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ABSTRACT

In this paper, some time-independent diffusion-convection problems in anisotropic media are considered. To study the 
problems, the governing equation of the problems is transformed into a diffusion-convection equation in a homogeneous 
isotropic media. The transformed equation with respect to transformed boundary conditions are solved numerically using 
Dual Reciprocity Boundary Element Method (DRBEM). The method is tested using several problems involving time-
independent diffusion-convection. Two of the problems are with analytical solution, and the other problems are with point 
sources without known analytical solution.
Keywords: Anisotropic media; DRBEM; point source; time-independent diffusion-convection

ABSTRAK

Dalam makalah ini, beberapa masalah resapan-konveksi bebas masa dalam media anisotropik dipertimbangkan. Untuk 
mengkaji masalah, persamaan yang mengawal masalah diubah menjadi persamaan resapan-konveksi dalam media homogen 
isotropik. Persamaan berkenaan dengan keadaan sempadan yang diubah diselesaikan secara berangka menggunakan 
Kaedah Unsur Dual Kesalingan Sempadan (DRBEM). Kaedah ini diuji menggunakan beberapa masalah yang melibatkan 
resapan-konveksi bebas masa. Dua daripada masalah adalah dengan penyelesaian analitik dan masalah lain adalah dengan 
sumber mata tanpa penyelesaian analitik yang diketahui.
Kata kunci: DRBEM; media anisotropik; resapan-konveksi bebas masa; sumber mata

INTRODUCTION

Diffusion-convection challenges have long captivated 
researchers. Numerous studies have explored these topics, 
including those by Capinski et al. (1999), Huxtable et 
al. (2004), Norris et al. (2003), and Paddock and Eesley 
(1986). Paddock and Eesley (1986) investigated transient 
thermoreflectance in thin metal films. Capinski et al. 
(1999) focused on measuring thermal conductivity using 
a picosecond optical pump and probe technique. Norris 
et al. (2003) applied femtosecond pump-probe methods 
to analyze certain materials, and Huxtable et al. (2004) 
conducted thermal conductivity imaging at a micrometer 
scale. The majority of these studies are experimental in 
nature.

One approach to studying diffusion-convection in 
anisotropic materials is through mathematical modeling. 
However, analytical solutions are typically not possible for 
the resulting mathematical model. Thus, this paper employs 
a numerical solution using a type of Boundary Element 
Method (BEM) known as the Dual Reciprocity Boundary 
Element Method (DRBEM). A key advantage of these 
methods is their capability to reduce the dimensionality 
of the problem. The time-independent, two-dimensional 
spatial problems examined here can be reduced to one-
dimensional problems. Many researchers have used 
boundary element methods in their studies (Ashar & 
Solekhudin 2021; Clements & Lobo 2010; Munadi et al. 
2020, 2019; Solekhudin 2018). For instance, Clements and 
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Lobo (2010), Munadi et al. (2019, 2020), Solekhudin, Sari 
and Makhrus (2024), and Solekhudin et al. (2018) applied 
boundary element techniques to analyze water infiltration 
in homogeneous soils, while Ashar and Solekhudin (2021) 
employed this method to simulate substance dispersion 
from a point source in a river.

Researchers have primarily focused on problems in 
homogeneous materials. However, some studies have 
applied boundary element techniques to nonhomogeneous 
materials as well. For example, Solekhudin (2020) used 
the method to solve infiltration problems in layered soils, 
while Ang and Clements (2009) applied it to the nonlinear 
heat equation in nonhomogeneous anisotropic materials. 
Additionally, Azis et al. (2021) utilized the technique to 
address issues in anisotropic functionally graded materials. 

This study extends the work of Ashar and Solekhudin 
(2021), in which the fluid was assumed to be homogeneous. 
In the present paper, we address the effects of fluid 
heterogeneity. Specifically, we investigate time-dependent 
diffusion-convection problems in a heterogeneous fluid 
with a point source. As in the previous study, the DRBEM is 
employed to solve the problems. To evaluate the accuracy 
of the method, two test cases with known analytical 
solutions are created. Subsequently, the method is applied 
to time-independent diffusion-convection problems 
involving a point source, for which no analytical solutions 
are available.

