamping effects of the ROBPCA, MRCD-PCA, and 
IRPCA are slightly decreasing as the percentage of HLPs 
and sample size increases. However, ROBPCA suffers 
from serious swamping effects for less than 30% HLPs. 
It is interesting to see that at 30% of HLPs, the swamping 
effect of ROBPCA tends to be very small and its values 
are fairly closed to the MRCD-PCA and IRPCA. On the 
other hand, the swamping effects of both the MRCD-PCA 
and our proposed IRPCA methods are relatively very small 
and negligible compared to the ROBPCA irrespective of 
the percentage of HLPs, number of predictor variables 
and sample size. The percentage of swamping effects of 
the MRCD-PCA is very small and reasonably closed to 
the IRPCA. Nonetheless, we will illustrate later that the 
MRCD-PCA suffers from longer computation running 
times, which is undesirable. 

We have seen that the results of the simulation study 
indicate that the performances of our proposed IRPCA and 
MRCD-PCA are equally good and the ROBPCA performs 
poorly for less than 30% outliers. We further investigated 
the properties of the three methods by considering their 
computational running times.  It is important to note that, 

based on our experience, it took more than an hour to run 
the simulation for MRCD-PCA for just one dimension, one 
sample size, and one level of contamination for a large p, 
i.e., p = 3,000. This is why we do not include results for 
p >> 500. Table 3 exhibits the running times for the three 
methods at various level of contaminations, dimensions 
and sample size.  The results of Table 3 show that as the 
number of predictor variables and sample size increases, 
the running times for all methods tend to increase. It is 
interesting to see that the computation running time of 
the current study (IRPCA) is the shortest compared to the 
previous study (MRCD-PCA and ROBPCA). It should be 
noted that the running time for MRCD-PCA is much higher 
than the IRPCA and ROBPCA. This is due to the fact that 
the MRCD-PCA approach is more difficult to compute; it 
requires larger computer storage because it uses PCA as a 
tool to reduce from high dimensional to low dimensional 
data, and then mapped again to the original number of 
dimensions, p. Then, robust location and scatter estimates 
are obtained from this high dimensions data. Hence, the 
calculation of robust distance for all these observations 
requires more time before the HLPs can be discovered. 
Essentially, the IRPCA is preferred over the MRCD-PCA 
and ROBPCA methods by virtue of its good performance 
in terms of having 100% detection rate, no masking effect 
and very small swamping effect. Moreover, this method 
is computationally easy and takes the least computational 
running times. 

REAL EXAMPLE 1

The octane data described in Esbensen et al. (1994), was 
used to further evaluate the performance of our proposed 
IRPCA compared to the MRCD-PCA and ROBPCA 
methods. This high dimensional data consists of near-
infrared absorbance spectra over p = 226 wavelengths 
of n = 39 gasoline samples with certain octane numbers. 
According to Hubert, Rousseeuw and Vanden Branden 
(2005), observations 25, 26, 36, 37, 38, 39 are outliers 
which contain added alcohol. Since the number and 
position of outliers of this data are exactly known, it has 
been used by many researchers (Hubert, Rousseeuw & 
Vanden Branden 2005; Rashid et al. 2022; Siti Zahariah 
& Habshah 2023) to detect HLPs in high dimensional 
data. Hence, we applied the IRCPA, MRCD-PCA, and 
ROBPCA methods to this dataset to illustrate the merit of 
our proposed IRPCA method. Based on the scree plot of 
the classical PCA and ROBPCA of Hubert, Rousseeuw and 
Vanden Branden (2005), only two principal components 
are retained. The MRCD algorithm is applied to these two 
principal components score to determine the robust location 
and robust scatter estimators. To identify the HLPs of the 
data set, we calculate the robust Mahalanobis distance on 
the score of the two principal components. Our proposed 
method has successfully identified observations 25, 26, 36, 
37, 38, and 39 as HLPs. Similarly, the MRCD-PCA and the 
ROBPCA also able to detect the six outliers. The computing 
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TABLE 1. Percentage of correct detection of HLPs, masking and swamping by MRCD-PCA, IRPCA, and ROBPCA,  
n = 50

Contamination 
(%)

p % of correct detection % of masking % of swamping
MRCD-PCA IRPCA ROBPCA MRCD-PCA IRPCA ROBPCA MRCD-PCA IRPCA ROBPCA

5 (3 outliers)

100 100 100 100 0 0 0 0.812 0.916 7.372
200 100 100 100 0 0 0 0.900 0.912 7.848
300 100 100 100 0 0 0 0.976 1.068 7.776
500 100 100 100 0 0 0 1.200 1.020 8.428

10 (5 outliers)

100 100 100 100 0 0 0 0.464 0.636 5.784
200 100 100 100 0 0 0 0.436 0.608 6.684
300 100 100 100 0 0 0 0.472 0.652 7.228
500 100 100 100 0 0 0 0.340 0.736 7.608

