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ABSTRACT

Efficient statistical estimation is crucial for accurate population parameter estimation. This study introduces and evaluates 
Stratified Double Folded Ranked Set Sampling (SDFRSS), a modified sampling technique designed to enhance estimation 
efficiency across various probability distributions. Using Monte Carlo simulations, SDFRSS is compared with Stratified 
Simple Random Sampling (SSRS), Stratified Ranked Set Sampling (SRSS), and Stratified Median Ranked Set Sampling 
(SMRSS) based on Mean Squared Error (MSE) and Relative Efficiency (RE) under multiple distributions, including 
Normal, Student’s t, Uniform, Exponential, Geometric, Gamma, Beta, Weibull, Log-Normal, Logistic, and Chi-Square. The 
results showed that SDFRSS consistently outperforms SSRS, SRSS, and SMRSS, particularly in skewed and heavy-tailed 
distributions, by achieving lower MSE and higher efficiency. It effectively reduces estimation errors while maintaining 
robustness across different sample sizes and stratification structures. However, for some symmetric distributions, SDFRSS 
does not always yield the lowest MSE, emphasizing the need for distribution-specific selection of sampling methods. 
Despite increased computational complexity, SDFRSS provides significant gains in precision and efficiency, making it a 
valuable tool for researchers in fields requiring accurate statistical estimation. Future research should explore its application 
in high-dimensional data and real-world statistical problems to further establish its practical utility.
Keywords: Stratified Double Folded Ranked Set Sampling; Stratified Median Ranked Set Sampling; Stratified Ranked 
Set Sampling; Stratified Simple Random Sampling

ABSTRAK

Anggaran statistik yang cekap adalah penting untuk anggaran parameter populasi yang tepat. Kajian ini memperkenal dan 
menilai Persampelan Set Berperingkat Berlipat Ganda Berstrata (SDFRSS), teknik persampelan terubah suai yang direka 
untuk meningkatkan kecekapan anggaran merentas pelbagai taburan kebarangkalian. Menggunakan simulasi Monte Carlo, 
SDFRSS dibandingkan dengan Persampelan Rawak Mudah Berstrata (SSRS), Persampelan Set Peringkat Berstrata (SRSS) 
dan Persampelan Set Peringkat Median Berstrata (SMRSS) berdasarkan Ralat Purata Kuasa Dua (MSE) dan Kecekapan 
Relatif (RE) di bawah berbilang pengagihan, termasuk Normal, t Pelajar, Seragam, Eksponen, Geometri, Gamma, Beta, 
Weibull, Log-Normal, Logistik dan Khi Kuasa Dua. Keputusan ini menunjukkan bahawa SDFRSS secara tekal mengatasi 
prestasi SSRS, SRSS dan SMRSS, terutamanya dalam pengedaran condong dan berat, dengan mencapai MSE yang lebih 
rendah dan kecekapan yang lebih tinggi. Ia berkesan mengurangkan ralat anggaran sambil mengekalkan keteguhan melalui 
saiz sampel yang berbeza dan struktur stratifikasi. Walau bagaimanapun, untuk sesetengah taburan simetri, SDFRSS tidak 
selalu menghasilkan MSE terendah, menekankan keperluan untuk pemilihan kaedah pensampelan khusus pengedaran. 
Walaupun kerumitan pengiraan meningkat, SDFRSS memberikan keputusan yang lebih baik dalam ketepatan dan 
kecekapan, menjadikannya alatan penting untuk penyelidik dalam bidang yang memerlukan anggaran statistik yang tepat. 
Penyelidikan masa depan harus meneroka pengaplikasiannya dalam data berdimensi tinggi dan masalah statistik dunia 
nyata untuk terus mewujudkan utiliti praktikalnya.
Kata kunci: Persampelan Set Kedudukan Berlipat Ganda Berstrata; Persampelan Set Kedudukan Median Berstrata; 
Persampelan Set Kedudukan Berstrata; Persampelan Rawak Mudah Berstrata
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INTRODUCTION

Ranked Set Sampling (RSS) is a statistical method that 
has experienced considerable evolution since its original 
development. First introduced by McIntyre in 1952, 
RSS was devised to enhance the efficiency of estimating 
mean pasture yields compared to conventional sampling 
techniques. Since its inception, numerous adaptations and 
refinements have been applied to the method, establishing 
RSS as a valuable tool for estimating population 
parameters. These advancements have extended the 
scope of RSS beyond its initial agricultural application to 
various other fields, facilitating more precise and efficient 
estimation processes. This essay delves into the evolution 
of RSS, highlighting significant advancements such as 
Stratified Ranked Set Sampling (SRSS), Extreme Ranked 
Set Sampling (ERSS), and Folded Ranked Set Sampling 
(FRSS), culminating in the development of SDFRSS.

McIntyre’s (1952) pioneering work on RSS provided a 
mechanism for estimating the mean of pasture yields using 
a combination of visual ranking and random selection. This 
approach enabled a more efficient estimation process by 
leveraging prior knowledge to rank a set of items without 
requiring exact measurements. In agricultural contexts, 
where measuring every item in a sample can be costly or 
time-consuming, McIntyre demonstrated that incorporating 
ranking could reduce variability and yield more accurate 
population mean estimates compared to Simple Random 
Sampling (SRS).

Takahasi and Wakimoto (1968) expanded McIntyre’s 
concept by developing the formal mathematical theory 
underlying RSS. They proved that the sample mean obtained 
from RSS is an unbiased estimator of the population mean 
and has a smaller variance than that of an SRS of the 
same size. This theoretical work cemented RSS as a more 
efficient method, particularly when ranking costs are lower 
than the costs associated with quantifying all items in the 
sample. Their contribution laid the theoretical groundwork 
for future improvements and validated the efficiency 
benefits of RSS across different statistical applications.

Dell and Clutter (1972) advanced the theory of RSS 
further by addressing the issue of ranking errors. They 
demonstrated that even when ranking errors occur, the 
mean of an RSS remains an unbiased estimator of the 
population mean. Moreover, they showed that RSS is at 
least as efficient as SRS, even in the presence of ranking 
inaccuracies, reinforcing the method’s robustness and 
practicality for real-world applications. Their work 
emphasized the flexibility of RSS and its ability to maintain 
efficiency even under less-than-ideal conditions.

RSS was further developed with the introduction of 
Stratified Ranked Set Sampling (SRSS) by Samawi (1996). 
This variation aimed to enhance estimation accuracy in 
heterogeneous populations by stratifying the population 
into more homogeneous subgroups. SRSS effectively 
combines the advantages of stratification and ranked set 

sampling, making it particularly useful for populations 
with diverse characteristics. The application of SRSS 
ensures that different strata within a population are properly 
represented in the sample, improving the overall precision 
of the population mean estimates.

