Sains Malaysiana 42(9)(2013): 1333–1337
Preparation
of Porous Si (100) for Overgrown Cubic Layer: Morphological Investigation
(Penyediaan Si (100) Berliang untuk Pertumbuhan Lapisan Atas
Kubik: Kajian Morfologi)
M.E.A. Samsudin1, M. Ikram Md Taib1, N. Zainal1*, R. Radzali2 3, S. Yaakob4 & Z. Hassan1
1Nano-optoelectronics Research and Technology, School of Physics,
Universiti Sains Malaysia
11800, Penang, Malaysia
2Nano-optoelectronics Research and Technology, School of Physics,
Universiti Sains Malaysia
11800, Penang, Malaysia
3Fakulti Kejuruteraan Elektrik Universiti Teknologi
MARA 40450 Shah Alam, Selangor, D.E. Malaysia
4School of Chemical Sciences, Universiti Sains Malaysia,
11800, Penang, Malaysia
Diserahkan 19 Disember 2012 /Diterima: 19 Januari
2013
ABSTRACT
A number of n-type Si (100) samples were prepared into porous
structures via electrochemical etching process, using an electrolyte solution; HF and
ethanol. The morphological properties of the samples were observed under
scanning electron microscope measurement. The results showed that the pore
density, pore uniformity distribution and pore size of the porous Si samples
increased with time of etching. In the next stage, H2O2 was
introduced into the electrolyte solution in order to investigate its effect on
the morphological properties of the porous Si. From the experiment, we found
that H2O2 gave
finer porous structure with highly symmetrical cubic shape on the surface.
Besides, H2O2 promoted
smoother surface of the pore walls. Hence, the results showed that such porous
Si structure could be used as a better substrate for the subsequent layer, in
particular for the growth of cubic material.
Keywords: Hydrogen peroxide; morphological properties; porous
silicon
ABSTRAK
Beberapa jenis-n Si (100) sampel telah disediakan dalam bentuk
struktur berliang melalui proses punaran elektrokimia, menggunakan larutan
elektrolit; HF dan etanol. Sifat morfologi sampel
tersebut telah diperhatikan di bawah mikroskop elektron imbasan. Keputusan pengukuran tersebut menunjukkan bahawa ketumpatan liang,
keseragaman taburan liang dan saiz liang bagi sampel Si berliang meningkat
dengan masa punaran. Pada peringkat seterusnya, H2O2 telah
dicampurkan ke dalam larutan elektrolit tersebut untuk mengkaji kesannya
terhadap sifat morfologi Si berliang. Daripada
experimen tersebut, kami mendapati bahawa H2O2 memberikan
struktur berliang yang lebih halus dengan bentuk kubik yang bersimetri tinggi
pada permukaan. Selain itu, H2O2 turut
menyebabkan permukaan dinding liang menjadi lebih
licin. Justeru, hasil kajian tersebut mencadangkan bahawa
struktur Si berliang seperti ini boleh digunakan sebagai substrat yang lebih
baik untuk lapisan seterusnya, khususnya untuk pertumbuhan bahan kubik.
Kata kunci: Hidrogen peroksida; sifat morfologi;
silicon berliang (100)
RUJUKAN
Barillaro, G., Nannini, A. & Pieri, F. 2003. APSFET: A new, porous silicon-based gas sensing device. Sensors
and Actuators B 93: 263-270.
Foucaran, A., Pascal-Delannoy, F., Giani, A.,
Sackda, A., Combette, P. & Boyer, A. 1997. Porous silicon layers used for gas sensor applications. Thin
Solid Films 297: 317-320.
Hu, G., Qiang, L.S., Gong, H., Zhao, Y., Zhang, J., Sudesh, T.L.,
Wijesinghe, L. & Blackwood, D.J. 2009. White light from an indium zinc
oxide/porous silicon light-emitting diode. Journal of Physical Chemistry C 113:
751-754.
Ishikawa, H., Shimanaka, K., Azfar, M., Hara, Y.
& Nakanishi, M. 2010. Improved
MOCVD growth of GaN on Si-on-porous-silicon substrates. Physical
Status Solidi C 7: 2049-2051.
Kumar, P., Hofmann, T., Knorr, K., Huber, P., Scheib, P. &
Lemmens, P. 2008. Tuning the pore wall morphology of mesoporous silicon from
branchy to smooth, tubular by chemical treatment. Journal of Applied Physics 103: 024303- 024303-6.
Kumar, P., Lemmens, P., Ghosh, M., Ludwig, F.
& Schilling, M. 2009. Effect
of HF concentration on physical and electronic properties of electrochemically
formed nanoporous silicon. Journal of Nanomaterials 2009: 728957.
Lehmann, V., Hofmann, F., Möller, F. &
Grüning, U. 1995. Resistivity of porous
silicon: A surface effect. Thin Solid Films 255: 20-22.
Lehmann, V., Jobst, B., Muschik, T., Kux, A.
& Petrova-Koch, V. 1993. Correlation
between optical properties and crystallite size in porous silicon. Japanese
Journal of Applied Physics 32: 2095-2099.
Sailor, M.J. 1997. Sensor applications of porous silicon. In Properties of Porous Silicon, edited by Canham, L. Exeter, England:
Short Run Press Ltd. pp. 364-370.
Sharma, S.N., Sharma, R.K. & Lakshmikumar, S.T. 2005. Role of an electrolyte and substrate on the stability of porous
silicon. Physica E. 28: 264-272.
Splinter, A., Stürmann, J. & Benecke, W.
2001. Novel porous silicon
formation technology using internal current generation. Materials
Science and Engineering C 15: 109- 112.
Zhang, X.G. 2005. Porous silicon: Morphology and formation
mechanisms. In Modern Aspects of Electrochemistry 39,edited by Vayenas,
C.G., White, R.E. & Gamboa-Adelco, M.E. New York:
Springer. pp. 65-133.
Zhang, X.G. 2004. Morphology and formation
mechanisms of porous silicon. Journal of the Electrochemical Society 151:
C69-C80.
*Pengarang
untuk surat-menyurat; email: norzaini@usm.my
|