20 (10 outliers)

100 100 100 100 0 0 0 0.136 0.164 2.292
200 100 100 100 0 0 0 0.176 0.180 3.508
300 100 100 100 0 0 0 0.164 0.232 4.504
500 100 100 100 0 0 0 0.168 0.248 5.832

30 (15 outliers)

100 100 100 100 0 0 0 0.020 0.024 0.056
200 100 100 100 0 0 0 0.044 0.020 0.172
300 100 100 100 0 0 0 0.032 0.028 0.064
500 100 100 100 0 0 0 0.036 0.024 0.256

TABLE 2. Percentage of correct detection of HLPs, masking and swamping by MRCD-PCA, IRPCA, and ROBPCA,  
n = 100

Contamination 
(%)

p % of correct detection % of masking % of swamping
MRCD-PCA IRPCA ROBPCA MRCD-PCA IRPCA ROBPCA MRCD-PCA IRPCA ROBPCA

5 (5 outliers)

100 100 100 100 0 0 0 0.522 0.528 5.866
200 100 100 100 0 0 0 0.496 0.544 6.618
300 99.92 100 100 0.08 0 0 0.642 0.550 7.046
500 99.2 100 100 0.8 0 0 0.620 0.564 7.326

10 (10 outliers)

100 100 100 100 0 0 0 0.122 0.276 4.378
200 100 100 100 0 0 0 0.182 0.250 5.090
300 100 100 100 0 0 0 0.160 0.182 5.636
500 100 100 100 0 0 0 0.156 0.160 6.290

20 (20 outliers)

100 100 100 100 0 0 0 0.040 0.044 1.470
200 100 100 100 0 0 0 0.028 0.038 2.238
300 100 100 100 0 0 0 0.018 0.028 3.042
500 100 100 100 0 0 0 0.028 0.034 4.550

30 (30 outliers)

100 100 100 100 0 0 0 0.004 0 0.014
200 100 100 100 0 0 0 0 0 0.004
300 100 100 100 0 0 0 0.004 0 0.024
500 100 100 100 0 0 0 0.002 0.002 0.030
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TABLE 3. Running time for simulated data (in seconds), n = 50 and n = 100 (in parentheses)

Contamination (%) p Running time (in seconds)
MRCD-PCA IRPCA ROBPCA

5

100 1.23140 (1.43447) 0.06425 (0.06204) 0.089023 (0.08887)
200 4.23890 (4.73505) 0.18848 (0.16347) 0.21462 (0.18677)
300 10.31759 (16.08993) 0.42762 (0.42292) 0.51335 (0.44525)
500 31.09337 (49.34740) 1.65628 (1.61324) 1.60271 (1.86286)

10

100 1.0386 (1.70448) 0.0772 (0.07008) 0.1073 (0.08988)
200 4.1551 (5.40792) 0.2022 (0.15996) 0.2249 (0.22236)
300 8.5156 (14.28192) 0.3968 (0.4062) 0.4958 (0.52776)
500 28.5395 (38.26656) 1.5013 (1.56276) 1.6135 (1.53156)

20

100 1.0403 (1.64472) 0.0658 (0.08916) 0.1120 (0.09996)
200 4.1246 (6.31812) 0.1686 (0.17592) 0.1700 (0.1908)
300 9.0696 (14.27124) 0.4470 (0.41952) 0.3943 (0.429)
500 26.3369 (38.9274) 1.8042 (1.58388) 1.8442 (1.90452)

30

100 1.0104 (1.28568) 0.0631 (0.08628) 0.0808 (0.09432)
200 3.2407 (5.87064) 0.1691 (0.17976) 0.1634 (0.20064)
300 8.6417 (15.5622) 0.4580 (0.41892) 0.5107 (0.4254)
500 27.3748 (40.48008) 1.5426 (1.57056) 1.9333 (1.57224)

time for IRPCA, MRCD-PCA, and ROBPCA are 3.593 
s, 13.940 s, and 3.090 s, respectively. It should be noted 
that the computational running time for the MRCD-PCA 
is much higher than the IRPCA and ROBPCA for this data 
set. According to Rousseeuw and Van Zomeren (1990), 
to avoid the curse of dimensionality, it is recommended 
to set n > 5k; therefore, following Hubert, Rousseeuw 
and Vanden Branden (2005), we considered k = 7. While 
Hubert, Rousseeuw and Vanden Branden (2005) verified 
that ROBPCA can still detected all the six outliers with k 
= 7, however they did not address the issue of swamping 
effect in their research study. Both IRPCA and MRCD-PCA 
yielded the same results as k = 2. On the other hand, the 
ROBPCA can detect the six outliers, but also flagged clean 
observations 3 and 7 as outliers. The results of octane data 
were consistent with the results of the simulation study, 
where our proposed IRPCA successfully detect HLPs 
with no masking effect, negligible swamping effect with 
the least computational running time. On the other hand, 
the shortcomings of ROBPCA and MRCD-PCA are that 
it suffers from serious swamping effect and has longer 
computational running times, respectively.

