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ABSTRACT

Integro-differential equations are critical for modelling real-world phenomena in physics, engineering, and biology. This 
paper introduces a Quadratic Mean iterative method to solve dense linear systems derived from the discretization of second- 
and fourth-order Fredholm integro-differential equations (FIDEs). The solution of the FIDEs is approximated using finite 
difference, composite trapezoidal, and composite Simpson’s 1/3 and 3/8 schemes. The quadratic mean iterative method 
then solves the discretized system with different mesh sizes. As the resulting systems are large, a complexity reduction 
approach is implemented on the quadratic mean method to develop the half-sweep quadratic mean iterative method. The 
newly proposed iterative method includes a novel theorem, comprehensive proofs, and a detailed convergence analysis. 
The numerical results indicate that the quadratic mean method significantly outperforms the Gauss-Seidel iterative method 
in terms of efficiency, making it a promising solution for FIDEs.
Keywords: Fredholm integro-differential equations; quadratic mean; half-sweep iteration; finite difference; composite 
trapezoidal; Composite Simpson’s rules

ABSTRAK

Persamaan pembezaan-kamiran adalah penting untuk memodelkan fenomena dunia sebenar dalam fizik, kejuruteraan dan 
biologi. Dalam jurnal ini memperkenalkan kaedah lelaran Purata Kuadratik untuk menyelesaikan sistem linear tumpat yang 
diperoleh daripada membahagikan persamaan integro-pembezaan Fredholm tertib kedua dan keempat (FIDEs) kepada 
bahagian kecil. Penyelesaian FIDEs dianggarkan menggunakan perbezaan terhingga, trapezoid komposit dan skema 1/3 dan 
3/8 komposit Simpson. Kemudian, kaedah lelaran purata kuadratik digunakan untuk menyelesaikan persamaan anggaran 
dengan saiz mesh yang berbeza. Memandangkan sistem yang akan diselesaikan adalah besar, pendekatan pengurangan 
kerumitan dilaksanakan pada kaedah purata kuadratik untuk membentuk kaedah lelaran purata kuadratik separuh sapuan. 
Kaedah lelaran yang baharu dicadangkan termasuk teorem novel, bukti komprehensif, dan analisis penumpuan terperinci. 
Keputusan berangka menunjukkan bahawa kaedah purata kuadratik dengan ketara mengatasi kaedah lelaran Gauss-Seidel 
dari segi kecekapan, menjadikannya penyelesaian terbaik untuk FIDEs.
Kata kunci: Persamaan pembezaan-kamiran; Fredholm; min kuadratik; lelaran separuh sapuan; beza terhingga; trapezoid 
komposit; Peraturan Simpson; 

INTRODUCTION

In the 21st century, mathematical models have emerged 
as indispensable tools for problem-solving across diverse 
fields. Among these, integro-differential equations (IDEs) 
play a pivotal role in formulating physical phenomena 
in various domains, including nano-hydrodynamics, 
potential theory, mechanics, fluid dynamics, glass-forming 
processes, biology, astronomy, and chemical kinetics 
(Benzi & Dayar 1995; Rathinasamy & Balachandran 2008; 
Salih et al. 2014; Yuhe et al. 1999). However, solving these 
equations analytically, especially for high-order cases 
(Zhao & Corless 2006), poses significant challenges due to 
their complexity and time-consuming nature (Aruchunan 
et al. 2015). As a result, obtaining an approximate solution 
through numerical methods becomes necessary. In this 

context, we focus on the general form of second and 
fourth order linear Fredholm integro-differential Equations 
(FIDEs) for investigation and resolution. In practical 
applications, the behaviors modelled by first, second and 
fourth-order IDEs often suffice to capture the essential 
dynamics of the system under study. Extending the analysis 
to higher-order equations was deemed unnecessary as 
no additional significant insights were anticipated. Many 
practical applications in physics, engineering, and other 
fields can be effectively modelled using first, second 
and fourth-order equations. For example, Newton’s laws 
(which lead to second-order equations) are foundational in 
mechanics. Higher-order equations are often only necessary 
in more specialized contexts. The general equations of 
second and fourth order FIDEs are as follows,
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2nd order FIDEs:

(1)

with Dirichlet boundary conditions:

G(m) = α, G(p) = b

4th order FIDEs:

(2)

with the Dirichlet boundary conditions

G(m) = α1,   G(p) = b1
G"(m) = α1,   G"(p) = b2

where S(x), T(x), U(x), f(x) and the kernel K(x,t) are 
the function that is already known while the G(x) is the 
unknown function to be determined. 