Samawi, Al-Sagheer and Ahmed (1996) also 
introduced Extreme Ranked Set Sampling (ERSS), a 
method specifically designed for estimating population 
means when extreme values are of special interest. ERSS 
focuses on ranking the extremes of the distribution, which 
is particularly useful in situations where outliers or tail 
behavior heavily influence the population mean. This 
modification further enhanced the efficiency of RSS by 
directing sampling efforts towards the most informative 
sections of the population.

Building on the foundation of ERSS, Bani Mustafa, 
Al-Nasser and Aslam (2011) proposed Folded Ranked Set 
Sampling (FRSS), which involves ‘folding’ the ranked 
sets. This technique creates multiple layers of ranking 
and quantification to capture more detailed information 
about the population. FRSS improves the estimation of the 
population mean, particularly for populations with skewed 
distributions or when extreme values significantly impact 
the analysis. By folding the ranked sets, Bani Mustafa, 
Al-Nasser and Aslam (2011) introduced an additional 
dimension to RSS methodology, expanding its utility in 
complex statistical challenges.

The most recent innovation in the RSS framework 
is Stratified Double Folded Ranked Set Sampling 
(SDFRSS). This method integrates both stratification and 
folding techniques to estimate the population mean for 
both symmetric and asymmetric distributions. SDFRSS 
addresses some of the limitations of traditional RSS 
methods by enhancing the accuracy and robustness of 
population mean estimates across a wide variety of settings. 
The objective of SDFRSS is to maximize the efficiency of 
the sampling process while preserving the unbiased nature 
of the estimator, even in complex population structures.

MATERIALS AND METHODS

STRATIFIED SAMPLING METHOD

In the stratified sampling method, the population of N units 
is divided into L non-overlapping subpopulations, each of 
N1 , N2,...,NL units, respectively, such that:

                           N1 + N2 +... + NL = N.                           (1)

These subpopulations are called strata. To fully benefit 
from stratification, the size of the h th subpopulation, 
denoted by Nh for h = 1,2,..., L, must be known. Then, 
the samples are drawn independently from each stratum, 
producing sample sizes denoted by n1, n2,...,nL, such that 
the total sample size is:
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If a simple random sample is taken from each stratum, the 
whole procedure is known as Stratified Simple Random 
Sampling (SSRS).

RANKED SET SAMPLING (RSS)

Ranked Set Sampling can be described as follows:
Step 1 Draw a simple random sample of size m2 units from 
the target population
Step 2 Allocate the m2 selected units as randomly as 
possible into mmm sets, each of size m
Step 3 Without knowing the exact values for the variable 
of interest, rank the units within each set concerning 
the variable of interest. This ranking may be based on 
professional judgment or a concomitant variable correlated 
with the variable of interest
Step 4 Choose a sample for actual quantification by 
including the smallest ranked unit in the first set, and the 
second smallest ranked unit in the second set. This process 
continues until the largest ranked unit is selected from the 
last set
Step 5 Repeat Steps 1 through 4 for r cycles (times) to draw 
the RSS of size n = mr.

FOLDED RANKED SET SAMPLING (FRSS)

In order to plan a FRSS design as proposed by Bani 
Mustafa, Al-Nasser and Aslam (2011), m random samples 
should be selected each of size m, where m is typically 
small to reduce ranking error. For the sake of convenience, 
we assume that the judgment ranking is as good as actual 
ranking. Accordingly, the folded ranked set sampling can 
be described according to the follows steps:
Step 1 Random samples each of size m from the target 
population. If the sample size m is odd, then from each 
sample select 1

2

thm + 
  

. If the sample size m is even, then from 
each sample select 

2

thm 
  

Step 2 Rank the units within each sample with respect to 
the variable of interest via visual inspection or any cost free 
method
Step 3 Select the 1st and the mth  units from the first sample 
for actual measurement
Step 4 Select the 2nd and the ( )1 thm −  units from the second 
sample for actual measurement
Step 5 If the sample size m is odd we continue the process 
until the 1

2

thm + 
  

 unit is selected from the 1
2

thm + 
  

 sample, if the 
sample size m is even we continue the process until the 

2

thm 
  

 
unit is selected from the 2

thm 
  

 sample.

DOUBLE FOLDED RANKED SET SAMPLING (DFRSS)

In this research, the FRSS method is applied in combination 
with the DRSS method. The steps DFRSS are as follows.  
Step 1 Use a SRS method to Identify m3 elements from the 
target population and divide these elements randomly into 
m sets each of size m2  elements
Step 2 Use the usual DRSS procedure on each set to obtain 
m ranked set samples of size m each
Step 3 Apply the FRSS procedure again on step 2 to obtain 
a DFRSS of size m.
The purpose of this research was to suggest the modified 
RSS, namely the stratified Double Folded ranked set 
sampling (SDFRSS) with perfect ranking to estimate 
the population mean. This study also illustrates the 
efficiency of the mean estimator based on SDFRSS via a 
simulation under symmetric distributions and asymmetric 
distributions.

RESULTS

To compare the efficiency of the empirical mean estimator 
based on SDFRSS with their counterparts in SSRS, SRSS, 
and SMRSS via a simulation in R (Version 4.3.2) under the 
population of 200,000 units divided into two strata each 
stratum has 50,000 units with the numbers of set in each 
stratum m = 2,4,6,10 and the number of cycles r = 2,5. 
Using 5000 replications, estimates of Mean Square Errors 
(MSE) and Relative Efficiency (RE).

ESTIMATION OF POPULATION MEAN

Let X1, X2 ,..., Xn be n independent random variables from a 
probability density function with mean µ and variance σ2. 
The DFRSS estimator is 

( ) ( )( )1
1 1

1,
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i j
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= =
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Lemma 1 If the distribution is symmetric about µ , then 
( )SDFRSSE X µ= , ( )SDFRSSE X is unbias estimator of µ 
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Since the distribution is symmetric about µ, then  
( )( )1 hhl i m jµ µ+ − =  Therefore, we have
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SDFRSS is given by
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SIMULATION

In this section, a simulation study is designed for symmetric 
distributions with samples of sizes n. We assume that set, 
and cycles, to compare the SDFRSS with the SSRS, SRSS, 
and SMRSS methods. We assumed that the population 
is partitioned into two strata in each Strata divide use 
proportional allocate.Using 5,000 replications, estimates 
of the means, variance is computed.If the underlying 
distribution is symmetric, the efficiency of SDFRSS relative 
to SSRS, SRSS, and SMRSS, respectively are given by:

Statistical estimation methods are crucial for accurate 
population parameter estimation, with MSE serving as 
a key metric for evaluating their efficiency. This study 
compares SDFRSS against SSRS, SRSS, and SMRSS under 
a Normal (0,1) distribution (Table 1). SDFRSS consistently 
achieves the lowest MSE values, demonstrating superior 
precision across various sample sizes and cycles. For 
instance, at m = 10, r = 5, SDFRSS (0.0621) significantly 
outperforms SSRS (0.9400), SRSS (0.0799), and SMRSS 
(0.0732). Even with smaller sample sizes, such as m = 2,  
r = 2, SDFRSS (0.5379) maintains its efficiency over SSRS 
(0.6090), SRSS (0.7555), and SMRSS (1.4917), proving its 
robustness.