REAL EXAMPLE 2

Our second example is the EPXMA spectra data taken 
from Lemberge et al. (2000). This data set consists of p = 
750 wavelengths collected over 180 archaeological glass 
samples. The chemical analysis was conducted using a 
Jeol JSM 6300 scanning electron microscope equipped 

with an energy-dispersive Si(Li) X-Ray detection system 
(SEM-EDX). This data has a sparse structure and is high 
dimensional. Since the exact position and number of 
outliers of this data is known, many researchers used this 
data to validate their diagnostic methods of identification 
of HLPs (for instance, Hubert, Rousseeuw & Vanden 
Branden 2005; Siti Zahariah & Habshah 2023). As for 
the glass spectra data, the scree plot suggested to keep 
four principal components which explained about 99.5% 
of the variance of the entire dataset. It can be observed 
from Figure 1 that our proposed IRPCA method, clearly 
separates the HLPs into 2 major groups above the Cut-off 
line. Our method detected observations 143 – 180 as one 
set of HLPs and observations (58- 63, 74, and 76) as the 
second group of HLPs. Identical results are obtained for 
MRCD-PCA. However, the computational time for IRPCA 
is much faster than the MRCD-PCA where IRPCA took 
4.551 s while MRCD-PCA took 160.290 s to pinpoint HLPs 
in the glass dataset.  Conversely, the results of ROBPCA 
in Figure 2 show that apart from identifying HLPs from 
the 2 major groups, it also treats observation 57 and 75 as 
HLPs due to their clustering with the HLPs. According to 
Hubert et al. (2015), the algorithm of ROBPCA generates 
robust but non-sparse loadings, hence, it cannot handle 
sparse data. Moreover, as already discussed earlier, the 
ROBPCA suffers from swamping effect due to using MCD 
in its algorithm. However, the outcome of the glass spectra 
dataset indicates that our proposed IRPCA method, can 
successfully detected HLPs under this type of data with the 
least computational running times.
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FIGURE 1. Index plot of Glass Spectra data set based on RMD-IRPCA

FIGURE 2. Index plot of Glass Spectra data set based on ROBPCA

REAL EXAMPLE 3

Fish oil data taken from Killen et al. (2019) is our third 
example to provide a preliminary validation of the 
limitation of the MRCD-PCA in term of having very long 
computation running times for huge dimensions, i.e., 
p=3471 and n = 126. These results serve as an indicator 
of the expected performance of the method for higher-
dimensional settings, even though they are not directly 
derived from the full-scale simulation study due to 
overly long computation time. For this data, the IRPCA, 
MRCD-PCA, and ROBPCA detected 9, 10, and 14 HLPs, 
respectively.  ROBPCA shows a swamping effect. It is 

interesting to note that the computation times for IRPCA 
are 4 s, for ROBPCA are 7.68 s, and for MRCD-PCA are 2.5 
h. The lengthy processing time of MRCD-PCA for detecting 
HLPs makes this method unattractive, even though it can 
detect the correct number of HLPs, just like IRPCA.

CONCLUSION

This article provides another procedure of detecting HLPs 
in HDD that we call IRPCA.  The proposed IRPCA methods 
and two existing methods namely the ROBPCA and MRCD-
PCA are very successful in identifying HLPs. However, 
the empirical study shows that the ROBPCA suffers from 
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severe swamping effect for less than 30% HLPs. The 
IRPCA and MRCD-PCA methods are indistinguishable in 
terms of correct detection of outliers, no masking effects 
and having very small swamping effects. Nonetheless, 
the MRCD-PCA algorithm is not straight forward, was 
somewhat computationally cumbersome and, it takes very 
long computational running times. On the other hand, the 
IRPCA algorithm is quite simple and its computational 
running time is much faster than the MRCD-PCA. The 
results seem to suggest that the IRPCA may provide the 
most attractive diagnostic method for identifying HLPs in 
HDD. 

It is worth mentioning that in this study, we sought to 
validate the proposed IRCPA against the previous methods 
(MRCD-PCA and ROBPCA) across various values of p, with 
a particular focus on larger dimensions, such as p=3000, 
to demonstrate its scalability through a simulation study. 
However, due to the significant computational demands 
associated with running simulations for such large values 
of p for MRCD-PCA, we were unable to complete the full 
simulation study for p=3000 unless a high-performance 
computer was used.  Running simulations at this scale 
requires substantial computational resources and time, 
which limited our ability to conduct these experiments 
within the scope of such a large dataset.
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