This paper focuses on the two-stage iterative methods 
with some variation. This method is widely used in 
solving matrix problems such as SOR (Cai, Xiao & Zhao-
Hong 2010; Katuri & Maroju 2025), Iterative Alternating 
Decomposition Explicit (IADE) method (Sahimi, 
Ahmad & Bakar 1993), two-stage Initial-value Iterative 
Neural Network (IINN) method (Jin et al. 2024), Mixed-
Precision Conjugate Gradient algorithm (Aihara, Ozaki 
& Mukunoki 2024) and Weighted Mean (WM) methods. 
The family of WM iterative methods are one of the best 
numerical algorithms to solve system of equations which 
converge quickly and smoothly. Under the WM methods 
family, there are several methods which has developed 
namely Arithmetic Mean (AM) (Galligani & Ruggiero 

1990) and Geometric Mean (GM) (Sulaiman et al. 2006) 
iterative methods. In this paper, a newly proposed method, 
called the quadratic mean method is developed and 
implemented to solve the dense linear systems arising 
from the Finite Difference, Composite Trapezoidal, 
Composite Simpson’s 1/3, and Composite Simpson’s 3/8 
schemes. The discretization schemes typically generate 
dense systems, which are often computationally intensive 
(Aruchunan et al. 2022). To mitigate this complexity, 
a reduction technique is applied to the quadratic mean 
method, leading to the development of the half-sweep 
quadratic mean method. To assess the effectiveness of the 
proposed methods, three key parameters are considered: 
the number of iterations, execution time, and maximum 
absolute error. The primary contribution of this paper is the 
introduction of the quadratic mean iterative method and its 
variants for solving FIDEs, supported by the development 
and proof of a corresponding theorem. Table 1 presents 
the abbreviations for the numerical schemes and methods 
utilized in this study.

MATERIALS AND METHODS

COMPUTATIONAL COMPLEXITY-REDUCTION 
TECHNIQUES

The proposed quadratic mean (QM) method, which can also 
be referred to as the Full-Sweep Quadratic Mean (FSQM), 
along with the discretization schemes, is optimized to 
reduce computational complexity. The core concept behind 
the application of half-sweep techniques is to minimize this 
complexity. Initially, the solution domain of the half-sweep 
is divided into N equally spaced intervals, as illustrated 
in the figures below. This approach helps restructure the 
computation process, enhancing efficiency. 
where the blue circles and red triangles refer to the nodal  
points and h is the step size. 

TABLE 1. Descriptions of Abbreviated Numerical Codes
Discretization Schemes

FDCT Finite Difference-Composite Trapezoidal
FDCS1 Finite Difference-Composite Simpson's 1/3
FDCS2 Finite Difference-Composite Simpson's 3/8

Iterative Methods
FSGS Full-Sweep Gauss-Seidel
HSGS Half-Sweep Gauss-Seidel
FSAM Full-Sweep Arithmetic Mean
HSAM Half-Sweep Arithmetic Mean
FSQM Full-Sweep Quadratic Mean
HSQM Half-Sweep Quadratic Mean

Performance Metrics:
N Number of iterations
t Execution time (seconds)

εN Maximum absolute error
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Based on Figure 1, the half-sweep iterative method, 
only the  nodal point is considered for the process of 
converging. The  remaining points are calculated 
by using the average mean method. The half-sweep 
techniques reduce the complexity of the iterative method 
to  . The GS and AM iterative methods are also refined 
using this iteration concept. Consequently, the proposed 
FSQM method will be further explored by incorporating 
half-sweep iteration techniques to assess its performance, 
focusing on the number of iterations, execution time, and 
maximum absolute error.

