Sains Malaysiana 42(9)(2013): 1339–1344
Pendekatan
Pengesanan Titik Sauh Secara Automatik bagi Kesan Pin Peletup Senjata Api
(Automatic Anchor Point Detection Approach for Firearms Firing Pin
Impression)
Zun Liang Chuan1, Nor Azura Md Ghani2, Choong-Yeun Liong1* & Abdul Aziz Jemain1
1Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi, Universiti
Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E, Malaysia
2Pusat Pengajian Statistik dan Sains Pemutusan, Fakulti Sains Komputer
dan Matematik
Universiti Teknologi MARA, 40450 Shah Alam, Selangor D.E,Malaysia
Diserahkan: 22 Mei 2012 / Diterima: 10 Mac 2013
ABSTRAK
Oleh sebab kejadian jenayah bersenjata api semakin berleluasa,
pengecaman senjata api yang digunakan oleh penjenayah amat diperlukan sebagai bahan
bukti dalam mahkamah. Beberapa sistem pengecaman senjata api telah diutarakan
sebagai pengganti kepada cara penyiasatan tradisional yang amat bergantung
kepada kepakaran ahli balistik. Pemetakan rantau tumpuan (ROI)
berdasarkan kedudukan titik sauh (PAP) sempadan bulatan kesan pin
peletup pada tapak kelongsong peluru merupakan langkah yang amat penting dalam
sistem pengecaman senjata api automatik. Walau bagaimanapun, kaedah yang
digunakan dalam kajian lepas bagi mengesan (PAP)
sempadan bulatan tersebut adalah sangat kompleks dan memerlukan masa
pemprosesan yang panjang. Kajian ini menerokai algoritma yang efisien dan
berkemampuan untuk mengesan PAP sempadan bulatan secara
automatik. Algoritma yang diutarakan merupakan gabungan daripada penapis penajaman
reruang, penormalan histogram, pengambangan dan penganggar kuasa dua terkecil
tak berpemberat. Dua kaedah pengambangan yang terkenal telah diuji dan
dibandingkan, iaitu kaedah pengambangan berasaskan pengelompokan dan kaedah
berasaskan entropi. Di samping itu, penerokaan kesan saiz dan bentuk (ROI)
terhadap kadar pengelasan senjata api turut dipersembahkan. Sebanyak 747 imej
kesan pin peletup jenis sempadan bulatan peletup yang dihasilkan oleh lima
pucuk pistol yang berlainan daripada jenis yang sama digunakan untuk menguji
algoritma yang diutarakan. Kadar pengelasan imej kesan pin peletup yang
memberangsangkan (> 95%) telah dicapai dengan algoritma yang dicadangkan.
Kajian juga mendapati bahawa saiz dan bentuk pemetakan ROI mempunyai kesan langsung
terhadap kadar pengelasan senjata api.
Kata kunci: Balistik forensik; rantau tumpuan; senjata api; titik
sauh
ABSTRACT
Since the number of crimes involving firearms is becoming rampant,
identification of firearms used by criminals is a crucial step in the court.
Several automatic firearm identification systems have been developed to improve
on the traditional investigation method which relies heavily on the expertise
of the forensic ballistics experts. An important step in automatic firearm
identification is partitioning of the region of interest (ROI)
based on the position of the anchor point (PAP)
within the circular boundary of a firing pin impression. However, in the
previous studies, the methods used to determine the PAP of
a circular boundary are very complex and time consuming. This study explored
algorithms that are efficient and able to detect the anchor point of a circular
boundary automatically. The proposed algorithms are a combination of sharpening
spatial filter, histogram normalization, thresholding and an unweighted least
square estimator. Two popular threshold selection methods, namely
clustering-based and entropy-based threshold selection methods, have been
investigated and compared. In addition, exploration on the effects of size and
shape of ROI on the firearm classification accuracy rates were
discussed. A total of 747 images of circular boundary firing pin impression
produced by five different pistols of the same model were used to test the
proposed algorithms. Encouraging classification rates of the firing pin
impression images (> 95%) were achieved with the proposed algorithms. This
study also found that the size and the shape of the ROI partition
have a direct effect on the firearms classification rates.
