Sains
Malaysiana 46(11)(2017): 2231-2239
http://dx.doi.org/10.17576/jsm-2017-4611-25
Comparative
Analysis of Load Responses and Deformation for Crust Composite Foundation and
Pile-supported Embankment
(Perbandingan
Analisis Respons Beban dan Kecemaran Asas Komposit Kerak dan Embankmen
Disokong Longgokan)
YING WANG1, YONGHUI
CHEN2*, ZHENHUA HU1, QIANG FENG1 & DESEN
KONG1
1Shandong Provincial Key Laboratory of Civil Engineering, Disaster
Prevention and Mitigation
Shandong University of Science and Technology, Qingdao 266590, China
2Geotechnical Research
Institute, Hohai University, Nanjing 210098, China
Diserahkan: 8 Januari 2017/Diterima: 8 Jun 2017
ABSTRACT
Ground improvement using artificial crust composite foundation,
consisting of stabilization of soft clay and composite foundation, is an
effective technique for the treatment of deep soft soil layers under
infrastructure embankments. In this study, the load responses and settlement
performance of this improvement technique were investigated using two
centrifuge model tests to compare the variations of the vertical deformation,
pore water pressure, axial force of the piles and tensile stress at the bottom of
the artificial crust in the crust composite foundation with those in
pile-supported embankment. The results of centrifuge model tests showed that
the load responses and settlement performance of artificial crust composite
foundation was different from the pile-supported embankment, which displayed
mainly that the final middle settlement of crust composite foundation can be
reduced by about 15% compared with those of pile-supported embankment with the
same length of pile and construction cost. The deformation of the crust with
the characteristics of the plate was found based on the change of the tensile
stress. Additionally, the excess pore water pressure in the crust composite
foundation was lower owing to the stress diffusion effect of the crust during the
loading period and the dissipation rate of excess pore water pressure was
slower due to lower permeability of the crust at the same loading period.
Eventually, the axial force of the middle piles was reduced. At the same time,
the boundary stress was functioned with the crust, the axial force of the side
piles was improved. The comparison of measured and calculated results was
carried out using the stress reduction ratio, the result shows that the bearing
capacity of the subsoil in the crust composite was improved.
Keywords: Artificial crust composite foundation; centrifuge model test;
pile-supported embankment; soft clay; stabilization
ABSTRAK
Pembaikan tanah yang menggunakan asas komposit kerak tiruan, terdiri
daripada penstabilan tanah liat lembut dan komposit asas, merupakan teknik yang
berkesan untuk rawatan tanah lembut lapisan dalam di bawah infrastruktur
benteng. Dalam kajian ini, beban tindak balas tindakan dan prestasi penempatan
dalam teknik pembaikan ini dikaji menggunakan dua model ujian pengemparan untuk
membandingkan perbezaan canggaan menegak, tekanan air liang, daya paksi cerucuk
dan tekanan tegangan di bahagian bawah kerak tiruan dalam asas komposit kerak
dengan cerucuk disokong benteng. Keputusan ujian model pengemparan menunjukkan
bahawa beban tindak balas dan prestasi penempatan asas komposit kerak tiruan
adalah berbeza daripada cerucuk disokong benteng, yang memaparkan asas
penempatan tengah akhir, asas kerak komposit boleh dikurangkan kira-kira 15%
berbanding dengan cerucuk disokong benteng dengan panjang cerucuk serta kos
pembinaan yang sama. Canggaan kerak ini dengan ciri plat dijumpai berdasarkan
perubahan tekanan tegangan. Di samping itu, tekanan air liang lebihan dalam
asas komposit kerak adalah lebih rendah disebabkan kesan penyebaran tekanan
kerak pada sepanjang tempoh bebanan dan kadar pelesapan tekanan air liang
lebihan adalah lebih perlahan disebabkan oleh kadar resapan kerak yang lebih
rendah pada tempoh beban yang sama. Kesimpulannya, daya paksi cerucuk di
bahagian telah telah dikurangkan. Pada masa yang sama, tekanan sempadan
berfungsi dengan kerak maka daya paksi cerucuk sisi bertambah baik.
Perbandingan keputusan yang diukur dan dikira telah dijalankan menggunakan
nisbah penurunan tekanan dan keputusan menunjukkan bahawa keupayaan galas tanah
bawah dalam komposit kerak adalah bertambah baik.
Kata kunci: Asas
komposit kerak tiruan; benteng disokong cerucuk; model ujian pengemparan;
penstabilan; tanah liat lembut
RUJUKAN
Ariyarathne, P. &
Liyanapathirana, D.S. 2015. Review of existing design methods for
geosynthetic-reinforced pile-supported embankments. Soils and Foundations 55(1):
17-34.
Blanc, M., Thorel,
L., Girout, R. & Almeida, M. 2014. Geosynthetic reinforcement of a granular
load transfer platform above rigid inclusions: Comparison between centrifuge
testing and analytical modelling. Geosynthetics International 21(1):
37-52.
BS 8006. 2010. Code
of Practice for Strengthened/Reinforced Soils and Other Fills. British
Standard Institution, UK.
Chen, R.P., Wang, Y.W.,
Ye, X.W., Bian, X.C. & Dong, X.P. 2016. Tensile force of geogrids embedded
in pile-supported reinforced embankment: A full-scale experimental study. Geotextiles
& Geomembranes 44(2): 157-169.
Chen, R.P., Chen,
Y.M., Han, J. & Xu, Z.Z. 2008. A theoretical solution for pile-supported
embankments on soft soils under one-dimensional compression. Canadian
Geotechnical Journal 45: 611-623.