FINITE DIFFERENCE-COMPOSITE CLOSED NEWTON-
COTES SYSTEMS

In this paper, all the iterative methods mentioned are GS 
(Connolly, Burns & Weiss 1990) or also known as Full-
sweep Gauss-Seidel (FSGS) (Aruchunan et al. 2022), 
Half-sweep Gauss-Seidel (HSGS) (Aruchunan & Sulaman 
2012), Full-sweep Arithmetic Mean (FSAM) (Galligani & 
Ruggiero 1990), Half-sweep Arithmetic Mean (HSAM) 
(Muthuvalu & Sulaiman 2011). All the combinations of 
discretization schemes will be presented namely finite 
difference with composite Trapezoidal (FDCT), finite 
difference with composite Simpson’s first rule (FDCS1) 
and finite difference with composite Simpson’s second 
rule (FDCS2) schemes to form a linear system (Aruchunan 
& Sulaiman 2012). Now let an interval (m, p) be divided 
uniformly into n subintervals with size of  and the 
discrete set of points of x be given by xi = m + i γ (i = 0,1,2, 
..., N).Throughout the following sections, the value of u 
corresponds to 1 and 2 represents the full- and half-sweep 
iteration concept (Aruchunan et al. 2014). The FDCT, 
FDCS1 and FDCS2 schemes are applied to discretize 
equations (1) and (2) as follows:

Second order FIDEs:

(3)

Fourth order FIDEs:

(4)

for i = 1,2,3, ...,n and Aj in equation (3) and (4) is given by

Composite Trapezoidal: 

Composite Simpson’s 1/3: 

Composite Simpson’s 3/8: 

Both linear equations can also be rearranged and written in 
the matrix form as

(5)

where

Second order IDE

in which 

κi,i = γ2 Ui − 2Si − γTi − γ2Aiki,i, ζi,j = Si + γTi − γ2Ajki,j, ϱi,j = Si − 
γ2Ajki,j and ωi,j = − γ2 Ajki,j

Trapezoidal, Composite Simpson’s 1/3, and Composite Simpson's 3/8 schemes. The discretization 

schemes typically generate dense systems, which are often computationally intensive (Aruchunan

et al. 2022). To mitigate this complexity, a reduction technique is applied to the quadratic mean 

method, leading to the development of the half-sweep quadratic mean method. To assess the 

effectiveness of the proposed methods, three key parameters are considered: the number of 

iterations, execution time, and maximum absolute error. The primary contribution of this paper is 

the introduction of the quadratic mean iterative method and its variants for solving FIDEs, 

supported by the development and proof of a corresponding theorem. 

MATERIALS AND METHODS

COMPUTATIONAL COMPLEXITY-REDUCTION TECHNIQUES

The proposed quadratic mean (QM) method, which can also be referred to as the Full-Sweep 

Quadratic Mean (FSQM), along with the discretization schemes, is optimized to reduce 

computational complexity. The core concept behind the application of half-sweep techniques is to 

minimize this complexity. Initially, the solution domain of the half-sweep is divided into equally 

spaced intervals, as illustrated in Figure 1. This approach helps restructure the computation 

process, enhancing efficiency.

FIGURE 1. Node distribution for half-sweep iteration

0 1 2 3 4 44 3 22 1

FIGURE 1. Node distribution for half-sweep iteration
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and  .

Fourth order IDE

in which ρi,i = 6 −2γ2Si + γ2Ti − γ4Aiki,j, ρ1,1 = 1+ ρ1,1, θi,j = −4 
+ γ2Si − γ4Ajki,j, ℶi,j = 1 − γ4 Ajki,j and ℵi,j = −γ4 Ajki,j with the 
order of the matrix is (n − 1) × (n − 1).

 and

 

.

The linear system of equations is then solved by FSGS and 
FSQM iterative method.

FORMULATION OF FULL-SWEEP QUADRATIC MEAN 
ITERATIVE METHOD 

Basically, FSQM iterative method is similar to AM and GM 
methods which involved two levels of calculation which 
if forward iteration,  and backward iteration, . These 
two independent systems are created by rewriting the 
coefficient matrix Y in the form of 

Y = D − L − U (6)

where D, L and U are:

Second order FIDEs:

where κ = κi,i.

and

Fourth order FIDEs:

where ρ=ρi,i .

and
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The general formulation of the FSQM iterative method is 
displayed herewith:

(7)

where α represents the optimal parameters. The ith element 
of vector  is given as follows:

i)	
, if 

ii)	
, if 

iii)	
, if 

iv)	 , if 

Based on these formulation from above, iterative form of 
the FSQM method for solving linear system of equations is