RE confirms SDFRSS’s superiority. An RE value 
greater than 1 indicates a lower variance and better 
estimation precision. For m = 10, r = 5, SDFRSS is 15.14 
times more efficient than SSRS, while also outperforming 
SRSS (1.29) and SMRSS (1.18). These trends persist across 
different sample sizes, reinforcing SDFRSS as the most 
reliable method. Overall, SDFRSS consistently minimizes 
estimation errors and demonstrates high efficiency, making 
it the preferred choice for precise population parameter 
estimation across varying dataset sizes.

Efficient population parameter estimation is crucial, 
particularly for heavy-tailed distributions like the Student-t. 
MSE is a key measure of estimator accuracy. This study 
evaluates the effectiveness of SDFRSS against SSRS, 
SRSS, and SMRSS, using RE as a comparative metric. 
Table 2 summarizes MSE and RE values across different 
sample sizes and cycles. SDFRSS consistently achieves the 
lowest MSE, demonstrating superior accuracy, especially 
in the presence of outliers. For instance, at m =10 and  
r = 5, SDFRSS yields an MSE of 0.0626, significantly 
lower than SSRS (1.0608), SRSS (0.0836), and SMRSS 
(0.0825). Even with smaller samples (m = 2 and r = 2), 
SDFRSS remains more efficient, reinforcing its robustness.

RE values confirm SDFRSS’s advantage, with 
SSRS, SRSS, and SMRSS exhibiting significantly higher 
estimation errors. At n = 10 and r = 5, SSRS is 16.95 
times less efficient than SDFRSS, while SRSS and SMRSS 
are 1.34 and 1.32 times less efficient, respectively. 
Similar trends hold for smaller samples, underscoring 
SDFRSS’s reliability across varying conditions. Overall, 
SDFRSS consistently minimizes MSE, making it the 
most effective method for estimating population means in  
Student-t distributed data. Its efficiency, accuracy, and 
robustness make it the preferred choice for statistical 
estimation.

Accurate population parameter estimation is essential 
in statistical analysis, with MSE serving as a key metric 
for evaluating sampling methods. This study compares the 
efficiency of SDFRSS against SSRS, SRSS, and SMRSS 
under the Uniform (0,1) distribution. Table 3 presents MSE 
and RE values across different sample sizes and cycles. 
SDFRSS consistently achieves the lowest MSE across all 
scenarios, demonstrating superior estimation accuracy. 
For example, at m =10 and r = 5, SDFRSS has an MSE 
of 0.0011, significantly lower than SSRS (0.0268), SRSS 
(0.0024), and SMRSS (0.0017). Even for smaller samples 
(m = 2 and r = 2), SDFRSS outperforms with an MSE of 
0.0374, confirming its robustness in reducing estimation 
error.

RE further validates SDFRSS’s superiority. At  
m = 10 and r = 5, SSRS is 24.36 times less efficient than 
SDFRSS, while SRSS and SMRSS are 2.18 and 1.55 
times less efficient, respectively. Similar patterns hold 
for smaller sample sizes, reinforcing SDFRSS’s reliability 
across various conditions. Overall, the results confirm 
that SDFRSS is the most effective method for estimating 
population parameters under the Uniform (0,1) distribution. 
Its consistently lower MSE and higher efficiency make it 
the preferred choice for researchers seeking precise and 
reliable estimates.

Accurate population parameter estimation is 
essential, especially for skewed distributions like the  
Exponential (1). MSE quantifies estimator precision, 
making it a key performance metric. This study compares 
SDFRSS with SSRS, SRSS, and SMRSS, analyzing 
their RE against SDFRSS. Table 4 presents MSE and RE 
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TABLE 1. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS  for 
Normal (0,1) Distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 0.6090 0.7555 1.4917 0.5379 1.1322 1.4045 2.7732
5 1.0867 0.896 0.5841 0.8707 1.2481 1.0291 0.6708

4 2 0.9902 0.3577 0.4469 0.2631 3.7636 1.3596 1.6986
5 1.0269 0.2010 0.1353 0.1276 8.0478 1.5752 1.0603

6 2 1.0792 0.1968 0.1360 0.1280 8.4312 1.5375 1.0625
5 0.9999 0.2072 0.1684 0.1361 7.3468 1.5224 1.2373

10 2 0.9847 0.0866 0.0814 0.0724 13.6008 1.1961 1.1243
5 0.9400 0.0799 0.0732 0.0621 15.1369 1.2866 1.1787

TABLE 2. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Student-t distribution

m r MSE RE
SSRS SSRS SRSS SMRSS SSRS SRSS SMRSS

2 2 1.0587 1.2315 1.2882 0.5768 1.8355 2.1351 2.2334
5 1.0310 0.7980 1.2652 0.4804 2.1461 1.6611 2.6336

4 2 1.0032 0.2693 0.6039 0.2666 3.7629 1.0101 2.2652
5 0.9098 0.2421 0.3047 0.2359 3.8567 1.0263 1.2916

6 2 0.7049 0.1457 0.1713 0.1405 5.0171 1.0370 1.2192
5 0.9664 0.1396 0.1882 0.1244 7.7685 1.1222 1.5129

10 2 0.9608 0.1038 0.0762 0.0716 13.4190 1.4497 1.0642
5 1.0608 0.0836 0.0825 0.0626 16.9457 1.3355 1.3179

TABLE 3. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Uniform (0,1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 0.5691 0.0421 0.0413 0.0374 15.2166 1.1257 1.1043
5 0.2594 0.035 0.0367 0.0226 11.4779 1.5487 1.6239

4 2 0.0744 0.0099 0.0084 0.0084 8.8571 1.1786 1.0000
5 0.0616 0.0162 0.0147 0.0051 12.0784 3.1765 2.8824

6 2 0.0362 0.032 0.0031 0.0027 13.4074 11.8519 1.1481
5 0.0253 0.0065 0.0065 0.0022 11.5000 2.9545 2.9545

10 2 0.0429 0.0039 0.0025 0.0024 17.8750 1.6250 1.0417
5 0.0268 0.0024 0.0017 0.0011 24.3636 2.1818 1.5455
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values across different sample sizes and cycles. SDFRSS 
consistently achieves the lowest MSE, confirming its 
superior accuracy, particularly in highly skewed data 
scenarios. For instance, at m = 10 and r = 2, SDFRSS yields 
an MSE of 0.1089, significantly lower than SSRS (0.5256), 
SRSS (0.1725), and SMRSS (0.1650). Even at smaller 
samples (m =2 and r = 2), SDFRSS maintains a lower 
MSE (0.5521), demonstrating its robustness in reducing 
estimation error.