PROBLEM FORMULATION 

In this study, we investigate fluid flow through a straight 
channel that has a width of one unit. At one boundary of 
the flow domain, there is a discharge pipe that releases a 
substance, such as a pollutant, into the flow. The geometry 
of the problem is illustrated in Figure 1. 

The fluid is assumed to be heterogeneous, with 
no flux across the boundary. It is further assumed that, 
beyond a certain downstream distance from the pipe, 
the concentration of the substance becomes uniform (the 
flux is zero). Based on these assumptions, this research 
examines the influence of fluid heterogeneity, convection 
coefficients, and quantity of the substance source on the 
distribution of the substance within the fluid.

MATHEMATICAL MODEL AND NUMERICAL SOLUTION 
METHOD 

In this section, the mathematical model of steady diffusion-
convection problems in anisotropic media with a point 
source is presented. A brief derivation of DRBEM for 
solving the problems is also presented. The general form of 
diffusion-convection equation is (Atangana 2018)

(1)

where u is the substance concentration; D is the diffusivity; 
v is the velocity with which the substance moving; and g 
is the source or sink term. In this study, it is assumed that 
no chemical reactions affect the quantity of the substance, 
so the function g depends solely on space. For steady two-
dimensional diffusion-convection in heterogeneous media, 
Equation (1) can be written as

k11uxx + (k12 + k21)uxy + k22uyy – v1ux – v2uy + g(x,y) = 0. (2)

Here [kij] is the diffusivity, and 
 
v = [v1 v2], where v1 

 
and v2

 are components of fluid velocity vector in x and y direction 
respectively. 

In problems involving a point source located at (a, b), 
where the total substance released from the source is given 
by Q(x, y) = Q(a, b), the source term g can be written as 

g(x, y) = Q(x, y) δ (x, y; a,b)

where Q represents the source intensity and δ denotes the 
Dirac delta function. The delta function is defined as

and satisfies the property 

FIGURE 1. Geometrical setup of the problem in this study
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for any ϵ > 0. This representation captures the assumption 
that the source is concentrated at a single point (a, b), 
with no contribution elsewhere, and that the total quantity 
of substance introduced into the fluid equals Q(a, b), 
consistent with the modelling framework.

The problem described in the preceding section has 
the following domain

Ω = {(x, y) : x ϵ  and 0 < y < 1}.

To implement the Dual Reciprocity Boundary Element 
Method (DRBEM), it is necessary to have imposed 
boundaries such that the domain is enclosed by a simple 
closed curve. For this purpose, the values of x must lie 
within an interval [α, β ], where α, β ϵ . The source point 
is taken to be (1,0). Through a series of trial-and-error 
computational experiments, the interval [α, β] = [0, 5] was 
identified as appropriate, as it ensures that the imposed 
boundary does not affect significantly on the solution at 
interior points. Now, the new domain is

Ω' = {(x, y) : 0 < x < 5 and 0 < y < 1},

bounded by a simple closed curve T'. Hence, the boundary 
conditions for the diffusion-convection problems described 
in the preceding section are

u = 0, x = 0 and 0 < y < 1, (3)

v = 0, 0 < x < 5 and y = 0, (4)

v = 0, x = 5 and 0 < y < 1, (5)

v = 0, 0 < x < 5 and y = 1, (6)

where  is the flux. Here x1= x and 
x2 = y, and n = [nx, ny] is the normal vector pointing out 
region Ω'.

The DRBEM cannot be applied to solve Equation (3) 
due to the inequality ​ and the presence of the uxy​ 
term. Therefore, it is necessary to transform the coordinate 
system into a new one through a set of transformations, 
as outlined by Pramesthi, Solekhudin and Azis (2021). A 
summary of the set of transformations is provided below; 
for more comprehensive details, please refer to Pramesthi, 
Solekhudin and Azis (2021).

