Sains Malaysiana
46(11)(2017): 2119-2124
http://dx.doi.org/10.17576/jsm-2017-4611-12
Steep Slope DEM Model
Construction based on the Unmanned Aerial Vehicle (UAV) Images(Pembinaan
Model DEM Cerun Curam berdasarkan Imej Kenderaan Udara Awasan
Automatik (UAV))
WENFEI XI1* & DONGSHENG LI2
1College of Tourism and Geographic
Sciences, Yunnan Normal University, Kunming 650050
China
2Kunming Metallurgy College, Kunming
650033, China
Diserahkan: 27 Januari
2017/Diterima: 18 Mei 2017
ABSTRACT
The DEM construction of high and steep slope has great importance to
slope disaster monitoring. The conventional method used to construct high and
steep slope DEM model requires larger field surveying workload. First of all,
the high and steep slope image was obtained through unmanned aerial vehicle
(UAV) platform; Then the SIFT algorithm is used to extract the feature points
which are going to be matched accurately by using RANSAC algorithm. Finally,
stereo pair splicing method is used to generate orthogonal images and construct
DEM model. After comparing the DEM model with actual slope measurement result
collected by total station finding, it is shown that elevation error between
the DEM model constructed by unmanned aerial vehicle (UAV) and actual
measurement is minimal and its efficiency is proven.
Keywords: DEM model; high and steep slope; orthogonal
image; SIFT algorithm; unmanned aerial vehicle (UAV)
ABSTRAK
Pembinaan DEM di cerun tinggi dan curam adalah penting kepada pemantauan
bencana cerun. Kaedah konvensional yang digunakan untuk membina
model DEM cerun tinggi dan curam memerlukan beban kerja pengukuran
lapangan lebih besar. Pertama, imej cerun yang tinggi dan curam
diambil melalui platform kenderaan udara awasan automatik (UAV);
kemudian, algoritma SIFT digunakan untuk mendapatkan ciri butiran
yang akan dipadankan dengan tepat menggunakan algoritma RANSAC.
Akhir sekali, kaedah penyambatan pasangan stereo digunakan untuk
menjana imej ortogonal dan membina model DEM. Selepas membandingkan
keputusan model DEM dengan pengukuran cerun sebenar yang dikumpul
melalui jumlah stesen, ditunjukkan bahawa ralat penaikan antara
model DEM yang dibina oleh kenderaan udara awasan automatik (UAV)
dan pengukuran sebenar adalah minimum dan kecekapannya telah dibuktikan.
Kata kunci: Algoritma SIFT; cerun tinggi
dan curam; kenderaan udara awasan automatik (UAV); imej ortogon;
model DEM
RUJUKAN
Abd Rahman, N.H.,
Lee, M.H., Suhartono & Latif, M.T. 2016. Evaluation performance of time
series approach for forecasting air pollution index in Johor, Malaysia. Sains
Malaysiana 45(11): 1625-1633.
Bay, H., Ess, A.,
Tuytelaars, T. & Van Gool, L. 2008. Speeded-up robust features (SURF). Computer
Vision and Image Understanding 110(3): 346-359.
Berni, J.,
Zarco-Tejada, P., Suárez, L., González-Dugo, V. & Fereres, E. 2009. Remote
sensing of vegetation from UAV platforms using lightweight multispectral and
thermal imaging sensors. Proc. ISPRS 38: 22-29.
Chai, Z.W., Kang, J.,
Wang, L., Zhao, X. & Qiao, H.L. 2015. The construction of DEM in mountain
plantation landscape based on UAV images. Remote Sensing Technology and
Application 30(3): 504-508.
Colomina, I. &
Molina, P. 2014. Unmanned aerial systems for photogrammetry and remote sensing:
A review. ISPRS J. Photogramm. Remote Sens. 92: 79-97.
Eisenbeiss, H. &
Sauerbier, M. 2011. Investigation of UAV systems and flight modes for
photogrammetric applications. Photogramm. Rec. 26: 400-421.
Fernández-Hernandez,
J., González-Aguilera, D., Rodríguez-Gonzálvez, P. & Mancera-Taboada, J.
2015. Image-based modelling from unmanned aerial vehicle (UAV) photogrammetry:
An effective, low-cost tool for archaeological applications. Archaeometry 57:
128-145.
Forstner, W. &
Gulch, E. 1987. A fast operator for detection and precise location of distinct
points, comers and centres of circular features. Interlaken: Switzerland
Proceeding of Intercommission Workshop on Fast Processing of Photogrammetric
Data. pp. 281-305.
Gao, W. & Guo, Y.
2016. The fifth geometric arithmetic index of bridge graph and carbon
nanocones. Journal of Difference Equations and Applications.
http://dx.doi.org/10.1080/10236198.2016.1197214.
Gao, W., Guo, Y.
& Wang, K.Y. 2016. Ontology algorithm using singular value decomposition
and applied in multidisciplinary, cluster computing. The Journal of Networks
Software Tools and Applications 19(4): 2201-2210.
Gao, W. & Wang, W.F. 2016. The eccentric connectivity
polynomial of two classes of nanotubes. Chaos, Solitons and Fractals 89:
290-294.
Gerke, M. & Przybilla, H.J.
2016. Accuracy analysis of photogrammetric UAV image blocks: Influence of
onboard RTK-GNSS and cross flight patterns. Photogramm. Fernerkund. Geoinf. 14:
17-30.
Harris, C. & Stephens, M.
1988. A combined corner and edge detector. Alvey Vision Conference 15: 147-151.
doi: 10.5244/C.2.23.
Harwin, S. & Lucieer, A.
2012. Assessing the accuracy of georeferenced point clouds produced via
multi-view stereopsis from unmanned aerial vehicle (UAV) imagery. Remote
Sens. 4: 1573-1599.
Li, B.L. 2008. Study of
registration algorithm in image mosaic based on key points. Master Thesis of
Tianjin University (Unpublished).
Lowe, D.G. 1999. Object
recognition from local scale-invariant features. The Proceedings of the
Seventh IEEE International Conference on Computer Vision 2: 1150-1157.
Nex, F. & Remondino, F. 2014.
UAV for 3D mapping applications: A review. Appl. Geomat. 6: 1-15.
Puri, A., Valavanis, K. &
Kontitsis, M. 2007. Statistical profile generation for traffic monitoring using
real-time UAV based video data. In Proceedings of the Mediterranean
Conference on Control & Automation, Athens, Greece. pp. 27-29.
Roslee, R., Simon, N., Tongku,
F., Norhisham, M.N. & Taharin, M.R. 2017. Landslide susceptibility analysis
(LSA) using deterministic model (infinite slope) (DESSISM) in the Kota Kinabalu
area, Sabah, Malaysia. Geological Behavior 1(1): 06-09.
Zhang, C. & Kovacs, J.M.
2012. The application of small unmanned aerial systems for precision
agriculture: A review. Precis. Agric. 13: 693-712.
Zhang, W.Q., Zhao, J.S. &
Tang, M. 2014. Research on 3d terrain modeling by UAV image. Engineering of
Surveying and Mapping 3(23): 36-41.
Zhao, S. & Chen, T. 2017.
Design and development of national geographic condition monitoring system based
on Web GIS. Geology, Ecology, and Landscapes 1(1): 12-18.
*Pengarang untuk surat-menyurat;
email: xiwenfei911@163.com
|