Keywords: Anchor point; firearms; forensic
ballistics; region of interest
RUJUKAN
Geradts, Z., Bijhold, J., Hersen, R. &
Murtagh, F. 2001. Image matching algorithms for breech face marks and firing
pins in a database of spent cartridge cases of firearms. Forensic Science
International 119(1): 97-106.
Ghani, N.A., Liong, C-Y, & Jemain, A.A.
2009. Analysis of geometric moments as features for identification of forensic
ballistics specimen. Lecture Notes in Computer Science: LNCS 5518. Berlin:
Springer.
Ghani, N.A. 2010. Analisis spesimen balisitik
forensik untuk pengecaman senjata api. Tesis Dr. Fal, Pusat Pengajian Sains
Matematik, Universiti Kebangsaan Malaysia (tidak diterbitkan).
Ghani, N.A., Liong, C-Y. & Jemain, A.A.
2010. Analysis of geometric moments as features for firearm identification. Forensic
Science International 198(1-3): 143-149.
Gupta, M.R., Jacobson, N.P. & Garcia, E.K.
2007. OCR binarization and image pre-processing for searching historical
documents. Pattern Recognition 40: 389-397.
Hu, M-K. 1962. Visual pattern recognition by
moment invariants. IRE Transactions on Information Theory 8(2): 179-187.
Kapur, J.N., Sahoo, P.K. & Wong, A.K.C.
1985. A new method for gray-level picture thresholding using the entropy of the
histogram. Computer Vision, Graphics, and Image Processing 29: 273-285.
Leng, J. & Huang, Z. 2012. On analysis of
circle moments and texture features for cartridge images recognition. Expert
Systems with Applications 39: 2092-2101.
Li, D.G. 2003. Image processing for the positive
identification of forensic ballistics specimens. Proceedings of the 6th
International Conference on Information Fusion 2003.
Mukundan, R., Ong, S.H. & Lee, P.A. 2001.
Image analysis by Tchebichef moments. IEEE Transactions on Image Processing 10(9):
1357-1364.
Otsu, N. 1979. A threshold selection method form gray-level
histograms. IEEE Transactions on Systems, Man and Cybernetics SMC-9(1):
62-66.
Pan, F. & Keane, M. 1994. A new set of moment invariants for
handwritten numeral recognition. Proceedings of the International Conference
on Image Processing, hlm 154-158.
Pattanachai, N., Covavisaruch, N. & Sinthanayothin, C. 2012.
Tooth recognition in dental radiographs via Hu’s moment invariants. Proceedings
of the 9th International Conferenceon Electrical Engineering/ Electronics,
Computer, Telecommunications and Information Technology, hlm. 1-4.
Radhika, K.R., Venkatesha, M.K. & Sekhar, G.N. 2011. An
approach for on-line signature authentication using Zernike moments. Pattern
Recognition Letters 32: 749-769.
Shih, F.Y. 2010. Image Processing and Pattern Recognition:
Fundamentals and Techniques. Hoboken, New Jersey: John Wiley & Sons.
Shu, H., Zhang, H., Chen, B., Haigron, P. & Luo, L. 2010. Fast
computation of Tchebichef Moments for binary and grayscale images. IEEE
Transactions on Image Processing 19(12): 3171-3180.
Tang, Y., Mu, W., Zhang, Y. & Zhang, X. 2011. A fast recursive
algorithm based on fuzzy 2-partition entropy approach for threshold selection. Neurocomputing 74(17): 3072-3078.
Teague, M.R. 1980. Image analysis via the general theory of
moments. Journal of the Optical Society of America 70(8): 920-930.
Thomas, S.M. & Chan, Y.T. 1989. A simple approach for the
estimation of circular arc center and its radius. Computer Vision, Graphics,
and Image Processing 45: 362-370.
Wu, W-Y. & Yu, W-B. 2009. Subpixel detection of circular
objects using geometric property. World
Academy of Science, Engineering and Technology 56: 236-240.
Xin, L.P., Zhou, J. & Rong, G. 2000. A cartridge identification
system for firearms authentication. Proceedings of the 5th International
Conference on Signal Processing, WCCC-ICSP 2000, hlm. 1405-1408.
Zhou, J., Xin, L.P., Gao, D.S., Zhang, C.S. & Zhang, D. 2001.
Automated identification for firearms authentication. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
CVPR’01, hlm 749-754.
*Pengarang untuk surat-menyurat; email: lg@ukm.my
|