Sains Malaysiana 49(3)(2020): 537-544
http://dx.doi.org/10.17576/jsm-2020-4903-08
Computational Quest for Finding Potential Ebola
VP40 Inhibitors: A Molecular Docking Study
(Pencarian Pengiraan untuk
Mencari Potensi Perencat Ebola VP40: Suatu Kajian Mengedok Molekul)
MOHAMAD
ARIFF MOHAMAD YUSSOFF1, AZZMER AZZAR ABD HAMID1,3,
SHAFIDA ABD HAMID2 & KHAIRUL BARIYYAH ABD HALIM1,3*
1Department of Biotechnology,
Kulliyyah of Science, International Islamic University Malaysia,
25200 Kuantan, Pahang Darul Makmur, Malaysia
2Department of Chemistry,
Kulliyyah of Science, International Islamic University Malaysia,
25200 Kuantan, Pahang Darul Makmur, Malaysia
3Research Unit for Bioinformatics and Computational
Biology, Kulliyyah of Science, International Islamic University
Malaysia, 25200 Kuantan, Pahang Darul Makmur, Malaysia
Diserahkan: 1 Ogos 2019/Diterima: 5 Disember 2019
ABSTRACT
Interaction
of Ebola virus matrix protein VP40 with RNA is crucial in the early
infection stage to facilitate the transcription of the viral gene.
Thus, VP40 is a promising target to inhibit the Ebola virus from
spreading. This study aims to identify and optimize ligands that
can potentially block the VP40-RNA binding site. A total of 42 compounds
from previously studied ligands from the literature were simulated
against the RNA binding site using Autodock Vina. The top ten ligands
were used as templates for similarity search in ZINC database followed
by structured-based virtual screening. Then, the ADME properties
of the top compounds were predicted computationally using SwissADME
server. Our results showed that Q-96 (ZINC ID: 1338855) is the best
docked compound with binding free energy of -7.5 kcal/mol. The compound
also has satisfactory ADME properties prediction with good lipophilicity
value, moderate water solubility and high gastrointestinal absorption.
Besides, this ligand does not violate any drug likeness rules as
well as no PAINS and Brenk alerts, indicate it has the properties
as a drug. Thus, it is worth to carry out further investigations
on this structure more in
silico as well as in vitro and in vivo levels towards
finding the treatment for Ebola virus disease.
Keywords: ADME; Ebola
virus; molecular docking:
VP40 matrix protein
ABSTRAK
Interaksi matriks
virus Ebola VP40 dengan RNA adalah penting dalam peringkat jangkitan
awal untuk memudahkan transkripsi gen virus. Oleh itu, VP40 adalah
sasaran yang sesuai bagi menghalang virus Ebola daripada terus merebak.
Kajian ini bertujuan untuk mengenal pasti dan mengoptimumkan ligan
yang berpotensi menghalang tapak pengikat VP40-RNA. Sejumlah 42
sebatian daripada kajian terdahulu telah disimulasi di tapak pengikat
RNA menggunakan Autodock Vina. Sepuluh ligan terbaik telah dipilih
sebagai templat pencarian persamaan dalam pangkalan data ZINC diikuti
oleh penyaringan maya berasaskan struktur. Ciri-ciri ADME sebatian
telah diramalkan secara komputasi menggunakan pelayan SwissADME.
Keputusan kajian kami menunjukkan bahawa Q-96 (ZINC
ID: 1338855) adalah sebatian terbaik dengan tenaga bebas pengikat
-7.5 kcal/mol. Sebatian ini juga menunjukkan sifat ADME
yang memuaskan dengan nilai kelipofilikan yang baik, kelarutan air
secara sederhana dan penyerapan gastrousus yang tinggi. Selain itu,
ligan ini tidak melanggar sebarang hukum persamaan drug juga tidak
memberi sebarang amaran PAINS dan Brenk, menjustifikasikan ia mempunyai
ciri-ciri sebagai drug. Oleh itu, adalah wajar untuk menjalankan
kajian lanjutan yang lebih dalam mengenai struktur ini secara
in silico, in vitro dan in vivo ke arah pencarian rawatan
terhadap penyakit virus Ebola.