(8)

with

and 

z = cf

where

L1 = (D − αL) −1 ((1-α)D − αU) 

L2 = (D − αU) −1 ((1-α)D − αL)

The general condition which assures the FSQM iterative 
method to converge in solving linear systems is proved 
below with some theorems.
Theorem 1 Let Y be an n × n nonsingular diagonally 
dominant matrix, the components κi,i > 0. For i = 1,2,..., n, 
and by using matrix splitting,

Y = H1 − K1 = H2 − K2

Q = (Hr) 
−1 Kr ,r = 1,2

where matrices (H1)
−1 and (H2)

−1  are nonsingular with 
||(H1)

−1|| ≥ 0, ||(K1)
−1|| ≥ 0, and ||(H2)

−1|| ≥ 0, ||(K2)
−1|| ≥ 0. The 

FSQM iterative scheme in Equation (8) converges for the 
optimal relaxation parameter α in the interval 0 < α < 2.
Proof. By hypothesis, Yn is an n × n nonsingular matrix. 
Since H1 = D − αL and H2 = D − αU are strictly diagonally 
dominant for 0 < α < 2 .
The matrices K1 = (1 − α) D + αU and K2 = (1 − α) D + αL 
are triangular and nonnegative.

Since
H1 − K1 = H2 − K2 = Y

Then we have

or also can be written as

The proof of the theorem runs parallel to the standard 
proof given in (Ortega 1973). Since Q = (Hr)

−1 Kr, then the 
spectral radius is

ρQM (Q) < 1.

Therefore, the FSQM iterative method converges for any 
initial vector  with conditions of 0 < α < 2. Hence, 
Theorem 1 is proved.
The algorithm for solving FIDEs by using FDCT, FDCS1 
and FDCS2 schemes and FSQM iterative method is stated 
below:

Step 1: Set 

Step 2: Iteration cycle 

for k = 0,1,2, ...,max 

for i = u, 2u, ...,n − u, compute 
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for i = u, 2u, ...,n − u, compute 

 

 
for i = u, 2u,, ...,n − u, compute

Step 3: If the convergence meets the requirement, proceed 
to Step 4.

Step 4: Stop.

NUMERICAL SIMULATIONS

In this section, each example of the questions of second 
and fourth order FIDEs are selected for experimental 
calculations in order to analyze the efficiency of the 
proposed full- and half-sweep QM iterative method with 
FDCT, FDCS1, and FDCS2 discretization schemes. For 
studying the effectiveness of the proposed methods, three 
parameters are measured i.e., number of iterations, N, 
execution time, t, and maximum absolute error, εN. 

Problem 1 (Filiz 2000)
Given the second order FIDE

with the boundary conditions

G (0) = 0,   G(1) = 0

The exact solution for the problem 1 is

G(x) = x(x −1)2.

Problem 2 (Ullah 2015)
Given the fourth order FIDE

with the boundary conditions

G(0) = 1,   G (1) = 1 + e

G"(0) = 2,   G" (1) = 3e

The exact solution for the problem 2 is

G(x) = 1 + xex.

Throughout the simulations, the maximum tolerance 
absolute error is set to the range of ε = 10−10.  All the 
numerical simulations have been calculated in a computer 
with processor AMD Ryzen 5 5600H CPU @ 3.30GHz 
and all the algorithm codes will be written in Borland C++ 
programming language. The mesh sizes for the second 
order FIDE are 120, 240, 480, 960, 1200 while for the 
fourth order FIDE are 12, 24, 48, 96, 120.

RESULTS AND DISCUSSIONS

Based on the numerical results in Table 2 and 3, it shows 
that the proposed FSQM and HSQM methods have a better 
result for solving second- and fourth-order FIDEs (Problem 
1&2) compared to the FSGS method across all three 
discretization schemes (i.e., FDCT, FDCS1, and FDCS2). 
This is proven by the percentage reduction calculation as 
shown in Table 4. The FSQM method showed a significant 
reduction in the number of iterations and execution time, 
with decreases ranging from approximately 84.84% to 
86.51% and 64.80% to 69.03%, respectively, across 
all three discretization schemes compared to the FSGS 
method for solving the second-order FIDE (Problem 1). 
Similarly, the HSQM method demonstrated even greater 
improvements, with the number of iterations and execution 
time reduced by approximately 95.42% to 97.61% 
and 83.33% to 99.53%, respectively, across the same 
discretization schemes, compared to the FSGS method. For 
Problem 2, which involves solving the fourth-order FIDE, 
the FSQM method achieved a decrease in the number of 
iterations and execution time by approximately 86.48% 
to 88.76% and 71.43% to 87.50%, respectively, across 
all discretization schemes, when compared to the FSGS 
method. In contrast, the HSQM method yielded even more 
impressive reductions, with the number of iterations and 
execution time decreasing by approximately 94.34% to 
99.15% and 83.33% to 99.53%, respectively, across all 
three discretization schemes, relative to the FSGS method.

