Sains Malaysiana 48(6)(2019): 1295–1300

http://dx.doi.org/10.17576/jsm-2019-4806-18

 

Kesan Sistematik Modifikasi Dielektrik dengan Asid Fosfonik Alkil Ekalapisan terhadap Prestasi Transistor Filem Nipis Organik Saluran-N

(The Effect of Systematic Modification of Phosphonic Acid Alkyl Dielektric with monolayer on the Performance of Organic Thin Film Transistors-N Channel)

 

MOHD ZULHAKIMI ABDUL RAZAK1, MOHD FARHANULHAKIM MOHD RAZIP WEE1, MUHAMAD RAMDZAN BUYONG1, SAWAL HAMID MD ALI2, TEH CHIN HOONG3, JUMADI ABDUL SUKOR4 & AHMAD GHADAFI ISMAIL1*

 

1Institut Kejuruteraan Mikro dan Nanoelektronik, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Kejuruteraan Sistem Bersepadu dan Teknologi Termaju, Fakulti Kejuruteraan dan Alam Bina, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Pusat PERMATApintar Negara, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

4Fakulti Teknologi Kejuruteraan, Universiti Tun Hussein Onn Malaysia, 84600 Panchor, Johor Darul Takzim, Malaysia

 

 

Diserahkan: 15 Januari 2019/Diterima: 28 Februari 2019

 

ABSTRAK

Kajian ini membincangkan tentang kesan panjang rantai karbon pada asid alkil fosfonik ekalapis pengumpulan kendiri terhadap prestasi transistor organik filem nipis saluran-n terbentuk berdasarkan N,N’-ditridekil-3,4,9,10-perilenadikarboximide (PTCDI-C13). Prestasi transistor organik filem nipis tersebut meningkat dengan peningkatan panjang rantai ekalapis pengumpulan kendiri pada dielektrik SiO2. Magnitud mobiliti setinggi 0.3 cm2/Vs dan nisbah arus buka/tutup lebih tinggi daripada 105 telah dicapai. Transistor tersebut adalah calon terbaik untuk menyaingi transistor organik filem nipis pentacene saluran-p untuk menghasilkan litar semikonduktor logam pelengkap teroksida organik (O-CMOS). Prestasi peranti ini tidak bergantung terhadap panjang rantaian alkil apabila diuji di dalam udara ambien.

 

Kata kunci: Asid fosfonik; ekalapis pengumpulan kendiri; PTCDI; salur-n; transistor filem nipis organic

 

ABSTRACT

The performance of N,N’-ditridecyl-3,4,9,10-perylenetetracarboxylicdiimide (PTCDI-C13) based n-channel organic thin film transistors with different carbon chain length of alkyl phosphonic acid self-assembled monolayers were investigated and presented in this paper. The study observed an improving trend in the performance of the organic thin film transistor with increasing self-assembled monolayer chain length on SiO2 dielectric. The results show mobility improvement reaching 0.3 cm2/Vs and larger than 105 on/off current ratio. This study suggests these transistors should be a good match with p-channel pentacene organic thin film transistors for an organic complementary metal oxide semiconductor (O-CMOS) circuits. The device has no dependency with the alkyl chain length when tested in ambient air.

 

Keywords: N-channel; organic thin film transistor; phosphonic acid; PTCDI; self-assembled monolayer

RUJUKAN

Acton, O., Ting, G.G., Shamberger, P.J., Ohuchi, F.S., Ma, H. & Jen, A.K.Y. 2010. Dielectric surface-controlled low-voltage organic transistors via n-alkyl phosphonic acid self-assembled monolayers on high-k metal oxide. Applied Materials & Interfaces 2: 511-520.

Bao, Z. 2007. Organic materials for thin film transistors. Material Matters 2.3, 4. https://www.sigmaaldrich.com/technical-documents/articles/material-matters/organic-materials.html.

Chesterfield, R.J., McKeen, J.C., Newman, C.R., Frisbie, C.D., Ewbank, P.C., Mann, K.R. & Miller, L.L. 2004a. Variable temperature film and contact resistance measurements on operating n-channel organic thin film transistors. Journal of Applied Physics 95: 6396.