Kata kunci: ADME;
cantuman molekul;
protein matriks
VP40; virus Ebola
RUJUKAN
Abazari, D., Moghtadaei,
M., Behvarmanesh, A., Ghannadi, B., Aghaei, M., Behruznia, M. &
Rigi, G. 2015. Molecular docking based screening of predicted potential
inhibitors for VP40 from Ebola virus. Bioinformation
11: 243-247.
Adu-Gyamfi, E., Digman,
M.A., Gratton, E. & Stahelin, R.V. 2012. Investigation of Ebola
VP40 assembly and oligomerization in live cells using number and
brightness analysis. Biophys.
J. 102: 2517-2525.
Adu-Gyamfi, E., Johnson,
K.A., Fraser, M.E., Scott, J.L., Soni, S.P., Jones, K.R., Digman,
M.A., Gratton, E., Tessier, C.R. & Stahelin, R.V. 2015. Host
cell plasma membrane phosphatidylserine regulates the assembly and
budding of Ebola virus. J. Virol. 89: 9440-9453.
Akers, M.J. 2002.
Excipient-drug interactions in parenteral formulations. J. Pharm. Sci. 91: 2283-2300.
Arnott, J.A. &
Planey, S.L. 2012. The influence of lipophilicity in drug discovery
and design. Expert Opin. Drug
Discov. 7: 909-921.
Baell, J.B. &
Holloway, G.A. 2010. New substructure filters for removal of pan
assay interference compounds (PAINS) from screening libraries and
for their exclusion in bioassays. J.
Med. Chem. 53: 2719-2740.
Booth, T.F., Rabb,
M.J. & Beniac, D.R. 2013. How do filovirus filaments bend without
breaking? Trends Microbiol.
21: 583-593.
Bornholdt, Z.A.,
Noda, T., Abelson, D.M., Halfmann, P., Wood, M.R., Kawaoka, Y. &
Saphire, E.O. 2013. Structural rearrangement of Ebola virus VP40
begets multiple functions in the virus life cycle. Cell
154: 763-774.
Brenk, R., Schipani,
A., James, D., Krasowski, A., Gilbert, I.H., Frearson, J. &
Wyatt, P.G. 2008. Lessons learnt from assembling screening libraries
for drug discovery for neglected diseases. ChemMedChem.
3: 435-444.
Castro-Alvarez, A.,
Costa, A.M. & Vilarrasa, J. 2017. The performance of several
docking programs at reproducing protein-macrolide-like crystal structures.
Molecules 22: 1-14.
Clark, D.E. 2011.
What has polar surface area ever done for drug discovery? Future Med. Chem. 3: 469-484.
Daina, A., Michielin,
O. & Zoete, V. 2017. SwissADME: A free web tool to evaluate
pharmacokinetics, drug-likeness and medicinal chemistry friendliness
of small molecules. Sci. Rep.
7: 42717.
Del Vecchio, K.,
Frick, C.T., Gc, J.B., Oda, S., Gerstman, B.S., Saphire, E.O., Chapagain,
P.P. & Stahelin, R.V. 2018. A cationic, C-terminal patch and
structural rearrangements in Ebola virus matrix VP40 protein control
its interactions with phosphatidyserine. J.
Biol. Chem. 293: 3335-3349.
Egan, W.J., Merz,
K.M. & Baldwin, J.J. 2000. Prediction of drug absorption using
multivariate statistics. J.
Med. Chem. 43: 3867-3877.
Fabozzi, G., Nabel,
C.S., Dolan, M.A. & Sullivan, N.J. 2011. Ebola virus proteins
suppress the effects of small interfering RNA by direct interaction
with the mammalian RNA interference pathway. J.
Virol. 85: 2512-2523.
Feldmann, H. &
Geisbert, T.W. 2011. Ebola haemorrhagic fever. Lancet. 377: 849-862.