Let 

Making use of rotation 

and dilatation 

Equation (1) can be transformed into

uXX + uyy – V1uX – V2uY + G(X,Y) = 0, (7)

where 

p and q satisfy p2 + q2 = 1, 

and

           

       

Here k1 and k2 are the eigenvalues of matrix K. Moreover, 
domain Ω', boundary T', and Boundary conditions (3) to 
(6) are also transformed using the same transformations. 
Let the transformed domain and boundary are denoted by 
Ω* and T*, respectively.

Now, we solve the diffusion-convection with a point 
source modelled in Equation (7), with respect to the 
transformations of Boundary conditions (2) – (5) using 
the DRBEM. To implement the DRBEM, using Gauss’s 
theorem, we can express the solution of Equation (7) in an 
integral equation. The integral equation is 

(8)

where T* and Ω* are the transformations of T' and Ω', 
respectively,  is the fundamental solution of 
Laplace equation, and
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The DRBEM is formulated based on Integral Equation (8). 
The implementation of the DRBEM proceeds as follows:

Boundary Discretization  
The boundary T* is discretized into N connected line 
segments, denoted by C(n), n = 1, 2, …, N.

Collocation Points
For each boundary segment, the midpoint is selected as 
a collocation point. Additionally, L interior collocation 
points are chosen within the domain. In total, there are N+L 
collocation points, denoted as (α(k), b(k)) , for k = 1, 2, …, 
N+L.

Function Approximations
The values of u and its normal derivative  on each 
segment are approximated by:

(u(x,y) ≈ u(α(k), b(k)) = u(k),

and

Formulation of the System of Linear Equations 
Substituting these approximations into the integral equation 
(8), and evaluating the solution at the collocation points, 

 (ξ,η) = (a(n), b(n)), the problem is reduced to a system of 
linear equations of the form:

The terms involved in this formulation are defined as 
follows (Ang 2007):

and

Here

ω(mk) is defined by

and

Solution of the System of Linear Equations 
The resulting system is solved to obtain the values of u at 
the collocation points.

RESULTS AND DISCUSSION

In this section, the DRBEM is applied to solve diffusion-
convection problems with a point source in heterogeneous 
media. Initially, the DRBEM is used to solve two diffusion-
convection problems with known analytical solutions. This 
implementation aims to evaluate the method’s accuracy 
and efficiency. Subsequently, the DRBEM is employed to 
solve a variety of diffusion-convection problems with a 
point source in heterogeneous fluid flows.

PROBLEMS WITH KNOWN ANALYTICAL SOLUTIONS

We consider two problems with known analytical solutions. 
The two problems are as follows. Problem 1

The first problem considers a diffusion-convection 
governed by the partial differential equation

2uxx + 2uxy – 3uyy + 10ux + 4uy = 0, (8)

subject to the following Dirichlet boundary conditions:

u = exp (–x), 0 < x < 1 and y = 0, (9)

u = exp (–1 – 2y), x = 1 and 0 < y < 1, (10)

u = exp (–x – 2), 0 < x < 1 and y = 1, (11)

u = exp (– 2y), x = 0 and 0 < y < 1. (12)

The analytic solution to this boundary value problem is 
given by

u = exp (– x – 2 γ). (13)
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To solve this problem, the DRBEM is implemented using 
361 interior collocation points. Two different sets of line 
segments are considered: 20 segments and 80 segments. 
Some of the results are summarized in Table 1.

Table 1 shows that the DRBEM yields more accurate 
results when 80 boundary segments are used, compared 
to the results obtained with only 20 segments. This 
observation indicates that increasing the number of 
boundary segments enhances the accuracy of the numerical 
solution. Furthermore, the numerical results show good 
agreement with the corresponding analytical solution, 
confirming the reliability of the method.
Problem 2
In this problem, a diffusion-convection problem with a 
source term is governed by

9uxx + 4uxy – 3uyy + 9ux + 4uy + 3π2exp (– x) sin 
(πy)= 0, (14)

with boundary conditions as follows.

v = –3π exp (– x), 0 < x < 1 and y = 0, (15)

 

u = exp (–1) sin(πy), x = 1 and 0 < y < 1, (16)

u = 0, 0 < x < 1 and y = 1, (17)

v = 9 sin(πy), x = 0 and 0 < y <1. (18)

The analytic solution of Problem 2 is

u = exp (–x) sin(πy). (19)

To solve Problem 2 as that in Problem 1, 361 interior 
collocation points are used. Four segment configurations 
are considered: 40, 80, 120, and 160 segments. Some of the 
results obtained are presented in Figure 2.