Although the FSQM and HSQM methods achieve the 
same level of accuracy as the FSAM and HSAM methods, 
they require significantly less execution time, especially 
for larger mesh sizes. This trend is also observed in the 
performance of the HSQM, HSGS, and HSAM iterative 
methods, as shown in the tables. Specifically, both the 
FSQM and HSQM methods are more efficient, as they 
achieve the same accuracy as the FSAM method but with 
reduced computation time, making them particularly 
advantageous when dealing with larger mesh sizes.
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Overall, the results clearly highlight the computational 
advantages of the FSQM and HSQM methods over 
the FSGS method. Both FSQM and HSQM methods 
consistently achieve significant reductions in execution 
time and iterations, while maintaining comparable 
numerical accuracy. This improvement is attributed to the 
QM method, which incorporates higher-order corrections 
into the iteration process, enhancing the stability and 
accuracy of the updates. As a result, errors are reduced 
more rapidly across the grid. The superiority of the QM 
method is evident across various discretization schemes 
and problem configurations, establishing it as an efficient 
solution for solving dense linear systems. These findings 
advocate for the use of the QM method, especially when 
combined with efficient schemes like FDCS2, as the 
preferred approach for solving second- and fourth-order 
FIDEs. Among the methods discussed, the HSQM iterative 
method emerges as the most efficient in terms of both 
the number of iterations and execution time. To provide 
better clarity, the performance of the proposed methods is 
illustrated in Figures 1 to 4. These figures present a detailed 
analysis of the number of iterations and execution time in 
relation to mesh size.

INNOVATIONS AND PERFORMANCE OF THE FSQM/HSQM 
METHODS

The FSQM iterative method represents a significant 
departure from conventional iterative approaches through 
its sign-sensitive quadratic mean formulation. Unlike 

the FSGS method which relies on unidirectional updates 
without combining iterative sweeps or the FSAM method 
which has linear averaging , the 
FSQM method dynamically weights forward  and 
backward  sweeps based on their sign alignment. 
This innovation employs a non-linear fusion: when both 
sweeps agree in sign, it computes their root-mean-square; 
when they conflict, it applies bias-correction terms. This 
approach enhances stability by amplifying consensus 
between sweeps and suppressing oscillatory errors, a 
limitation of simpler averaging techniques.

Further efficiency is achieved via the HSQM 
variant, which optimizes computational load by updating 
only every second grid point (i = u, 2u, ..., n − u). This 
strategy reduces operations per iteration by ≈ 50% while 
maintaining accuracy comparable to full-sweep methods 
(Tables 2 − 3). The half-sweep paradigm also improves 
memory efficiency by minimizing data access in dense 
matrices, making it particularly advantageous for large-
scale systems. Theoretically, the authors establish rigor 
through Theorem 1, which guarantees convergence for 
the relaxation parameter α ϵ (0,2), and a novel matrix 
decomposition (Y = D − L − U) that updates forward/
backward sweeps in Equation (7). This foundation ensures 
robustness across diverse problem configurations.