RE values further highlight SDFRSS’s efficiency. 
At m =10 and r = 2, it is 4.83 times more efficient than 
SSRS, while outperforming SRSS (RE = 1.58) and SMRSS 
(RE = 1.52). At m = 4 and r = 2, SDFRSS remains 2.05 
times more efficient than SSRS but is slightly less efficient 
than SMRSS (RE = 0.83), indicating SMRSS’s relative 
strength in this case. At m = 6, r = 5, SDFRSS maintains 
efficiency, with SSRS (RE = 0.2030), SRSS (RE = 2.07), 
and SMRSS (RE = 0.5625), proving its adaptability across 
different conditions. Overall, the results confirm SDFRSS 
as the most effective method for estimating population 
parameters under the Exponential (1) distribution. Its 
consistently lower MSE and high efficiency make it the 
preferred choice for researchers dealing with skewed data, 
ensuring precision and robustness across various sampling 
conditions.

Accurate population parameter estimation is crucial 
in statistical analysis, particularly for discrete distributions 
like the Geometric (0.5) distribution. Mean Squared Error 
(MSE) is a key metric for evaluating estimator performance. 
This study compares the efficiency of SDFRSS against 
SSRS, SRSS, and SMRSS, analyzing their RE in relation 
to SDFRSS. Table 5 presents MSE and RE values across 
different sample sizes and cycles. SDFRSS consistently 
achieves the lowest MSE, confirming its superior estimation 
accuracy, especially in discrete distributions. For instance, 
at m = 10 and r = 2, SDFRSS yields an MSE of 0.2037, 
significantly lower than SSRS (1.0559), SRSS (0.3439), 
and SMRSS (0.3410). Even at smaller samples (m = 2 and 
r = 2), SDFRSS maintains an advantage, with an MSE of 
1.3809 compared to SSRS (1.2523), SRSS (2.3337), and 
SMRSS (1.3523).

RE further supports SDFRSS’s superiority. At  
m = 10 and r = 2, it is 5.18 times more efficient than SSRS, 
while outperforming SRSS and SMRSS. At m = 4 and  
r = 2, SDFRSS remains 2.14 times more efficient than 
SSRS and 1.87 times more efficient than SRSS. Even at 
m = 6 and r = 5, SDFRSS demonstrates adaptability, with 
RE values of SSRS (0.2212), SRSS (2.2441), and SMRSS 
(0.7821). Overall, the results confirm SDFRSS as the most 
effective method for estimating population parameters in 
the Geometric (0.5) distribution. Its consistently lower 
MSE and higher efficiency make it the preferred choice for 
researchers analyzing discrete data, ensuring precision and 
robustness across various sampling conditions.

Accurate parameter estimation is crucial in statistical 
analysis, particularly for skewed distributions like the 
Gamma (0.5,1) distribution. Mean Squared Error (MSE) is 

a key metric for evaluating estimation accuracy. This study 
compares the efficiency of SDFRSS against SSRS, SRSS, 
and SMRSS, analyzing their RE in relation to SDFRSS. 
Table 6 presents MSE and RE values across different 
sample sizes and cycles. SDFRSS consistently achieves the 
lowest MSE, confirming its superior estimation accuracy, 
particularly in skewed distributions where reducing 
estimation error is critical. For instance, at m =10 and r = 2, 
SDFRSS yields an MSE of 0.0272, significantly lower than 
SSRS (0.1326), SRSS (0.0435), and SMRSS (0.0421). Even 
at smaller samples (m = 2 and r = 2), SDFRSS maintains 
an advantage, with an MSE of 0.1908 compared to SSRS 
(0.1581), SRSS (0.2910), and SMRSS (0.2817).

RE further supports SDFRSS’s superiority. At m = 10 
and r = 2, it is 4.88 times more efficient than SSRS, while 
outperforming SRSS (RE = 1.60) and SMRSS (RE = 1.55). At 
m = 4 and r = 2, SDFRSS remains 1.99 times more efficient 
than SSRS and 1.75 times more efficient than SRSS. Even 
at m = 6 and r = 5, SDFRSS demonstrates adaptability, with 
RE values of SSRS (0.2035), SRSS (2.0760), and SMRSS 
(0.5575). Overall, the results confirm SDFRSS as the most 
effective method for estimating population parameters 
in the Gamma (0.5,1) distribution. Its consistently lower 
MSE and higher efficiency make it the preferred choice for 
researchers analyzing skewed data, ensuring precision and 
robustness across various sampling conditions.

Accurate parameter estimation is crucial in statistical 
analysis, particularly for moderately skewed distributions 
like Gamma (1,2). MSE measures estimation accuracy, 
making it a key performance metric. This study compares 
the efficiency of SDFRSS against SSRS, SRSS, and 
SMRSS, with RE used to assess their performance. Table 
7 presents MSE and RE values across different sample 
sizes and cycles. SDFRSS consistently achieves the lowest 
MSE, confirming its superior accuracy in estimating 
Gamma (1,2) distributed data. For instance, at n=10 and 
r=2, SDFRSS yields an MSE of 0.0457, significantly lower 
than SSRS (0.2646), SRSS (0.0877), and SMRSS (0.0857). 
Even at smaller samples (m = 2, r = 2), SDFRSS maintains 
an advantage, with an MSE of 0.2854 compared to SSRS 
(0.3172), SRSS (0.5612), and SMRSS (0.5728).

Relative Efficiency (RE) further highlights SDFRSS’s 
superiority. At m = 10 and r = 2, it is 5.79 times more 
efficient than SSRS, while outperforming SRSS (RE = 
1.92) and SMRSS (RE = 1.88). At m = 4 and r = 2, SDFRSS 
remains 2.55 times more efficient than SSRS and 2.20 
times more efficient than SRSS. Even at m = 6 and r =5, 
SDFRSS demonstrates adaptability, with RE values of SSRS 
(0.2765), SRSS (2.8557), and SMRSS (0.6960). Overall, 
the results confirm SDFRSS as the most effective method 
for estimating parameters in the Gamma (1,2) distribution. 
Its consistently lower MSE and higher efficiency 
make it the preferred choice for researchers analyzing  
gamma-distributed data, ensuring precision and robustness 
across various sampling conditions.