Let E be the absolute error of the numerical solution 
obtained. Figure 2 illustrates the graphs of log(E) obtained 
by implementing the DRBEM with 361 interior points with 

four different numbers of segment. Specifically: Figure 
2(a) shows log(E) at x = 0.2, Figure 2(b) at x = 0.4, Figure 
2(c) at x = 0.6, Figure 2(d) at x = 0.8. Figure 2 presents 
the numerical error and solution comparison for a 2D 
simulation problem at four different lines along the y-axis. 
Subplots (a) through (d) illustrate the logarithmic absolute 
error, log(E), of the numerical solution with respect to the 
analytical solution for different values of x = 0.2, 0.4, 0.6, 
and 0.8, respectively. Four different boundary discretization 
are evaluated: N = 40, 80, 120, and 160.

Across all subplots, it can be observed that the 
numerical error decreases as the segment or element 
increases (i.e., higher N). For instance, in each subfigure, the 
curve corresponding to N = 40 results in the highest error, 
while N = 160 shows the lowest. This behaviour confirms 
that the numerical method employed is convergent, and 
increasing the number of segments improves accuracy.

Subfigure (e) compares the numerical solutions at 
different values of x, x = 0.2, 0.4, 0.6, and 0.8 for a fixed 
number of segments, N = 40 with the analytical solution 
(represented by square markers). As can be observed, 
the numerical results relatively close to the analytical 
solutions, suggesting that even at a relatively small number 
of segments, the numerical scheme shows a good accuracy. 
These findings affirm that DRBEM is an effective numerical 
approach for addressing diffusion-convection problems of 
this type. 

PROBLEMS WITH UNKNOWN ANALYTICAL SOLUTIONS

In this section, we examine the spread of substances 
originating from a point source within the laminar flow of 
a heterogeneous fluid along the x-axis (where v2 = 0). The 
mathematical formulation of these problems is represented 
by the equation:

k11uxx + (k12 + k21)uxy + k22uyy – v1ux + Q (x,y) δ(x,y; 
1,0) = 0, (20)

TABLE 1. Numerical vs analytical results obtained using 20 segments and 80 segments at selected points

Point
Numerical results Analytical 

results
Absolute errors

20 Segments 80 Segments 20 Segments 80 Segments
(0.1,0.1) 0.74656665 0.74083991 0.74081822 0.00574843 0.00002169
(0.5,0.1) 0.49798653 0.49660038 0.49658530 0.00140122 0.00001507
(0.9,0.1) 0.33444177 0.33291510 0.33287108 0.00157068 0.00004401
(0.1,0.5) 0.33473802 0.33293328 0.33287108 0.00186693 0.00006220
(0.5,0.5) 0.22333456 0.22315852 0.22313016 0.00020440 0.00002836
(0.9,0.5) 0.15112736 0.14957991 0.14956862 0.00155874 0.00001130
(0.1,0.9) 0.15422081 0.14963251 0.14956862 0.00465219 0.00006389
(0.5,0.9) 0.10133543 0.10030410 0.10025884 0.00107659 0.00004525
(0.9,0.9) 0.07201250 0.06726116 0.06720551 0.00480698 0.00005564
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FIGURE 2. Absolute errors resulted from various line segments at 
selected values of x and comparison of numerical vs analytical 

solutions
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subject to the boundary conditions outlined in Equations 
(2) through (5). Four distinct problem scenarios are 
explored in this section. Before delving into the four cases, 
it is essential to determine the number of elements required 
to implement the DRBEM effectively, ensuring a balance 
between accuracy and computational efficiency. For this 
purpose, we examine the substance dispersion problem 
governed by the equation: 