Gc, J.B., Gerstman, B.S. & Chapagain, P.P. 2017. Membrane
association and localization dynamics of the Ebola virus matrix
protein VP40. Biochim. Biophys.
Acta - Biomembr. 1859: 2012-2020.
Ghose, A.K., Viswanadhan,
V.N. & Wendoloski, J.J. 1999. A knowledge-based approach in
designing combinatorial or medicinal chemistry libraries for drug
discovery. 1. A qualitative and quantitative characterization of
known drug databases. J. Comb. Chem. 1: 55-68.
Gleeson, M.P. 2008.
Generation of a set of simple, interpretable ADMET rules of thumb.
J. Med. Chem. 51: 817-834.
Gomis-Rüth, F.X.,
Dessen, A., Timmins, J., Bracher, A., Kolesnikowa, L., Becker, S.,
Klenk, H.D. & Weissenhorn, W. 2003. The matrix protein VP40
from Ebola virus octamerizes into pore-like structures with specific
RNA binding properties. Structure 11: 423-433.
Gonzalez, J.P., Wauquier,
N. & Vincent, T. 2018. Revisiting Ebola, a quiet river in the
heart of Africa. Med. Sante
Trop. 28: 12-17.
Gupta, U., Agashe,
H.B., Asthana, A. & Jain, N.K. 2006. Dendrimers: Novel polymeric
nanoarchitectures for solubility enhancement. Biomacromolecules 7: 649-658.
Hoenen, T., Volchkov,
V., Kolesnikova, L., Mittler, E., Timmins, J., Ottmann, M., Reynard,
O., Becker, S. & Weissenhorn, W. 2005. VP40 octamers are essential
for Ebola virus replication. J.
Virol. 79: 1898-1905.
Jasenosky, L.D.,
Neumann, G., Lukashevich, I. & Kawaoka, Y. 2001. Ebola virus
VP40-induced particle formation and association with the lipid bilayer.
J. Virol. 75: 5205-5214.
Johnson, K.A., Taghon,
G.J.F., Scott, J.L. & Stahelin, R.V. 2016. The Ebola virus matrix
protein, VP40, requires phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)
for extensive oligomerization at the plasma membrane and viral egress.
Sci. Rep. 6: 19125.
Karthick, V., Nagasundaram,
N., Doss, C.G.P., Chakraborty, C., Siva, R., Lu, A., Zhang, G. &
Zhu, H. 2016. Virtual screening of the inhibitors targeting at the
viral protein 40 of Ebola virus. Infect.
Dis. Poverty 5: 12. Doi: 10.1186/s40249-016-0105-1.
Li, H., Leung, K.S.,
Wong, M.H. & Ballester, P.J. 2016. USR-VS: A web server for
large-scale prospective virtual screening using ultrafast shape
recognition techniques. Nucleic
Acids Res. 44: W436-W441.
Lipinski, C. 2002.
Poor aqueous solubility - An industry wide
problem in drug discovery. Am.
Pharm. Rev. 5: 82-85.
Lipinski, C.A., Lombardo,
F., Dominy, B.W. & Feeney, P.J. 1997. Experimental and computational
approaches to estimate solubility and permeability in drug discovery
and development settings. Adv.
Drug Deliv. Rev. 46: 3-26.
M Alam El-Din, H.,
A Loutfy, S., Fathy, N., H Elberry, M., M Mayla, A., Kassem, S.
& Naqvi, A. 2016. Molecular docking based screening of compounds
against VP40 from Ebola virus. Bioinformation
12: 192-196.
Martin, B., Canard,
B. & Decroly, E. 2017. Filovirus proteins for antiviral drug
discovery: Structure/function bases of the replication cycle. Antiviral Res. 141: 48-61.
Martin, B., Hoenen,
T., Canard, B. & Decroly, E. 2016. Filovirus proteins for antiviral
drug discovery: A structure/function analysis of surface glycoproteins
and virus entry. Antiviral
Res. 135: 1-14.
Mirza, M.U. &
Ikram, N. 2016. Integrated computational approach for virtual hit
identification against Ebola viral proteins VP35 and VP40. Int. J. Mol. Sci. 17(11): 1748.