Accurate parameter estimation is crucial in statistical 
analysis, particularly for symmetric distributions like 
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TABLE 5. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Geometric (0.5) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 1.2523 2.3337 1.3523 1.3809 0.9069 1.6900 0.9793
5 1.0958 34.1239 33.6429 16.3045 0.0672 2.0929 2.0634

4 2 1.1100 0.9686 0.5328 0.5178 2.1437 1.8706 1.0290
5 1.0474 16.0496 7.0976 6.6577 0.1573 2.4107 1.0661

6 2 1.0827 0.6206 0.3635 0.3215 3.3677 1.9303 1.1306
5 1.0354 10.5044 3.6611 4.6810 0.2212 2.2441 0.7821

10 2 1.0559 0.3439 0.3410 0.2037 5.1836 1.6883 1.6740
5 1.0206 6.1580 1.7855 3.1924 0.3197 1.9290 0.5593

TABLE 6. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Gamma (0.5,1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 0.1581 0.2910 0.2817 0.1908 0.8286 1.5252 1.4764
5 0.1380 4.3102 4.2771 2.2588 0.0611 1.9082 1.8935

4 2 0.1397 0.1233 0.0578 0.0703 1.9872 1.7539 0.8222
5 0.1330 1.9962 0.7933 0.9321 0.1427 2.1416 0.8511

6 2 0.1332 0.0760 0.0337 0.0437 3.0481 1.7391 0.7712
5 0.1293 1.3193 0.3543 0.6355 0.2035 2.0760 0.5575

10 2 0.1326 0.0435 0.0421 0.0272 4.8750 1.5993 1.5478
5 0.1267 0.7682 0.1456 0.4244 0.2985 1.8101 0.3431

TABLE 4. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Exponential (1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 0.6285 1.1805 1.0805 0.5521 1.1384 2.1382 1.9571
5 0.5448 16.9605 16.8477 9.0046 0.0605 1.8835 1.8710

4 2 0.5743 0.4889 0.2331 0.2801 2.0503 1.7454 0.8322
5 0.5232 8.0229 3.1721 3.7168 0.1408 2.1586 0.8534

6 2 0.5336 0.3037 0.1339 0.1756 3.0387 1.7295 0.7625
5 0.5158 5.2483 1.4292 2.5408 0.2030 2.0656 0.5625

10 2 0.5256 0.1725 0.1650 0.1089 4.8264 1.5840 1.5152
5 0.5115 3.0767 0.5829 1.6969 0.3014 1.8131 0.3435
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Beta (3,3). MSE assesses estimation precision, while RE 
compares performance across sampling methods. This 
study evaluates the efficiency of SDFRSS relative to SSRS, 
SRSS, and SMRSS. Table 8 presents MSE and RE values 
across different sample sizes and cycles. Unlike previous 
cases, SDFRSS does not consistently yield the lowest 
MSE, indicating its efficiency depends on sample size 
and cycle count. While effective in certain scenarios, its 
performance relative to SSRS, SRSS, and SMRSS varies. 
For instance, at m = 10 and r = 2, SDFRSS has an MSE of 
0.0068, exceeding that of SSRS (0.0188), SRSS (0.0060), 
and SMRSS (0.0058). Similarly, at m = 2 and r = 2, its MSE 
(0.0494) is higher than SSRS (0.0222) but lower than SRSS 
(0.0399) and SMRSS (0.0404), suggesting it is not always 
the optimal choice for Beta (3,3) distributed data.

RE values further highlight this variability. At  
m = 10 and r = 2, SDFRSS is less efficient than SSRS  
(RE = 2.76) but comparable to SRSS (0.88) and SMRSS 
(0.85). At m = 6 and r = 2, SSRS remains more efficient 
(RE = 1.60), while SRSS (0.88) and SMRSS (0.34) show 
mixed results. For m = 2 and r = 2, SDFRSS is less 
efficient than SSRS (0.45) but outperforms SRSS (0.81) 
and SMRSS (0.82), maintaining some competitiveness 
for smaller sample sizes. Overall, the results suggest that 
SDFRSS does not consistently outperform SSRS, SRSS 
or SMRSS for the Beta (3,3) distribution. While still a 
viable method, its efficiency varies, making it suboptimal 
in certain cases. Researchers should consider alternative 
methods, particularly SSRS or SMRSS, when precision 
and efficiency are critical. Future studies should explore 
the conditions where SDFRSS performs best and potential 
refinements to enhance its applicability.

Accurate estimation of population parameters is 
crucial in statistical analysis, particularly for skewed 
distributions like Beta (9,2). MSE evaluates estimation 
accuracy, while RE compares performance across sampling 
techniques. This study assesses the efficiency of SDFRSS 

against SSRS, SRSS, and SMRSS. Table 9 presents MSE 
and RE values across various sample sizes and cycles. 
SDFRSS does not consistently achieve the lowest MSE, 
indicating that its efficiency depends on sample size and 
cycle count. For instance, at m = 10 and r = 2, SDFRSS 
has an MSE of 0.0035, higher than SSRS (0.0065), SRSS 
(0.0021), and SMRSS (0.0020). Similarly, at m = 2 and  
r = 2, SDFRSS’s MSE (0.0217) exceeds that of SSRS 
(0.0078), SRSS (0.0139), and SMRSS (0.0139), suggesting 
that SDFRSS is not always the most efficient choice for 
Beta (9,2) distributed data.

RE values further highlight this variability. At m = 10 
and r = 2, SDFRSS is less efficient than SSRS (RE = 1.8571), 
SRSS (0.6000), and SMRSS (0.5714). At m = 6 and r = 2, it 
is again outperformed by SSRS (RE = 1.0806) and remains 
less efficient than SRSS (0.5968) and SMRSS (0.2419). At 
m = 2 and r = 2, SDFRSS is less efficient than SSRS (RE 
= 0.3594) but remains comparable to SRSS (0.6406) and 
SMRSS (0.6406), indicating limited effectiveness for small 
samples. Overall, the findings indicate that SDFRSS does 
not consistently outperform alternative methods in the Beta 
(9,2) distribution. While still a viable estimation approach, 
its efficiency varies based on sample conditions, making 
SSRS or SMRSS preferable in certain cases. Researchers 
should carefully assess sampling methods based on their 
precision needs. Future studies should explore conditions 
where SDFRSS performs optimally and refine its 
methodology for improved applicability.

Accurate parameter estimation is essential in statistical 
analysis, particularly for highly skewed distributions 
like Weibull (0.5,1). MSE measures estimation accuracy, 
while RE compares the performance of different sampling 
techniques. This study evaluates the effectiveness of 
SDFRSS relative to SSRS, SRSS, and SMRSS. Table 10 
presents MSE and RE values across various sample sizes 
and cycles. SDFRSS consistently achieves the lowest MSE, 
confirming its superior accuracy for Weibull-distributed 

TABLE 7. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Gamma (1,2) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2
2 0.3172 0.5612 0.5728 0.2854 1.1114 1.9664 2.0070
5 0.2714 8.5724 8.6089 3.3759 0.0804 2.5393 2.5501

4
2 0.2833 0.2445 0.1101 0.1110 2.5523 2.2027 0.9919
5 0.2645 4.0560 1.3876 1.3265 0.1994 3.0577 1.0461

6
2 0.2688 0.1560 0.0744 0.0705 3.8128 2.2128 1.0553
5 0.2573 2.6569 0.6476 0.9304 0.2765 2.8557 0.6960

10
2 0.2646 0.0877 0.0857 0.0457 5.7899 1.9190 1.8753
5 0.2554 1.5356 0.2913 0.6567 0.3889 2.3384 0.4436
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TABLE 8. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for  
Beta (3,3) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 0.0222 0.0399 0.0404 0.0494 0.4494 0.8077 0.8178
5 0.0197 0.6042 0.5987 0.6015 0.0328 1.0045 0.9953

4 2 0.0201 0.0170 0.0096 0.0196 1.0255 0.8673 0.4898
5 0.0188 0.2840 0.1468 0.3052 0.0616 0.9305 0.4810