9uxx + 4uxy + 3uyy – 2ux + 2δ (x, y; 1,0 = 0, (21)

subject to boundary conditions given in Equations (3) to 
(6). In this analysis, 931 interior collocation points are 
used. We explore six different element (N) configurations: 
60, 120, 180, 240, 300, and 360. The DRBEM is 
implemented using MATLAB R2018b with these segment 
configurations. Table 2 summarizes the computational 
time associated with running the numerical simulations.
As the problem lacks an analytical solution, we define a 
quantity δ(x,y) as follows: 

δ(x,y) = |u(x,y) – u360 (x,y)|, (22)

where u (x,y) represents the numerical solution at (x,y)  
obtained using the specified number of segments, and 

 
u360 

(x,y) is the numerical solution at (x,y) computed with 360 
segments. Selected values of δ are displayed in Figure 3.

Figure 3 illustrates the values of δ within the domain. 
Specifically, Figure 3(a) presents δ values at five distinct 
points along x = 1, Figure 3(b) shows values at x = 3, and 
Figure 3(c) displays values at x = 4.5. Figure 3(d) shows 
surface plots of δ. From the figure, it is evident that δ 
increases as x becomes larger. Additionally, as N increases, 
the values of δ decrease. Notably, for N = 240, the δ values 
are relatively small or close to zero. Based on these results, 
N = 240 is selected for implementing the DRBEM to solve 
the subsequent problems.

Problem Set 1
In this set, the diffusivity coefficients are defined as k11 = 9, 
k12 = 2, and k22 = 3 . The focus is on examining the effects of 
fluid velocity and the amount of substances emitted from 
the source on substance dispersion. Two values of v1 are 
considered: v1 = 1 and v1 = 2. Additionally, two different 
values of Q(x,y) are examined: Q(x,y) = 1 and Q(x,y) = 2. 

Problem Set 2
In this set, the diffusivity coefficients are fixed at k11 = 9  
and k22 = 3, while the flow velocity is set to v1 = 2, and the 
source quantity is Q(x, y) = 2. The diffusivity k12  is varied, 
with three values being analyzed: k12 = 1 , k12 = 2 , and k12 = 
3 . The purpose of varying k12 is to analyze the effect of k12  
to the values of u. Selected numerical solutions from both 
Problem Set 1 and Problem Set 2 are depicted in Figure 4.

Figure 4(a) presents the numerical results from 
Problem Set 1, where four scenarios are analyzed. The 

first scenario examines substance dispersion with a source 
quantity of Q(x,y) = 2 in a homogeneous fluid characterized 
by flow velocity v1 = 2 and diffusivity coefficients of 4.8. 
In the other three scenarios, the diffusivity coefficients are 
set as 

 
k11 = 9, k12 = 2 , and k22 = 3. In the second scenario, 

we set v1 = 2 and Q(x, y) = 2. The third scenario uses  
v1 = 2 and Q(x, y) = 1. The fourth scenario considers  
v1 = 1 and Q(x, y) = 2.

It can be seen that at smaller values of y, the highest 
concentration of substance occurs at x = 1, which is the 
point of source located. The results indicate that substance 
dispersion is higher in a homogeneous fluid. This suggests 
that lower horizontal diffusivity (k11) leads to increased 
substance accumulation. This finding aligns with real-
world observations: when substances are continuously 
released into a medium with low diffusivity, the slower 
dispersion causes higher substance concentrations over 
time compared to a medium with higher diffusivity, which 
allows faster spread.

Among the three cases with heterogeneous fluids, 
the scenario with v1 = 1 exhibits the highest substance 
concentration, which is expected because the slower 
horizontal flow results in reduced dispersion. Conversely, 
the scenario with v1 = 2 and Q(x, y) = 1 has the lowest 
substance concentration. This can be attributed to the 
reduced amount of substances being released, which is half 
that of the other cases.

Figure 4(b) displays graphs of u along the x-axis at 
selected y-values for the case where k11 = 9 and k22 = 3, 
with three different values of k12. In this scenario, the flow 
velocity is v1 = 2 and the substance source quantity is Q(x, 
y) = 2. The results indicate that an increase in k12 leads to 
higher substance distribution.