Chesterfield, R.J., Mckeen, J.C., Newman, C.R., Ewbank, P.C., da Silva Filho, D.A., Breda, J.L., Miller, L.L., Mann, K.R. & Frisbie, C.D. 2004b. Organic thin film transistors based on n-alkyl perylene diimide: Charge transport kinetics as a function of gate voltage and temperature. Journal of Physical Chemistry 108: 19281-19292.

Chua, L.L., Zaumsell, J., Chang, J.F., Ou, E.C.W., Ho, P.K.H., Sirringhaus, H. & Friend, R.H. 2005. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434: 194-199.

Gundlach, D.J., Pernstich, K.P., Wilckens, G., Grüter, M., Haas, S. & Batlogg, B. 2005. High mobility n-channel organic thin film transistors and complementary inverters. Journal of Applied Physics 98: 064502.

Halik, M., Klauk, H., Zschleschang, U., Schmid, G., Dehm, C., Schutz, M., Malsch, S., Effenberger, F., Brunnbauer, M. & Stellacci, F. 2004. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431: 963-166.

Hill, I.G., Weinert, C.M., Kreplak, L. & van Zyl, B.P. 2009. Influence of self-assembled monolayer chain length on modified gate dielectric pentacene thin-film transistors. Applied Physics A 95(1): 81-87.

Hosoi, Y., Tsunami, D., Ishii, H. & Furukawa, Y. 2007. Air-stable n-channel organic field-effect transistors based on N,N’-bis(4- trifluoromethylbenzyl) perylene-3,4,9,10-tetracarboxylic diimide. Chemical Physics Letters 436: 139-143.

Ismail, A.G. & Hill, I.G. 2011. Stability of n-channel organic thin film transistors using oxide, SAM-modified oxide and polymeric gate dielectrics. Organic Electronics 12(6): 1033-1042.

Ismail, A.G. 2018. Photolithographically patterned N-channel organic thin film transistors using sensitized polyvinyl alcohol. Organic Electronics 56: 111-115.

Klauk, H., Zschieschang, U., Pflaum, J. & Halik, M. 2007. Ultralow-power organic complementary circuits. Nature 445: 745-748.

Lee, J.D., Park, B.G. & Jung, K.D. 2008. Reliability issues of bottom-contact pentacene thin-film transistors. Sains Malaysiana37(3): 295-298.

Liao, K.C., Ismail, A.G., Kreplak, L., Schwartz, J. & Hill, I.G. 2010. Designed organophosphate self-assembled monolayers enhance device performance of pentacene-based thin-film transistors. Advanced Materials 22: 3081-3085.

Maheran, A.A.H., Menon, P.S. & Ahmad, I. 2014. Optimisation of process parameters for lower leakage current in 22 nm n-type MOSFET device using Taguchi method. Jurnal Teknologi (Sciences and Engineering) 68(4): 1-5.

Malenfant, P.R.L., Dimitrakopoulos, C.D., Gelorme, J.D., Kosbar, L.L., Graham, T.O., Curioni, A. & Andreoni, W. 2002. N-type organic thin-film transistor with high field-effect mobility based on a N,N’-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Applied Physics Letters 80: 2517.

Mohamed, M.A., Zulkefli, F.D. & Majlis, B.Y. 2017. Pencirian transistor karbon tiub nano berdinding tunggal yang dihasilkan melalui kaedah pertumbuhan langsung. Sains Malaysiana46(7): 1141-1145.

Razavi, B. 2001. Design of Analog CMOS Integrated Circuit. New York: McGraw-Hill.

Unni, K.N.N., Pandey, A.K. & Nunzi, J.M. 2005. N-channel organic field-effect transistors using N,N’-ditridecylperylene- 3,4,9,10-tetracarboxylic diimide and a polymeric dielectric. Chemical Physics Letters 407: 95-99.

Weitz, T., Amsharov, K., Zschieschang, U., Villas, E.B., Goswami, D.K., Burghard, M., Dosch, H., Jansen, M., Kern, K. & Klauk, H. 2008. Organic n-channel transistors based on core-cyanated perylene carboxylic diimide derivatives. Journal of the American Chemical Society 130: 4637-4645.

 

*Pengarang untuk surat-menyurat; email: ghad@ukm.edu.my

 

 

sebelumnya