Erfen, H.F.W.S.,
Asis, J., Abdullah, M., Musta, B., Tahir, S., Pungut, H. & Mohd Husin,
M.A.Y. 2017. Geochemical characterization of sediments around Nukakatan Valley,
Tambunan, Sabah. Geological Behavior 1(1): 13-15.
Fagundes, D.F.,
Almeida, M.S.S., Thorel, L. & Blanc, M. 2017. Load transfer mechanism and
deformation of reinforced piled embankments. Geotextiles & Geomembranes 45(2):
1-10.
Garnier, J., Gaudin,
C. & Springman, S.M. 2007. Catalogue of scaling laws and similitude
questions in geotechnical centrifuge modelling. International Journal of
Physical Modelling in Geotechnics 7(3): 1-23.
Hewlett, W.J. &
Randolph, M.F. 1988. Analysis of piled embankments. Ground Engineering 21(3):
12-18.
Huang, J. & Han,
J. 2009. 3D coupled mechanical and hydraulic modeling of a
geosynthetic-reinforced deep mixed column-supported embankment. J.
Geotextile Geomembr. 27(4): 272-280.
Ishihara, K. 1993. Liquefaction and flow failure during
earthquakes. Géotechnique 43(3): 351-451.
Ishikura, R.,
Yasufuku, N. & Brown, M.J. 2016. An estimation method for predicting final
consolidation settlement of ground improved by floating soil cement columns. Soils
& Foundations 56(2): 213-227.
Ishikura, R., Ochiai,
H., Yasufuku, N. & Omine, K. 2007. Estimation of the settlement of improved
ground with floating-type cement-treated columns. Proceedings of the 4th
International Conference on Soft Soil Engineering, Vancouver. pp. 625-635.
Jelisic, N. &
Leppänen, M. 2003. Mass stabilization of organic soils and soft clay. Proceedings
of the 3th International Conference on Grouting and Ground Treatment, New
Orleans, Louisiana. pp. 552-561.
Liu, W., Qu, S.,
Zhang, H. & Nie, Z. 2017. An integrated method for analyzing load transfer
in geosynthetic-reinforced and pile-supported embankment. KSCE Journal of
Civil Engineering 21(3): 687-702.
Ng, C.W.W. 2014. The
state-of-the-art centrifuge modelling of geotechnical problems at hkust. Journal
of Zhejiang University-Science A 15(1): 1-21.
Noor, M.J. &
Ashraf, M.A. 2017. Accumulation and tolerance of radiocesium in plants and its
impact on the environment. Environment Ecosystem Science 1(1): 13-16.
Rahman, M.M.,
Abdullah, R.B., Wan Khadijah, W.E., Nakagawa, T. & Akashi, R. 2014. Feed
intake and growth performance of goats offered Napier grass (Pennisetum
purpureum) supplemented with concentrate pellet and soya waste. Sains
Malaysiana 43(7): 967-971.
Sharma, J.S. &
Bolton, M.D. 1996. Centrifuge modelling of an embankment on soft clay
reinforced with a geogrid. Geotextiles & Geomembranes 14(1): 1-17.
Stewart, M.E. &
Filz, G.M. 2014. Influence of clay compressibility on geosynthetic loads in
bridging layers for column-supported embankments. Geo-frontiers Congress 156(130):
1-14.
Taylor, R.N. 1995. Geotechnical
Centrifuge Technology. London: Blackie Academic and Professional.
van Eekelen, S.J.M.,
Bezuijen, A. & van Tol, A.F. 2011. Analysis and modification of the British
Standard BS8006 for the design of piled embankments. Geotextiles &
Geomembranes 29(3): 345-359.
Viswanadham, B.V.S.
& Mahajan, R. 2004. Modeling of geotextile reinforced highway slopes in a
geotechnical centrifuge. In Geotechnical Engineering for Transportation
Project, edited by Yegian, M.K. & Kavazanjian, E. Proceedings of
Geo-Trans. pp.637-646.
White, D.J., Take,
W.A. & Bolton, M.D. 2003. Soil deformation measurement using particle image
velocimetry (PIV) and photogrammetry. Géotechnique 53(7): 619-631.
Yao, M.Y., Zhou, S.H.
& Li, Y.C. 2004. Boundary effect analysis of centrifuge test. Chin Q
Mech. 25(2): 291-296.
Yapage, N.N.S.,
Liyanapathirana, D.S., Kelly, R.B., Poulos, H.G. & Leo, C.J. 2014.
Numerical modeling of an embankment over soft ground improved with deep cement
mixed columns: Case history. Journal of Geotechnical & Geoenvironmental
Engineering 140(11): 04014062.
Zhang, L., Zhao, M.,
Hu, Y., Zhao, H. & Chen, B. 2012. Semi-analytical solutions for
geosynthetic-reinforced and pile-supported embankment. Computers &
Geotechnics 44(44): 167-175.
Zheng, G., Jiang, Y.,
Han, J. & Liu, Y.F. 2011. Performance of cement-fly ash-gravel
pile-supported high-speed railway embankments over soft marine clay. Marine
Georesources & Geotechnology 29(2): 145-161.
Zhuang, Y., Ellis, E.
&Yu, H.S. 2012. Three-dimensional finite-element analysis of arching in a
piled embankment. Géotechnique 62(12): 1127-1131.
*Pengarang untuk
surat-menyurat; email: jiang101215@163.com
|