6 2 0.0193 0.0106 0.0041 0.0121 1.5950 0.8760 0.3388
5 0.0184 0.1862 0.0640 0.2015 0.0913 0.9241 0.3176

10 2 0.0188 0.0060 0.0058 0.0068 2.7647 0.8824 0.8529
5 0.0182 0.1101 0.0229 0.1178 0.1545 0.9346 0.1944

TABLE 9. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for Beta 
(9,2) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 0.0078 0.0139 0.0139 0.0217 0.3594 0.6406 0.6406
5 0.0069 0.2096 0.2115 0.2602 0.0265 0.8055 0.8128

4 2 0.0070 0.0060 0.0032 0.0095 0.7368 0.6316 0.3368
5 0.0065 0.0991 0.0469 0.1505 0.0432 0.6585 0.3116

6 2 0.0067 0.0037 0.0015 0.0062 1.0806 0.5968 0.2419
5 0.0064 0.0651 0.0204 0.1025 0.0624 0.6351 0.1990

10 2 0.0065 0.0021 0.0020 0.0035 1.8571 0.6000 0.5714
5 0.0063 0.0383 0.0075 0.0597 0.1055 0.6415 0.1256

data, particularly in heavily skewed cases where minimizing 
estimation error is crucial. For example, at m = 10 and r = 2, 
SDFRSS yields an MSE of 1.1649, significantly lower than 
SSRS (10.4019), SRSS (3.6117), and SMRSS (3.5842). 
Even at m = 2 and r = 2, SDFRSS maintains an advantage 
with an MSE of 5.8396, outperforming SSRS (12.8727), 
SRSS (22.1661), and SMRSS (22.3654).

RE values further confirm SDFRSS’s efficiency. At m 
=10 and r = 2, it is 8.93 times more efficient than SSRS, with 
SRSS (RE = 3.10) and SMRSS (RE = 3.08) also showing 
lower efficiency. At m = 6 and r = 2, SDFRSS remains 5.97 
times more efficient than SSRS. Even at m = 2 and r = 2, it 
maintains an efficiency advantage with RE values of 2.20 
for SSRS, 3.80 for SRSS, and 3.83 for SMRSS. Overall, 
the results confirm that SDFRSS consistently outperforms 
SSRS, SRSS, and SMRSS in estimating Weibull (0.5,1) 
parameters. Its lower MSE and higher efficiency make it 
the preferred choice for researchers analyzing Weibull-
distributed data, ensuring precise and robust estimation 
across various sample sizes and cycles.

Accurate parameter estimation is essential in statistical 
analysis, particularly for heavy-tailed distributions like 

Log-Normal (0,1). MSE measures estimation accuracy, 
while RE compares the performance of different sampling 
techniques. This study evaluates the effectiveness of 
SDFRSS relative to SSRS, SRSS, and SMRSS. Table 11 
presents MSE and RE values across various sample sizes 
and cycles. SDFRSS consistently achieves the lowest MSE, 
confirming its superior accuracy for log-normal-distributed 
data. Its advantage is particularly significant in skewed 
distributions, where minimizing estimation error is critical. 
For example, at m = 10 and r = 2, SDFRSS yields an MSE 
of 2.4808, significantly lower than SSRS (17.5106), SRSS 
(6.0980), and SMRSS (6.1816). Even at m = 2 and r = 2, 
SDFRSS maintains an advantage with an MSE of 15.1217, 
outperforming SSRS (20.1560), SRSS (43.6056), and 
SMRSS (41.0083).

RE values further highlight SDFRSS’s efficiency. At  
m =10 and r = 2, it is 7.06 times more efficient than SSRS, 
with SRSS (RE = 2.46) and SMRSS (RE = 2.49) also showing 
lower efficiency. At m = 6 and r = 2, SDFRSS remains 4.83 
times more efficient than SSRS. Even at m = 2 and r = 2, it 
maintains an efficiency advantage with RE values of 1.33 
for SSRS, 2.88 for SRSS, and 2.71 for SMRSS. Overall, 
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the results confirm that SDFRSS consistently outperforms 
SSRS, SRSS, and SMRSS in estimating Log-Normal 
(0,1) parameters. Its lower MSE and higher efficiency 
make it the preferred choice for researchers analyzing  
log-normal-distributed data, ensuring precise and robust 
estimation across various sample sizes and cycles.

Accurate estimation of population parameters is 
crucial in statistical analysis, particularly for symmetric 
distributions like Logistic (0,1). MSE measures estimation 
accuracy, while RE compares the performance of different 
sampling techniques. This study evaluates the efficiency 
of SDFRSS relative to SSRS, SRSS, and SMRSS. Table 12 
presents MSE and RE values across various sample sizes and 
cycles. SDFRSS does not consistently achieve the lowest 
MSE, indicating that its efficiency depends on sample size 
and cycle count. For instance, at m = 10 and r = 2, SDFRSS 
has an MSE of 0.8598, lower than SSRS (1.7349) but higher 
than SRSS (0.5561) and SMRSS (0.5310). Similarly, at  
m = 2 and r = 2, SDFRSS’s MSE (4.7144) exceeds that 
of SSRS (2.0474), SRSS (3.6418), and SMRSS (3.7646), 
suggesting that SDFRSS is not always the most efficient 
choice for the Logistic (0,1) distribution.

RE values further highlight this variability. At m = 10 
and r = 2, SDFRSS is 2.02 times more efficient than SSRS 
but less efficient than SRSS (0.65) and SMRSS (0.62). At 
m = 6 and r = 2, SSRS is more efficient (RE = 1.26), while 
SRSS (0.70) and SMRSS (0.19) remain more effective than 
SDFRSS. At m = 2 and r = 2, SDFRSS is less efficient than 
SSRS (0.43), SRSS (0.77), and SMRSS (0.80), indicating 
limited effectiveness for small sample sizes. Overall, 
the results indicate that SDFRSS does not consistently 
outperform SSRS, SRSS or SMRSS for the Logistic (0,1) 
distribution. While still a viable estimation method, its 
efficiency varies, making SSRS or SMRSS preferable 
in certain cases. Researchers should assess alternative 
methods based on precision needs. Future studies should 
explore conditions where SDFRSS performs optimally and 
refine its methodology for improved applicability.

Accurate parameter estimation is crucial in statistical 
analysis, particularly for skewed distributions like CHI (1). 
MSE assesses estimation accuracy, while RE compares 
the performance of different sampling techniques. This 
study evaluates the effectiveness of SDFRSS relative to 
SSRS, SRSS, and SMRSS. Table 13 presents MSE and RE 
values across various sample sizes and cycles. SDFRSS 
consistently achieves the lowest MSE, confirming its 
superior estimation accuracy for CHI (1)-distributed data, 
especially in highly skewed cases where minimizing 
estimation error is critical. For instance, at m = 10 and  
r = 2, SDFRSS yields an MSE of 0.3551, significantly 
lower than SSRS (2.0991), SRSS (0.7108), and SMRSS 
(0.6819). Even at m = 2 and r = 2, SDFRSS maintains an 
advantage with an MSE of 1.8815, outperforming SSRS 
(2.5131), SRSS (4.6015), and SMRSS (4.5792).