Problem Set 3
In this analysis, the diffusivity coefficients k12 = 2 and 

 
k22 

= 3 are held constant, while the flow velocity is set to v1 
= 2, and the source term is Q(x, y) = 2. The diffusivity 
k11 is varied, taking the values k11 = 7, k11 = 9 , and k11 = 
11. The objective is to study how changes in k11 affect the 
distribution of u.

Problem Set 4
Here, the diffusivity coefficients k11 = 9 and k12 = 2 are 
fixed, with the flow velocity set to v1 = 2, and the source 
term defined as Q(x, y) = 2. The diffusivity k22 is varied, 
analyzing the values k22 = 1, k22 = 3, and k22 = 5. This 
variation aims to examine the influence of k22 on the 
distribution of u. Selected numerical results from Problem 
Set 3 and Problem Set 4 are illustrated in Figure 5.

Figure 5(a) displays numerical results from Problem 
Set 3. The diffusivity coefficients are 

 
k22 = k21 = 2 and k22 

= 3, with the source term Q(x, y) = 2 and flow velocity 
 
v1 

= 2. Three scenarios are analyzed: the first considers k11 
= 9, thje second uses k11 = 7, and the third employs k11 = 
11. For all scenarios, four fixed y-values are examined: y 
= 0.1, y = 0.3, y = 0.6, and y = 0.9. The aim is to evaluate 
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FIGURE 3. Values of δ at selected absolute errors resulted from various 
line segments at selected values of x and comparison numerical vs 

analytical solutions

TABLE 2. Computational time needed for running the code for implementing the DRBEM

Number of segments Computational time (s)
60 55.047675
120 107.576988
180 178.185288
240 247.787502
300 339.073585
360 400.235451
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FIGURE 4. Graphs of u at selected values of y for Problem set 1 and 
Problem set 2
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FIGURE 5. Graphs of u at selected values of y along x-axis for Problem 
set 3 and Problem set 4



2323

how variations in k11, horizontal diffusivity, influence the 
substance distribution in fluid. It is evident that higher 
horizontal diffusivity reduces substance concentration, 
which aligns with expectations: faster spreading results in 
lower concentrations.

Figure 5(b) illustrates graphs of u along the x-axis for 
the same y-values as in Figure 5(a), focusing on the scenario 
where k11 = 9 and k12 = k21 = 2 . Here, three different values 
of k22 are considered. The flow velocity remains v1 = 2, and 
the source term is Q(x, y) = 2. The objective is to observe 
the effect of vertical diffusivity on substance distribution 
in fluid. The results show that increasing k22 leads to lower 
substance concentrations, similar to the patterns observed 
in Figure 5(a). Higher diffusivity values enhance spreading, 
which in turn decreases concentration levels in the fluid. 
The distribution of substance concentration in the fluid for 
all cases is represented as surface plots in Figure 6.

CONCLUDING REMARKS

The Dual Reciprocity Boundary Element Method 
(DRBEM) is used to solve diffusion-convection problems 
involving the spread of substances from a point source 
in a flowing heterogeneous fluid. Initially, the method is 
applied to two problems with known analytical solutions to 
validate its accuracy. Following this, it is used for solving 
substance spread problems where analytical solutions are 
unavailable.

In cases with known analytical solutions, the results 
show that increasing the number of boundary elements 
improves accuracy. However, this also increases 
computational time. For the substance spread problems 
in flowing heterogeneous fluid, the DRBEM is applied 
under various conditions. In one scenario, the diffusion 
coefficients are fixed, and the fluid flow velocity and the 
quantity of substance entering the fluid are varied. Another 

FIGURE 6. Surface plots of u for all problems analysed in this study



2324

scenario involves fixing the flow velocity, the substance 
quantity, and the diffusion coefficients, except for the 
horizontal diffusion coefficient, which is varied. A similar 
scenario considers varying the values of k12. In a further 
scenario, all parameters are fixed except k22, which are 
varied.

The results show that lower fluid flow velocities lead 
to higher substance concentrations in the fluid. Similarly, 
lower horizontal and vertical diffusion coefficients result 
in higher concentrations. However, decreasing k12 leads 
to lower concentrations. Additionally, increasing vertical 
diffusion coefficients is more effective at reducing 
substance concentrations compared to horizontal 
diffusion coefficients.