Muegge, I., Heald,
S.L. & Brittelli, D. 2001. Simple selection criteria for drug-like
chemical matter. J. Med. Chem.
44: 1841-1846.
Olejnik, J., Ryabchikova,
E., Corley, R.B. & Mühlberger, E. 2011. Intracellular events
and cell fate in filovirus infection. Viruses
3: 1501-1531.
Raj, U. & Varadwaj,
P.K. 2016. Flavonoids as multi-target inhibitors for proteins associated
with Ebola virus: In silico discovery using virtual screening
and molecular docking studies. Interdiscip.
Sci. Comput. Life Sci. 8: 132-141.
Ruigrok, R.W., Schoehn,
G., Dessen, A., Forest, E., Volchkov, V., Dolnik, O., Klenk, H.D.
& Weissenhorn, W. 2000. Structural characterization and membrane
binding properties of the matrix protein VP40 of Ebola virus. J. Mol. Biol. 300: 103-112.
Schreyer, A.M. &
Blundell, T. 2012. USRCAT: Real-time ultrafast shape recognition
with pharmacophoric constraints. J.
Cheminform. 4: 27.
Serajuddin, A.T.M.
2007. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 59: 603-616.
Setlur, A.S., Naik,
S.Y. & Skariyachan, S. 2017. Herbal lead as ideal bioactive
compounds against probable drug targets of Ebola virus in comparison
with known chemical analogue: A computational drug discovery perspective.
Interdiscip. Sci. Comput. Life Sci. 9: 254-277.
Shah, R., Panda,
P.K., Patel, P., Mumbai, N., Farm, A. & Road, G.D. 2015. Pharmacophore
based virtual screening and molecular docking studies of inherited
compounds against Ebola virus receptop proteins. World
J. Pharm. Pharm. Sci. 4: 1268-1282.
Strickley, R.G. 2004.
Solubilizing excipients in oral and injectable formulations. Pharm. Res. 21: 201-230.
Tamilvanan, T. &
Hopper, W. 2013. High-throughput virtual screening and docking studies
of matrix protein VP40 of Ebola virus. Bioinformation
9: 286-292.
Taylor, R.D., Maccoss,
M. & Lawson, A.D.G. 2014. Rings in drugs. J. Med. Chem. 57: 5845-5859.
Trott, O. & Olson,
A.J. 2009. Software news and update AutoDock Vina: Improving the
speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J.
Comput. Chem. 31: 455-461.
Van de Waterbeemd, H., Smith, D.A., Beaumont, K. & Walker,
D.K. 2001. Property-based design: Optimization of drug absorption
and pharmacokinetics. J. Med.
Chem. 44: 1313-1333.
Veber, D.F., Johnson,
S.R., Cheng, H., Smith, B.R., Ward, K.W. & Kopple, K.D. 2002.
Molecular properties that influence the oral bioavailability of
drug candidates. J. Med. Chem.
45: 2615-2623.
Vyas, A., Saraf,
Shailendra. & Saraf, Swarnlata. 2008. Cyclodextrin based novel
drug delivery systems. J.
Incl. Phenom. Macrocycl. Chem. 62: 23-42.
WHO | Ebola Situation
Reports: Democratic Republic of the Congo, 2019.
WHO | Ebola Virus
Disease 2017.
Yang, J., Roy, A.
& Zhang, Y. 2013a. Protein-ligand binding site recognition using
complementary binding-specific substructure comparison and sequence
profile alignment. Bioinformatics
29: 2588-2595.
Yang, J., Roy, A.
& Zhang, Y. 2013b. BioLiP: A semi-manually curated database
for biologically relevant ligand-protein interactions. Nucleic Acids Res. 41: 1096-1103.
Yuan, S. 2015. Possible
FDA-approved drugs to treat Ebola virus infection. Infect. Dis. Poverty 4: 23.
*Pengarang untuk surat-menyurat; email:
kbariyyah@iium.edu.my
|