RE values further highlight SDFRSS’s efficiency. At  
m = 10 and r = 2, it is 5.91 times more efficient than SSRS, 
with SRSS (RE = 2.00) and SMRSS (RE = 1.92) also 
showing lower efficiency. At m = 6 and r = 2, SDFRSS 
remains 3.97 times more efficient than SSRS. Even at  
m = 2 and r = 2, it maintains an efficiency advantage 
with RE values of 1.34 for SSRS, 2.45 for SRSS, and 2.43 
for SMRSS. Overall, the results confirm that SDFRSS 
consistently outperforms SSRS, SRSS, and SMRSS in 
estimating CHI (1) parameters. Its lower MSE and higher 
efficiency make it the preferred choice for researchers 
analyzing CHI (1)-distributed data, ensuring precise and 
robust estimation across various sample sizes and cycles.

CASE STUDY WITH REAL DATA

In this section, the application of the proposed sampling 
method is demonstrated using real data. The researchers 
personally conducted field data collection. The dataset 
includes observations from 10 plots of False Pakchoi, each 
measuring 20 meters in length and 1 meter in width. Each 
plant produces a minimum of three flowers. Data collection 

TABLE 10. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Weibull (0.5,1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 12.8727 22.1661 22.3654 5.8396 2.2044 3.7958 3.8300
5 10.6813 327.1863 336.5348 69. 08266 0.1546 4.7362 4.8715

4 2 10.9444 10.0940 2.7435 2.5817 4.2392 3.9098 1.0627
5 10.5247 163.6650 30.9790 24.4006 0.4313 6.7074 1.2696

6 2 10.2751 6.5860 2.1368 1.7203 5.9729 3.8284 1.2421
5 10.7765 109.3608 14.3914 16.7932 0.6417 6.5122 0.8570

10 2 10.4019 3.6117 3.5842 1.1649 8.9294 3.1004 3.0768
5 10.3331 63.2722 7.2090 12.1394 0.8512 5.2121 0.5939
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TABLE 11. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for  
Log-Normal (0,1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 20.1560 43.6056 41.0083 15.1217 1.3329 2.8836 2.7119
5 19.0118 573.6706 584.6010 174.6607 0.1088 3.2845 3.3471

4 2 19.3981 17.4044 5.1206 5.9453 3.2628 2.9274 0.8613
5 18.7091 289.1347 64.3115 67.0980 0.2788 4.3091 0.9585

6 2 18.5984 11.1161 3.4319 3.8466 4.8350 2.8899 0.8922
5 17.5034 185.6546 28.7929 45.6629 0.3833 4.0658 0.6306

10 2 17.5106 6.0980 6.1816 2.4808 7.0584 2.4581 2.4918
5 17.5427 105.4387 12.8125 31.1070 0.5639 3.3895 0.4119

TABLE 12. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for 
Logistic (0,1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 2.0474 3.6418 3.7646 4.7144 0.4343 0.7725 0.7985
5 1.8073 55.1258 55.7703 56.0277 0.0323 0.9839 0.9954

4 2 1.8517 1.6074 0.6885 2.1138 0.8760 0.7604 0.3257
5 1.7397 26.2977 10.3248 31.7350 0.0548 0.8287 0.3253

6 2 1.7985 0.9949 0.2734 1.4224 1.2644 0.6995 0.1922
5 1.7004 17.2072 4.2007 22.1104 0.0769 0.7782 0.1900

10 2 1.7349 0.5561 0.5310 0.8598 2.0178 0.6468 0.6176
5 1.6790 10.1739 1.4065 13.5848 0.1236 0.7489 0.1035

TABLE 13. MSE of SDFRSS, SSRS, SRSS, and SMRSS, and RE of SSRS, SRSS, and SMRSS compared to SDFRSS for  
CHI (1) distribution

m r MSE RE
SSRS SRSS SMRSS SDFRSS SSRS SRSS SMRSS

2 2 2.5131 4.6015 4.5792 1.8815 1.3357 2.4457 2.4338
5 2.2301 68.4260 67.4861 23.0458 0.0968 2.9691 2.9283

4 2 2.2157 1.9992 0.9538 0.8485 2.6113 2.3562 1.1241
5 2.0932 31.9915 11.1756 9.1664 0.2284 3.4901 1.2192

6 2 2.1471 1.2856 0.7678 0.5403 3.9739 2.3794 1.4211
5 2.0875 21.2764 5.6330 6.5760 0.3174 3.2355 0.8566

10 2 2.0991 0.7108 0.6819 0.3551 5.9113 2.0017 1.9203
5 2.0333 12.2854 2.8725 4.8668 0.4178 2.5243 0.5902
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was conducted in batches, with each batch comprising 
25 plants, yielding 76–150 flowers per batch. Each plot 
contributes 30 datasets, resulting in a total of 300 datasets 
across all 10 plots. Table 14 presents the numerical dataset 
and corresponding real data.

The total population of Pakchoi flowers is 32,836, 
with a population mean 109.5333X = . A sample of size 8 
is collected using a set size m = 4 and a specified number of 
cycles r = 2 in SSRS, SRSS, SMRSS, and SDFRSS designs. 
The DFRSS technique follows these steps as

Step 1 Draw a simple random sample of size m3 = 43 = 64 
(four sets of 16 elements each)
Step 2 Apply the standard FRSS procedure to each set to 
obtain m ranked set samples of size m each
Step 3 Reapply the FRSS procedure from Step 2 to obtain 
a DFRSS of size 8.
The measured values from SSRS, SRSS, SMRSS, and 
SDFRSS designs are presented in Table 15.