ACKNOWLEDGEMENTS

We acknowledge the financial support from Program 
KATALIS 2024 (Grant No. 3767/UNI/DITLIT/
PT.01.03/2024) and RKI 2025 (Grant No. 1593/UN1/
DITLIT/Dit-Lit/PT.01.03/2025).

REFERENCES

Ang, W.T. 2007. A Beginner’s Course in Boundary 
Element Methods. Florida: Universal Publishers.

Ang, W.T. & Clements, D.L. 2009. Nonlinear heat equation 
for nonhomogeneous anisotropic materials: A dual-
reciprocity boundary element solution. Numerical 
Methods for Partial Differential Equations 26: 771-
784.

Ashar, N.Y. & Solekhudin, I. 2021. A numerical study of 
steady pollutant spread in water from a point source. 
Engineering Letters 29(3): 840-848.

Atangana, A. 2018. Fractional Operators with Constant 
and Variable Order with Application to Geo-
Hydrology. Massachusetts: Academic Press.

Azis, M.I., Solekhudin, I., Aswad, M.H., Hamzah, S. 
& Jalil, A.R. 2021. A combined laplace transform 
and boundary element method for unsteady 
laplace problems of several classes of anisotropic 
functionally graded materials. Engineering Letters 
29: 534-542.

Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, 
K. & Katzer, D.S. 1999. Thermal-conductivity 
measurements of GaAs/AlAs superlattices using a 
picosecond optical pump-and-probe technique. Phys. 
Rev. B. 59(12): 8105-8113.

Clements, D.L. & Lobo, M. 2010. A BEM for time 
dependent infiltration from an irrigation channel. 
Engineering Analysis with Boundary Elements 34: 
1100-1104.

Huxtable, S., Cahill, D.G., Fauconnier, V., White, J.O. 
& Zhao, J.C.  2004. Thermal conductivity imaging 
at micrometre-scale resolution for combinatorial 
studies of materials. Nature Mater. 3: 298-301.

Munadi, Solekhudin, I., Sumardi & Zulijanto, A. 2020. A 
numerical study of steady infiltration from a single 
irrigation channel with an impermeable soil layer. 
Engineering Letters 28(3): 1-8.

Munadi, Solekhudin, I., Sumardi & Zulijanto, A. 2019. 
Steady water flow from different types of single 
irrigation channel.  JP Journal of Heat and Mass 
Transfer 16(1): 95-106.

Norris, P.M., Caffrey, A.P., Stevens, R.J., Klopf, J.M., 
James, J., McLeskey, T. & Smith, A.N.     2003. 
Femtosecond pump–probe nondestructive 
examination of materials. Rev. Sci.   Instrum. 74(1): 
400-406.

Paddock, C.A. & Eesley, G.L. 1986. Transient thermos 
reflectance from thin metal films. J. Appl. Phys. 
60(1): 285-290.

Pramesthi, A.A.N., Solekhudin, I. & Azis, M.I. 2021. 
Implementation of dual reciprocity boundary 
element method for heat conduction problems in 
anisotropic solid. IAENG International Journal of 
Applied Mathematics 52(1): 122-130.

Solekhudin, I. 2020. Boundary interface water infiltration 
into layered soils using dual reciprocity methods. 
Engineering Analysis with Boundary Elements 119: 
280-292.

Solekhudin, I. 2018. A numerical method for time-
dependent infiltration from periodic trapezoidal 
channels with different types of root-water uptake. 
IAENG International Journal of Applied Mathematics 
48(1): 84-89.

Solekhudin, I., Sari, A.K & Makhrus, F.  2024. An iterative 
dual reciprocity method for a class of infiltration 
problems in two-layered soils with different types of 
root-water uptake. IAENG International Journal of 
Applied Mathematics 54(7): 1390-1399.

Solekhudin, I., Purnama, D., Malysa, N.H. & Sumardi. 
2018. Characteristic of water flow in heterogeneous 
soils. JP Journal of Heat and Mass Transform 15(3): 
597-608.

*Corresponding author; email: imams@ugm.ac.id