Empirical results underscore the superiority of 
HSQM in practical applications. In speed and efficiency, 
the methods reduce iterations by 86-89% and execution 
time by 67-88% compared to FSGS across mesh sizes  
(Table 4, Figures 2, 4). They also outperform FSAM by 

TABLE 4. Percentage reduction in number of iterations and execution time for FSQM and HSQM methods compared to 
the FSGS 

Methods
Problem 1

FDCT FDCS1 FDCS2
Iterations Execution time Iterations Execution time Iterations Execution time

FSQM 84.84 - 86.51% 66.08 - 68.83% 84.85 - 86.51% 64.80 - 67.85% 84.85 - 86.51% 66.42 - 69.03%
HSQM 95.42 - 96.19% 96.49 - 97.69% 95.42 - 96.19% 96.49 - 97.61% 95.42 - 97.61% 96.11 - 97.74%

Methods
Problem 2

FDCT FDCS1 FDCS2
Iterations Execution time Iterations Execution time Iterations Execution time

FSQM 86.48 - 88.76% 80.83 - 86.81% 86.48 - 88.76% 80.16 - 87.50% 86.48 - 88.76% 71.43 - 86.73%
HSQM 94.34 - 99.15% 83.33 - 99.24% 94.34 - 99.15% 87.50 - 99.50% 94.34 - 99.15% 85.71 - 99.53%

TABLE 5. Summary of comparative advantages

Method Iterations Speed Memory use Accuracy Innovation
GS/HSGS High Slow Moderate Good Baseline
AM/HSAM Medium Medium Moderate Good Arithmetic mean
QM/HSQM (Proposed) Lowest Fastest Efficient Equal Quadratic mean + half-sweep
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FIGURE 2. Execution time versus mesh size of the iterative methods 
used to solve Problem 1

FIGURE 1. Number of iterations versus mesh size of the iterative 
methods used to solve Problem 1
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FIGURE 3. Number of iterations versus mesh size of the iterative 
methods used to solve Problem 2

FIGURE 4. Execution time versus mesh size of the iterative methods 
used to solve Problem 2
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5-10% in runtime while matching accuracy-attributed 
to the error-cancelling properties of quadratic fusion. 
Scalability is demonstrated in large-mesh scenarios: for 
Problem 1 (1,200 nodes), HSQM+FDCT solves in 216 
seconds versus FSGS’s 9,372 seconds (43× faster); for 
Problem 2, HSQM+FDCT finishes in 12.65 seconds 
versus FSGS’s 2,438 seconds (193× faster). Crucially, 
these gains do not compromise accuracy preservation, as 
HSQM maintain error magnitudes (ϵN ∼ 10−6 - 10−9) across 
FDCT, FDCS1, and FDCS2 discretization schemes. The 
synergy of HSQM with FDCS2 (Composite Simpson’s 
3/8) emerges as the optimal configuration for fourth-order 
FIDEs, achieving the lowest iterations and time in Table 
3 by combining high-order integral approximation with 
half-sweep efficiency. The HSQM framework redefines 
computational efficiency for Fredholm integro-differential 
equations by merging mathematical innovation (sign-
adaptive quadratic averaging) with strategic optimization 
(half-sweep updates). Its demonstrated advantages in speed, 
scalability, and accuracy position it as a transformative tool 
for large-scale scientific simulations. The effectiveness 
of the methods has been summarized in Table 5 at the 
Appendix. Future work could explore adaptive α tuning or 
parallelization to further amplify performance.

CONCLUSIONS

This paper presents the novel FSQM and HSQM iterative 
methods for solving dense linear systems derived from the 
discretization of second- and fourth-order FIDEs. Through 
comprehensive numerical simulations, it is evident that 
the FSQM and HSQM methods outperform the traditional 
FSGS method in terms of computational efficiency. Both 
methods significantly reduce the number of iterations and 
execution time, with reductions ranging from 84.84% to 
97.74% for the FSQM method and up to 99.53% for the 
HSQM method across various discretization schemes. The 
proposed methods, particularly the HSQM variant, offer 
substantial computational advantages, especially for larger 
mesh sizes, while maintaining comparable accuracy to 
existing methods. The efficiency of the FSQM and HSQM 
methods stems from their novel integration of the quadratic 
mean formulation and the half-sweep technique, which 
together enhance the stability, accuracy, and convergence 
speed of the iterative process. 

These findings highlight the potential of the FSQM 
and HSQM methods as efficient tools for solving 
high-order integro-differential equations in scientific 
simulations, particularly in applications requiring large-
scale computations. Future research could focus on further 
optimizing these methods, exploring adaptive tuning or 
parallelization strategies to extend their applicability to 
even larger and more complex systems. The success of these 
methods in improving computational efficiency without 
sacrificing accuracy marks a significant advancement 
in numerical solution techniques for Fredholm integro-
differential equations. 
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