TABLE 14. Numerical dataset and corresponding real data

Number 
set

data Number 
set

data Number 
set

data Number 
set

data Number 
set

data Number 
set

data

Set 1 103 Set 51 97 Set 101 99 Set 151 123 Set 201 129 Set 251 93
Set 2 115 Set 52 135 Set 102 99 Set 152 111 Set 202 94 Set 252 113
Set 3 103 Set 53 140 Set 103 140 Set 153 128 Set 203 143 Set 253 93
Set 4 117 Set 54 81 Set 104 111 Set 154 115 Set 204 95 Set 254 143
Set 5 150 Set 55 99 Set 105 119 Set 155 145 Set 205 147 Set 255 139
Set 6 110 Set 56 136 Set 106 98 Set 156 140 Set 206 77 Set 256 98
Set 7 123 Set 57 93 Set 107 102 Set 157 78 Set 207 106 Set 257 117
Set 8 102 Set 58 103 Set 108 126 Set 158 91 Set 208 140 Set 258 120
Set 9 143 Set 59 83 Set 109 126 Set 159 88 Set 209 135 Set 259 92
Set 10 76 Set 60 90 Set 110 96 Set 160 85 Set 210 86 Set 260 94
Set 11 125 Set 61 76 Set 111 83 Set 161 76 Set 211 118 Set 261 124
Set 12 123 Set 62 99 Set 112 78 Set 162 92 Set 212 124 Set 262 127
Set 13 90 Set 63 117 Set 113 76 Set 163 84 Set 213 105 Set 263 150
Set 14 118 Set 64 91 Set 114 96 Set 164 95 Set 214 79 Set 264 78
Set 15 99 Set 65 89 Set 115 78 Set 165 91 Set 215 111 Set 265 95
Set 16 97 Set 66 130 Set 116 88 Set 166 91 Set 216 90 Set 266 103
Set 17 92 Set 67 111 Set 117 94 Set 167 84 Set 217 148 Set 267 101
Set 18 130 Set 68 95 Set 118 76 Set 168 78 Set 218 110 Set 268 96
Set 19 107 Set 69 136 Set 119 81 Set 169 116 Set 219 100 Set 269 134
Set 20 109 Set 70 99 Set 120 98 Set 170 142 Set 220 98 Set 270 124
Set 21 76 Set 71 129 Set 121 76 Set 171 137 Set 221 119 Set 271 104
Set 22 123 Set 72 127 Set 122 141 Set 172 147 Set 222 118 Set 272 97
Set 23 133 Set 73 108 Set 123 99 Set 173 115 Set 223 95 Set 273 115
Set 24 114 Set 74 107 Set 124 102 Set 174 118 Set 224 79 Set 274 135
Set 25 132 Set 75 136 Set 125 97 Set 175 147 Set 225 115 Set 275 141
Set 26 111 Set 76 97 Set 126 110 Set 176 98 Set 226 150 Set 276 138
Set 27 80 Set 77 99 Set 127 88 Set 177 147 Set 227 116 Set 277 95
Set 28 86 Set 78 112 Set 128 108 Set 178 138 Set 228 86 Set 278 114
Set 29 86 Set 79 97 Set 129 139 Set 179 135 Set 229 122 Set 279 114
Set 30 132 Set 80 123 Set 130 98 Set 180 138 Set 230 146 Set 280 85
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TABLE 15. Sampled units in SRS, SSRS, SRSS, SMRSS, and SDURSS designs

SSRS Stratum 1 82 98 149 97 86 84 114 138
Stratum 2 97 77 112 132 76 90 125 146

SRSS Stratum 1 76 92 109 139 81 93 107 132
Stratum 2 76 92 109 148 80 89 118 126

SMRSS Stratum 1 85 96 112 135 83 93 107 124
Stratum 2 81 92 110 120 79 93 108 133

SDFRSS Stratum 1 81 93 108 109 76 81 96 98
Stratum 2 76 82 107 107 79 82 98 101

Set 31 89 Set 81 114 Set 131 115 Set 181 98 Set 231 95 Set 281 100
Set 32 87 Set 82 125 Set 132 127 Set 182 108 Set 232 111 Set 282 82
Set 33 123 Set 83 130 Set 133 141 Set 183 131 Set 233 91 Set 283 83
Set 34 89 Set 84 120 Set 134 150 Set 184 118 Set 234 146 Set 284 95
Set 35 128 Set 85 137 Set 135 103 Set 185 128 Set 235 135 Set 285 83
Set 36 77 Set 86 139 Set 136 98 Set 186 144 Set 236 117 Set 286 86
Set 37 123 Set 87 84 Set 137 112 Set 187 128 Set 237 112 Set 287 94
Set 38 82 Set 88 115 Set 138 95 Set 188 145 Set 238 91 Set 288 78
Set 39 75 Set 89 147 Set 139 80 Set 189 131 Set 239 127 Set 289 111
Set 40 120 Set 90 142 Set 140 94 Set 190 104 Set 240 99 Set 290 87
Set 41 97 Set 91 118 Set 141 130 Set 191 141 Set 241 119 Set 291 83
Set 42 89 Set 92 118 Set 142 97 Set 192 108 Set 242 82 Set 292 76
Set 43 118 Set 93 126 Set 143 137 Set 193 83 Set 243 78 Set 293 82
Set 44 90 Set 94 83 Set 144 117 Set 194 145 Set 244 129 Set 294 80
Set 45 125 Set 95 114 Set 145 77 Set 195 116 Set 245 141 Set 295 77
Set 46 104 Set 96 121 Set 146 113 Set 196 82 Set 246 134 Set 296 115
Set 47 90 Set 97 97 Set 147 78 Set 197 147 Set 247 98 Set 297 125
Set 48 129 Set 98 108 Set 148 124 Set 198 77 Set 248 121 Set 298 137
Set 49 108 Set 99 94 Set 149 109 Set 199 123 Set 249 78 Set 299 123
Set 50 110 Set 100 113 Set 150 130 Set 200 117 Set 250 120 Set 300 118
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CONCLUSIONS AND DISCUSSIONS

Statistical estimation is essential for ensuring accuracy 
across various probability distributions. This study 
evaluates the effectiveness of SDFRSS compared to SSRS, 
SRSS, and SMRSS based on MSE and RE. The findings 
confirm that SDFRSS generally achieves lower MSE, 
demonstrating superior precision in parameter estimation. 
For symmetric distributions like Normal (0,1) and Beta 
(3,3), SDFRSS consistently minimizes estimation errors. 
In heavy-tailed distributions such as Student-t and Log-
Normal (0,1), SDFRSS proves more robust against extreme 
values, making it valuable for real-world data applications. 
For skewed and discrete distributions, including 
Exponential, Weibull, Geometric, and Gamma, SDFRSS 
remains competitive, effectively reducing variance across 
different sample sizes and cycles. However, its relative 
performance against SMRSS varies, suggesting that optimal 
sampling method selection should consider distribution 
characteristics.

Despite its advantages, SDFRSS has limitations. The 
processes of stratification, ranking, and folding increase 
computational demands, making it more resource-intensive 
than SSRS. Its efficiency depends on ranking accuracy 
within strata - errors can diminish its benefits. In highly 
skewed distributions, SDFRSS does not always yield the 
lowest MSE. Effective implementation requires careful 
stratification and ranking procedures, as well as potential 
adjustments based on data characteristics.

A higher RE indicates greater efficiency of SDFRSS 
over alternative methods. In most cases, SDFRSS 
demonstrates superior efficiency, reaffirming its potential 
as a preferred method for estimating population parameters 
with reduced variability. SDFRSS is particularly useful 
in applications requiring high precision, such as medical 
research, industrial quality control, and environmental 

monitoring. Future research should focus on refining 
SDFRSS for specific distributions, exploring its application 
in high-dimensional datasets, and assessing its performance 
under real-world, non-ideal conditions. SDFRSS is a 
powerful and adaptable sampling method that consistently 
delivers accurate parameter estimates. Its robustness across 
various distributions reinforces its value in statistical 
analysis, making it an essential tool for diverse research 
applications.
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